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We study the relation between the stable throughput regions and the capacity regions for a Gaussian multiple-access channel. Our
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conventional Shannon capacity which relies on large coding block lengths for finite SNR, while the second uses finite code blocks
with high SNR. We find that the stable throughput region coincides with the Shannon capacity region for many scenarios of side
information, where side information is defined as a mix of statistical description and instantaneous queue states. However, a lack
of sufficient side information about arrival statistics can lead to a significant reduction in the stable throughput region. Finally, our
results lend strong support to centralized architectures implementing some form of congestion/rate control to achieve Shannon
capacity, primarily to counter lack of detailed information about source statistics at the mobile nodes.
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1. INTRODUCTION

Often in communication networks, the traffic distribution
is unknown. However, in bounding the performance of a
network, it is commonly assumed [1-5] that the transmitters
and the receivers have complete knowledge of the source
arrival distribution (or the probability distribution of the
number of packets arriving per unit time), which is then used
in the design of optimal transmission methods. In this paper,
we study the impact of such side information regarding the
traffic on the stability performance of Gaussian multiple-
access channels.

We will focus our attention on a slotted Gaussian
multiple-access channel with K users sending bursty data to
a single receiver. In capacity analysis, it is implicitly assumed
that the users are aware of all the transmission rates (of
every user) and have optimal codebooks, which allows the
whole system to operate close to the boundary of the capacity
region; this can be understood as all nodes having complete
statistical knowledge regarding all sources. In this work, we
will take the first step towards understanding exactly how
much information is needed at each node about the other

sources. We will study this through a series of five cases
with different amount of statistical information at each node.
Furthermore, we will adopt a more general source model,
unlike prior work [3, 4], in which data arrives randomly at a
user with general distribution in each symbol duration. This
arrival process decouples the definition of source arrivals
from that of communication system design, which will occur
in blocks of length n codewords.

In the first of the five cases, the transmitters and the
receiver will be assumed to know the arrival distribution
of all the sources, which represents the case of complete
statistical information. We show that in this case the stable
throughput region coincides with the Shannon capacity
region. A similar result was shown in [3] for two-user
multiple-access system, by requiring not only complete
distributional knowledge but also one bit of instantaneous
queue state information. Our encoding strategy holds for
a general K-user system and requires no instantaneous
state information to achieve every point in the Shannon
capacity region. Keeping our objective in mind, we reduce
the amount of side information in the second case from
full statistical knowledge to only the knowledge of the
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mean arrival rates of every node. Since the probability of
a certain input bit pattern depends on the length of the
bit pattern, the coding techniques which assume equally
likely bit arrival for every input bit pattern are not optimal.
As a result, it appears that the knowledge of mean arrival
rates alone is insufficient to guarantee achieving every point
in the Shannon capacity region (optimal operation will
potentially require a multiuser universal source coder and
since we are transmitting over a noisy channel, we will
also need multiuser source/channel separation. Thus, the
chances that full Shannon capacity region is achievable with
only information about mean arrival rates appear slim).
However,we show that if each node sends quantized one-
bit information about its own queue state to the receiver
every time-slot, then the entire Shannon capacity region can
be achieved with reduced statistical information. Again, in
contrast to the main result in [3], we show that limited
statistical information suffices if one bit of instantaneous
system state information is available.

In contrast to the above cases, we consider a case where
the sources are not aware of the mean arrival rates of other
nodes. In this case, the stability region is significantly reduced
compared to Shannon capacity region, even with one bit of
quantized state information every time-slot. The significant
loss can be attributed to the fact that each node has to
essentially assume that other nodes potentially have highest
possible load, thus predividing the total available capacity
into K equal portions. This division is inefficient in the cases
where some of the nodes have lower-than-maximum arrival
rates. Thus the stable throughput region of actual systems
may be significantly lower than the Shannon capacity region
due to lack of knowledge of source arrival distribution,
thereby underscoring the importance of side information.

