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We propose a convolutional encoder over the finite ring of integers modulo pk ,Zpk , where p is a prime number and k is any
positive integer, to generate a space-time convolutional code (STCC). Under this structure, we prove three properties related to
the generator matrix of the convolutional code that can be used to simplify the code search procedure for STCCs over Zpk . Some
STCCs of large diversity order (≥4) designed under the trace criterion for n = 2, 3, and 4 transmit antennas are presented for
various PSK signal constellations.
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1. INTRODUCTION

Since the discovery of space-time trellis codes (STTCs) by
Tarokh et al. [1], much research has been done in this
area. Some authors [2–5] have concentrated their efforts
to generate STTCs through an encoding structure wherein
the inputs are binary symbols, the encoding operations are
realised modulo 2k, where k is any positive integer, and the
2k-ary outputs are matched to a 2k-ary signal constellation.
Although this encoding structure facilitates the code search
procedure, this search becomes prohibitively complex as the
number of transmit antennas, states, or modulation size
increases.

In order to simplify the design of STTCs, Abdool-Rassool
et al. [6] have proven two theorems that allow one to
significantly reduce the computational effort of the code
search. In [7], utilising an alternative structure, the authors
have considered STTCs generated by a convolutional encoder
over the Galois field GF(p) ≡ Zp, p a prime, where the
information symbols, the convolutional encoder tap gains,
and the output symbols are elements of Zp, allowing for
a spectral efficiency of log2(p) b/s/Hz. These codes are
referred to as space-time convolutional codes (STCCs). Using
the structure proposed in [7], Hong and Chung [8] and

Noronha-Neto and Uchôa-Filho [9] have presented some
new STCCs over GF(p) for two transmit antennas.

The design of good STTCs is based on the well-known
rank and determinant [1] criteria or the trace [2, 3] criterion,
depending on the system’s diversity order. If the diversity
order is greater or equal to 4, the trace criterion should be
used in substitution of the determinant criterion while the
rank criterion may be relaxed.

In this paper, utilising a nonsystematic feedfoward con-
volutional encoder over the finite ring of integers modulo pk,
Zpk , and inspired by the results in [6], we prove three prop-
erties related to the generator matrix of the convolutional
codes over Zpk that can simplify the code search procedure
for STCCs over Zpk . Essentially, the properties establish
equivalences among STCCs so that many convolutional
codes can be discarded in the code search without loosing
anything. Herein we focus on systems with large diversity
order, so only STCCs designed under the trace criterion are
considered. By exploiting the structure of the convolutional
encoder over Zpk and the simplifications coming from the
properties, we obtain some good STCCs over finite fields
(k = 1) and rings based on the trace criterion for 3,4,5,7,8,
and 9-PSK modulations, n = 2, 3, 4 transmit antennas, and
encoder memories 1, 2, and 3.
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Figure 1: Rate 1/n convolutional encoder over Zpk with memory order K . The multiplier Ψ controls the number of encoder states.

We should mention the important work of Carrasco and
Pereira [10] that considers nonbinary space-time convolu-
tional codes. There are significant differences between the
present work and [10]. First, Carrasco and Pereira considered
a systematic feedback convolutional encoder, which has
approximately the same number of nonbinary coefficients as
compared to the encoder in nonsystematic feedfoward form
proposed in this paper. However, our structure gives rise to
the three properties mentioned above for code equivalences,
by which we can reduce the code search effort. Another
important difference between our work and the work of
Carrasco and Pereira is that in [10] they consider the
determinant criterion regardless of the number of received
antennas.

The remainder of this paper is organised as follows.
In Section 2, we describe the proposed space-time coded
system based on convolutional codes over Zpk , and present
the design criteria for obtaining good STCCs. In Section 3,
we prove the three properties mentioned above and present
guidelines for finding good STCCs over Zpk . The new STCCs
found with the code search are tabulated in Section 4. Also
provided in that section is the frame error rate (FER)
for some of the new STCCs obtained from computer
simulations. Comparison results with existing STTCs are also
given. Finally, in Section 5, we conclude the paper and make
some final comments.