We next show that this loss can be completely recovered
if the receiver has either full statistical knowledge (like in first
case above) or knows the mean arrivals of all nodes along
with one-bit instantaneous queue state information, and the
receiver can send feedback to each node once during system
operation. This one-time feedback is akin to congestion/rate
control [6, 7], where the receiver informs each node of
their allowable rate at the beginning of the communication.
In this case, the stable throughput region coincides with
the Shannon capacity region. This scenario is akin to the
congestion control via feedback from the base station. Hence,
compared to the first scenario, we traded the knowledge of
complete arrival distribution of other sources at a source
with a feedback from the receiver.

For each case of side information, we consider two
notions of Shannon capacity. The first is the conventional
notion of capacity, which is defined for a fixed value of
SNR with growing encoding block length [5]. In this notion,
the problem of understanding delay in an information-
theoretic setting remains intractable, since n — oo makes
all talk of per-bit delay irrelevant. A bit, even if it is in the
queue for finite number of time-slots, will have infinitely
large delay since time-slot is infinite. Hence, we explore an
alternate asymptote, partially inspired by age-old diversity
order analysis, where we study finite block lengths in a high-
SNR regime. In this regime, we no longer work with the

exact capacity region, but with the rates of growth. However,
as SNR increases, the capacity increases in an unbounded
fashion. So for, any meaningful discussion about stability
regions, the sources have to produce data at rates which scale
with the SNR. This leads us to reconsider the definition of
stability. Note that this is not an uncommon assumption,
and is implicitly assumed in asymptotic in SNR frameworks
like diversity-multiplexing studies [8, 9]. We formalize these
new notions of capacity and stable throughput region and
show that conceptually similar results hold for the finite
block length case. While conceptually the results are similar
in two notions of the capacity, they differ in the details of
their proofs.

We quickly note that the problem of not knowing statis-
tics of other nodes can be understood as a multiuser universal
source-coding problem, where the distributed sources are
not aware of the full joint distribution. In this case, the
transmitters will encode assuming incomplete system knowl-
edge and the receiver will decode assuming similarly reduced
information about the system. Such a general formulation
will form the obvious next step following our current work,
and will be a topic of discussion elsewhere.

The relation between queuing stability and Shannon
capacity remains a problem of interest, since most sources
are bursty and require a delay-bounded delivery. For random
access systems, the problem has been studied extensively
(e.g., see [1, 4, 10-13]). A key result in [2, 4] is that the
queuing stability region coincides with the Shannon capacity
region in many cases on the collision channel, illustrating
that the bursty nature of the arriving packets does not
limit the data rate at which the probability of error can be
made arbitrarily small. The entire body of work on collision
channels assumes that the arrival distributions are known to
all the users, and also that the receiver knows if a particular
user is sending the data in order to decide collisions. Also,
the transmitting users have some side information, by which
they know if a collision has occurred and, hence, decide to
retransmit. Similar information is needed for random-access
systems with multipacket reception capability in order to
decide retransmissions.

Following the work on the collision channel, the effect of
scheduling and power control on the stability in multiuser
channels under Poisson arrivals was studied in [7, 14-16].
The stability of the queues in wired switches has been
studied for general arrivals [17, 18] for certain scheduling
algorithms. While numerous works characterize stability
conditions, stability policies and stable-system behavior, we
concentrate on the influence of side information on the
stable throughput region.

The relation between queuing stability and Shannon
capacity for multiple-access systems over AWGN channels
has been studied earlier in [3, 7, 14, 15, 19]. Most of this work
[7, 14, 15, 19] assumes complete knowledge of the queue
states. In [3], with the assumptions of time slots being large,
and a maximum of one packet of fixed length arriving at
each user in a time slot for a system with two users, it was
shown that the stable throughput region was independent of
the burstiness and the shared queue information. The model
assumed a fixed form of side information rather than the
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tradeoff of side information with stable throughput regions
that is addressed in this paper.

We begin in Section 2 by describing the channel model
and the capacity regions. In Section 3, we assume finite SNR
with large time-slots. Various achievable stable throughput
regions are described depending on the amount of side
information. In Section 4, we consider the dual problem
of finite time-slots with large SNR, where the influence of
the amount of side information on the achievable stable
throughput region is studied.

2. PROBLEM FORMULATION
2.1. Channel and source model

We consider a multiple-access system, as the illustrated in
Figure 1, where K users transmit to a single receiver. We will
assume a time-slotted system where the transmissions only
occur at the slot boundaries. Each slot is indexed by k and
within each slot, the n symbols will be indexed by j.