Throughout this paper, the conjugate, transpose, and
hermitian (conjugate transpose) of a matrix/vector A are
denoted by A∗, AT , and AH , respectively.

2. THE SPACE-TIME CONVOLUTIONALLY CODED
SYSTEMANDDESIGN CRITERIA

We consider a space-time coded system employing n trans-
mit antennas and m receive antennas. In the transmitter,
at each discrete time t, a Zpk -valued information symbol
ut is encoded by a rate 1/n convolutional encoder over Zpk

with encoder memory K , shown in Figure 1. The encoder
output at time t is a block of n coded symbols over Zpk ,
(v1

t , v2
t , . . . , vnt ), where

vit ≡
K∑

x=0

ut−xgx,i
(
mod pk

)
, (1)

for i = 1, . . . ,n. The encoder tap gain associated with
transmit antenna i and memory depth x is denoted by gx,i.
The coded symbols are mapped into a complex pk-PSK
signal constellation and transmitted simultaneously via the
n transmit antennas. A complex codeword c of length l of the
space-time code is a sequence of blocks

c={(c1
t , c2

t , . . . , cnt
)}={(e j(2π/pk)v1

t , e j(2π/pk)v2
t , . . . , e j(2π/pk)vnt

)}

(2)

for t = 1, 2, . . . , l, where cit is the signal transmitted from the
ith antenna at time t. The set of all codewords c is called the
STCC, and is denoted by C.

Note that in Figure 1 there is a multiplier Ψ between
the (K − 1)th and the Kth memory depths. This multiplier,
a positive integer that divides pk, has the purpose of
controlling the number of encoder states. A similar structure
has been adopted for the Gaussian channel by Massey and
Mittelholzer in [11]. For Ψ = 1, the number of encoder
states is pkK . But for Ψ > 1 the number of encoder states
is reduced due to the ring property that the product of
two nonzero ring elements may be zero, which reduces the
range of possible integer values that can be stored in the
Kth encoder memory. We set the value of this multiplier
to pk−z, where z = 1, 2, . . . , k − 1, to obtain encoders with
intermediate number of states between powers of pk. The
number of encoder states becomes pkK /Ψ. For example, the
encoders over Z4 with (K = 1,Ψ = 1), (K = 2,Ψ = 2), and
(K = 2,Ψ = 1) have 4, 8, and 16 states, respectively.

In the space-time coded system, the signal received by the

jth antenna at time t, d
j
t , is given by

d
j
t =

n∑

i=1

αi, j c
i
t

√
Es + η

j
t , (3)

where Es is the average energy of the transmitted signal,

η
j
t is a zero-mean complex white Gaussian noise with

variance N0/2 per dimension, and αi, j denotes the flat fading
coefficient of the channel from the ith transmit antenna
to the jth receive antenna. Under the Rayleigh fading
assumption, αi, j , for 1 ≤ i ≤ n and 1 ≤ j ≤ m, are
modelled as independent samples of a zero-mean complex
Gaussian random process with variance 0.5 per dimension.
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In practice, to achieve independent fading the antennas
must be physically separated by a distance in the order of
a few wavelengths. For the quasistatic, flat-fading channel,
it is assumed that the fading coefficients remain constant
during a frame and change independently from one frame
to another.

Also, we assume that the receiver perfectly knows the
channel state information and that the Viterbi algorithm
with the Euclidean metric is used in the decoder. Under these
conditions, and for high signal-to-noise ratio (SNR), Tarokh
et al. [1] have shown that the pairwise error probability is
upperbounded by

P(c −→ e) ≤
( r∏

i=1

λi

)−m(
Es

4N0

)−rm
, (4)

where r is the rank of the difference matrix of complex
codewords (arranged as a matrix):

B(c, e)
Δ=

⎛
⎜⎜⎜⎜⎜⎝

e1
1 − c1

1 e1
2 − c1

2 · · · e1
l − c1

l

e2
1 − c2

1 e2
2 − c2

2 · · · e2
l − c2

l
...

...
. . .

...
en1 − cn1 en2 − cn2 · · · enl − cnl

⎞
⎟⎟⎟⎟⎟⎠

, (5)

and λi, for i = 1, . . . , r, are the nonzero eigenvalues of

A(c, e)
Δ= B(c, e)B(c, e)H . To minimise P(c→e) in (4),

we should maximise the minimum rank r of the matrix
B(c, e) over all pairs of distinct complex codewords (rank
criterion), and maximise the minimum geometric mean
(ηdet) of the nonzero eigenvalues of the matrix A(c, e) over
all pairs of distinct complex codewords with minimum rank
(determinant criterion).

As shown by Chen et al. [2, 3], the rank and the
determinant criteria should be adopted whenever rm < 4. If
rm ≥ 4, they have shown that the pairwise error probability
is upperbounded by

P(c −→ e) ≤ 1
4

exp

(
−m

Es
4N0

n∑

i=1

l∑

j=1

∣∣e ji − c
j
i

∣∣2
)

, (6)

which indicates that to minimise P(c→e) we should max-
imise the minimum squared Euclidean distance over all pairs
of distinct complex codewords (trace criterion). It should be
noted that the squared Euclidean distance between c and e
is equal to the trace of A(c, e), denoted by ηtr. In this paper,
we consider only systems with rm ≥ 4, but r needs not to be
equal to n.

3. GUIDELINES FOR FINDING GOOD SPACE-TIME
CONVOLUTIONAL CODES OVER ZPK

In this section, we prove three properties that can be used to
reduce the code search procedure for STCCs over Zpk . But
first, let us denote G as the n(K + 1) scalar generator matrix

of the rate 1/n convolutional encoder over Zpk of Figure 1,
which is defined in this paper as

G
Δ=

⎡
⎢⎢⎢⎢⎣

g0,1 g1,1 · · · gK ,1

g0,2 g1,2 · · · gK ,2
...

...
. . .

...
g0,n g1,n · · · gK ,n

⎤
⎥⎥⎥⎥⎦
. (7)

The first property is based on a result in [6, Section 3.2]
for STCCs generated by an encoder with binary input and
2k-ary tap gains. Herein, this result is extended to the case of
a convolutional encoder over Zpk .

Property 1. Consider an STCC C over Zpk generated by a
generator matrix G with coefficients gx,i, for x = 0, 1, . . . ,K
and i = 1, 2, . . . ,n. Let C̃ be the STCC over Zpk generated

by the generator matrix G̃ with coefficients g̃x,i = pk − gx,i,
for x = 0, 1, . . . ,K and i = 1, 2, . . . ,n. Then, every pair of
codewords c, e ∈ C is associated with a pair c̃, ẽ ∈ C̃ such
that A(c, e) = B(c, e)B(c, e)H and A(c̃, ẽ) = B(c̃, ẽ)B(c̃, ẽ)H

have the same rank, determinant, and trace. Therefore, the
two STCCs C and C̃ are entirely equivalent.

Proof. Consider that the output of the encoder shown in
Figure 1 is as given in (1). Changing the encoder coefficient
to pk − gx,i yields the following output:

ṽit ≡
K∑

x=0

ut−x
(
pk − gx,i

)
(mod pk

)

≡
K∑

x=0

(
ut−x pk

)− (ut−xgx,i
)

(mod pk
)

≡
K∑

x=0

− ut−xgx,i (mod pk
) ≡ −vit (mod pk

)

≡ pk − vit (mod pk
)
.

(8)

Each element of B(c, e) is a difference of complex numbers of
the form

bi, j = exp
(
j2πv
pk

)
− exp

(
j2πw
pk

)
.

The associated element of B(c̃, ẽ) is

b̃i, j = exp
(
j2π(pk − v)

pk

)
− exp

(
j2π(pk −w)

pk

)

= exp
(− j2πv

pk

)
− exp

(− j2πw
pk

)

= bi, j
∗.

(9)

From (9), we can conclude that

A(c̃, ẽ) = B(c̃, ẽ)B(c̃, ẽ)H

= B(c, e)∗
(
B(c, e)∗

)H

= B(c, e)∗B(c, e)T

= (B(c, e)B(c, e)H
)∗

= A(c, e)∗.

(10)
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Table 1: New good STCCs over finite fields based on the trace criterion.

pk n ϑ G rank ηtr ηdet

3

3 3 [1 1 ; 1 2 ; 2 1] 2 18 —

3 9 [1 1 1 ; 1 1 2 ; 1 2 1] 3 27 3

3 27 [1 0 1 2 ; 1 1 1 1 ; 1 1 2 1] 3 33 4.32

4 3 [1 1 ; 1 1 ; 1 1 ; 1 2] 2 24 —

4 9 [0 2 1 ; 1 1 1 ; 1 2 1 ; 2 2 1] 3 33 —

4 27 [2 1 2 2 ; 2 0 2 1 ; 1 1 2 2 ; 2 2 2 1] 4 45 3

5
3 5 [1 1 ; 1 2 ; 2 2] 2 15 —

3 25 [1 1 1 ; 1 3 2 ; 2 3 1] 3 21.38 1

4 5 [1 2 ; 1 2 ; 2 1 ; 2 1] 2 20 —

7
3 7 [2 4 ; 3 5 ; 6 1] 2 14 —

4 7 [1 1 ; 1 2 ; 2 3 ; 3 3] 2 17.19 —

Since A(c, e) is Hermitian, then A(c, e) and A(c, e)∗ have the
same rank, determinant, and trace.

Note that by this property it is possible to reduce by
approximately one half the number of STCCs to be tested
without any sacrifice in terms of finding the best code.

Now, we present the second property, which is also an
extension of a result in [6, Theorem 2] to the ring Zpk .

Property 2. Consider an STTC C over Zpk generated by a
generator matrix G. Any STCC over Zpk generated by a
generator matrix whose rows correspond to a permutation
of the rows of G is entirely equivalent to C.

Proof. A permutation of the rows of G implies a permutation
of the encoder outputs in Figure 1, and also induces the same
permutation of the rows of B(c, e). It is easy to show that
the rank, determinant, and trace of the corresponding matrix
A(c, e) are not affected by any permutation of the rows of
B(c, e).

Observe that with Property 2 it is possible to obtain a
reduction in the code search space by a factor of approxi-
mately n!. In this paper, we utilised Properties 1 and 2 to
reduce the code search effort under the trace criterion, but
they can also be applied to the rank and the determinant
criteria. The last property, presented next, applies to the trace
criterion only.

Property 3. Consider an STCC over Zpk generated by a matrix
G with coefficients gx,i, for x = 0, 1, . . . ,K and i = 1, 2, . . . ,n.
Changing the coefficients gx,i of χ rows of G to pk−gx,i, where
1 ≤ χ ≤ n, does not affect the trace of the matrix A(c, e) for
any pair of STCC codewords c and e.

Proof. Consider a rate R = 1/n convolutional encoder over
Zpk with scalar generator matrix G. As proved in Property 1,
if the coefficients gx,i, where x = 0, 1, . . . ,K , of the ith
row of the matrix G are changed to their corresponding
complements modulo pk, that is, pk − gx,i, where x =
0, 1, . . . ,K , then the ith row of the matrix B(c, e) changes
to its complex conjugate. Since A = BBH , then the ith

diagonal element ai,i of the matrixA is the sum of the squared
modulus of the elements of the ith row of B. Since |bi, j|2 =
|bi, j∗|2, and the trace of a matrix is the sum of its diagonal
elements, Property 3 is proved.

By utilising Property 3, it is possible to reduce the code
search space by a factor of 2n. Note that when all rows of G
are changed to their corresponding complements modulo pk,
that is, when χ = n, this property becomes Property 1.

It is worth mentioning that the structure of convolutional
encoders over Zpk , adopted in this paper, offers a reduced
search space as compared to the structure based on binary
inputs. For our structure, the number of possible codes is
pkn(K+1), while for the structure with binary input (standard
structure) this number is pk

2n(K+1). This reduction is possible
because the structure over Zpk yields a smaller number of
coefficients. Of course, since we consider a smaller search
space, it is possible that in some cases the standard structure
will produce better codes. On the other hand, the code
search based on the standard structure becomes prohibitive
as the number of transmit antennas, states, or constellation
size increases, and quite often only partial (nonexhaustive)
search results are presented (see, e.g., [12]). The STCCs
presented herein have, in many cases, the same performance
parameters of the STCCs found with the standard structure
for the same number of antennas and the same complexity.
For the cases where the STCC is over GF(p), that is, k = 1,
the structure utilised in this paper becomes the only option.

We should also mention that a computer program
routine to discard those equivalent codes, according to the
three properties, can be easily prepared. So the cut in the
search effort is quite significant.

As a final consideration, we should note that although
in this paper we utilise only PSK constellations, quadrature
amplitude modulation (QAM) constellations could also be
used. However, Properties 1 and 3 would not hold for
QAM, and the search space reduction provided by these
properties would be lost. On the other hand, Property 2
could still be used without any modification if QAM signal
constellations were adopted. It is well known that QAM
has better Euclidean distance properties than PSK. So, using
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Table 2: New good STCCs over finite rings based on the trace criterion.

pk n ϑ G rank ηtr ηdet

4

2 4 [1 1 ; 1 2] 2 10 2

2 8 [1 1 0 ; 2 1 1] 2 12 3.46

2 16 [1 1 2 ; 2 1 3] 2 16 3.46

2 64 [1 0 1 2 ; 1 1 2 1] 2 18 5.29

3 4 [1 1 ; 1 1 ; 1 2] 2 16 —

3 8 [3 3 0 ; 1 0 1 ; 1 3 1] 2 18 —

3 16 [1 1 1 ; 1 2 2 ; 2 1 3] 2 24 —

3 64∗ [2 2 3 3 ; 1 2 1 3 ; 1 1 3 2] 3 32 2.88

4 4 [1 1 ; 1 1; 1 2 ; 1 2] 2 20 —

4 8 [1 0 1 ; 1 1 0 ; 1 1 1 ; 1 3 1] 2 26 —

4 16 [1 1 1 ; 1 1 2 ; 1 2 2 ; 2 1 3] 3 32 —

4 64∗ [1 3 2 3 ; 1 2 1 1 ; 2 2 1 2 ; 3 3 1 0] 4 40 2

8

2 8 [1 2 ; 4 3] 2 7.17 1.41

2 16 [2 1 0 ; 3 0 1] 2 8 2

2 64∗ [5 1 6 ; 1 1 3] 2 10.58 1.17

3 8 [1 1 ; 2 2 ; 3 4] 2 12 —

4 8 [1 1 ; 1 2 ; 2 3 ; 3 4] 2 16.52 —

9 3 9 [1 3 ; 6 4 ; 7 2] 2 12 —

Table 3: Comparison of STCCs found with different encoder structures.

pk n ϑ ηtr [12] ηdet [12] ηtr ηdet

4

2 4 10 2 10 2

2 8 12 2.82 12 3.46

2 16 16 2.82 16 3.46

2 64 18 4 18 5.29

3 4 16 — 16 —

3 8 20 — 18 —

3 16 24 — 24 —

3 64∗ 28 — 32 2.88

4 4 20 — 20 —

4 8 26 — 26 —

4 16 32 — 32 —

4 64∗ 38 — 40 2

8

2 8 7.17 1.41 7.17 1.41

2 16 8 0.82 8 2

3 8 12 — 12 —

4 8 16.58 — 16.58 —

the encoding structure proposed in this paper, it is possible
that STCCs for QAM constellation better than STCCs for
PSK constellation of the same size exist. However, since the
demonstration of algebraic properties to reduce the code
search effort constitutes an important part of this paper,
QAM will not be considered herein.

4. CODE SEARCH AND SIMULATION RESULTS

In this section, we present some new STCCs generated by
a rate 1/n convolutional encoder over Zpk , and show their

performance on the quasistatic flat Rayleigh fading channel.
Since we are considering large diversity order, the code search
was based only on the trace criterion. Tables 1 and 2 show
the search results for STCCs over finite fields and rings,
respectively, with various pk-PSK modulations, number of
states (ϑ), and number of transmit antennas (n). In these
tables, the STCCs marked with ∗ are the result of a partial
search. All other codes are optimal for the structure of
Figure 1. In [12], we can find STCCs for the 4 and 8-PSK
modulations. For the same number of states and number of
transmit antennas, those codes in most cases have the same
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Figure 2: FER versus SNR for the STCCs over Z3 for 3-PSK based
on the trace criterion with n = 3, m = 2, 3, and 3, 9, and 27 states.
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Figure 3: FER versus SNR for STCCs over Z4 for 4-PSK based on
the trace criterion with n = 3, m = 2, 3, and 4, 8, and 16 states.

trace as the STCCs presented in Table 2. Table 3 compares
STCCs for the 4 and 8-PSK modulations found with different
structures. It can be seen that with the proposed structure we
obtained an STCC with improved trace in two cases, a worse
trace in one case, and the same trace in all other cases.

All the new STCCs in Table 1 and the STCC for 9-PSK in
Table 2 have no corresponding competitors in the literature.
The STCCs over GF(p) with two transmit antennas based on
the trace criterion can be found in [9].

In Figures 2 and 3, we show the FER versus SNR
(in decibels) curves for the STCCs over GF(3) and Z4,

100

10−1

10−2

10−3

FE
R

0 2 4 6 8 10 12 14

SNR (dB)

4-states, [11]
8-states, [11]
64-states, [11]

4-states, new
8-states, new
64-states, new

Figure 4: Performance comparison of STCCs for 4-PSK obtained
with different encoder structures for n = 3, m = 2, and 4, 8, and 64
states.

respectively, where we can observe the performance of the
codes for different numbers of states and receive antennas. In
Figure 4, we show the performance comparison of the STCCs
for 4-PSK found with the encoder structure over Zpk and
with the standard structure. For n = 3 transmit antennas,
m = 2 receive antennas, and for 4, 8, and 64 states, we
can observe that the performances of these codes are very
similar, although the codes have been generated by different
encoder structures and have different traces in the cases of 8
and 64 states. In all simulations presented in this section, we
considered a frame length l = 130 symbols.

5. CONCLUSION AND FINAL COMMENTS

In this paper, we have considered space-time convolutional
codes over finite fields and rings for the quasistatic, flat
Rayleigh fading channel. Based on this encoding structure,
we proved three properties that can be used to simplify the
code search based on the trace criterion. Good STCCs for n =
2, 3, 4 transmit antennas and various pk-PSK constellations
were presented. The resulting spectral efficiencies, namely,
log2(pk) b/s/Hz, can serve a wide range of multimedia
applications.

As the STCCs presented herein are designed by the
trace criterion, they do not achieve the optimal diversity-
multiplexing gain (DM-G) tradeoff [13, 14] for system with
more than one receive antenna. Therefore, it is possible that
STTCs constructed to achieve the optimum DM-G tradeoff
perform better than the codes in this paper, under the same
spectral efficiency.
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