The received signal at time unit j is the sum of the trans-
missions of the users and Gaussian noise at time unit j,

K
Y(jl = > X1l +Z[j], (1)

i=1

where Z[j] is zero mean i.i.d. Gaussian noise with variance
N, and is independent of channel inputs X;[j] € R,i =
1,2,...,K ((Xi[1],...,Xi[n]) represents the n-length code-
word sent in a time-slot). The channel output is Y[j] € R.
The transmit power of user i averaged over all the codewords
is P; if it is transmitting and 0 otherwise. Thus, no power
control is performed. We also assume that receiver has the
perfect timing information to ensure the synchronization at
the receiver. Finally define SNR = (SNR;,SNR;,...,SNRx),
where SNR; = Pi/N, is the signal-to-noise ratio for user i
(SNR; is the ratio of the average signal power of ith user to
the noise variance, and does not include interference from
other users).

While the transmissions occur only at the slot bound-
aries, the data can arrive anytime during the slot. Data arrives
for user i in form of bits with an average rate of A; bits per unit
time (one time unit represents one symbol duration). So the
arrival process is defined independent of the slot boundaries
or the slot length and directly on the smallest time unit, the
symbol time-duration. We define A;(k) to be the number
of bits that arrive for transmission at user i in time-slot k,
E[A;(k)] = nA;. Thus, unlike the previous works [1, 2, 4], we
do not assume that the arrivals occur only at the start or the
end of the time-slot, which makes the definition of arrival
process independent of the communication-system design,
notably the slot length n.

We denote the number of bits departing from the queue
of user i in time slot k as Q;(k). Further, we denote the
number of bits in the ith queue at the beginning of time-slot
k as Q;(k). The queue is updated as

Qi(k + 1) = max (0, Qi(k) + Ai(k) — (k)

N (2)
= (Qi(k) + Ai(k) — Qi(k))" for k=1,

Queue Encoder
Random s X

arrivals
X
Y

— Xk Noise, Z

FiGure 1: Gaussian multiple-access channel with random arrivals.

with Q;(1) = 0. We assume that the number of elements in
the queue of ith user (or the queue state) is known only to
ith user. The stable throughput region is the region where
the queues do not grow unbounded in the steady state. The
mathematical definitions for these stability regions for large
time slots and large SNRs are defined in Section 2.3.

2.2. Capacity regions

In this section, we define the two notions of capacity. First is
the conventional definition where the SNR is held fixed and
the blocklength is allowed to grow unbounded. And in the
second case, blocklength is held fixed and SNR is increased
unbounded. To contrast the two definitions, we state the
preliminaries for conventional definition of capacity.

A ((Z"Rl, 2MRe 2R ) code  for multiple-access
channel consists of K encoding functions f; : W; — X} where
W, is the input to the encoder at user i and takes 2" values,
and a decoding function g : R” — W; X W, X - - - X Wk,
where X} € R"™.

Definition 1. A rate tuple (Ry,R,,...,Rk) is achievable if
there exists a sequence of ((2"%,2"%, ., 27R¢) ) codes with
error probability P, — 0 as n — co. The capacity region is the
closure of all achievable rate tuples (Ry, Ry, ..., Rk).

Lemma 1 (see [5]). The capacity region of Gaussian multiple-
access channel is given by closure of convex hull of all
(R, Ry, ..., Rg) satisfying

zRi<C(¥>, (3)

i€S

where S is any subset of {1,2,...K}, and C(x) = (1/2)log(1
+x).

The classical definition of capacity requires the block
length n to approach infinity. In contrast, we will define
the SNR-capacity region for a fixed blocklength n but with
increasing SNR. Our motivation stems from our aim to
analytically understand the role of delay in communication.
Towards that end, the high-SNR regime allows keeping delay
in check and is useful for high-data-rate systems. Part of
our motivation for choosing high-SNR regime comes from
diversity-multiplexing tradeoff [8, 9], which has proven
useful in fading channels.
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FIGURE 2: SNR capacity region for the case where a; > a,.

To maintain differentiation in the quality of user
channels, we will model the growth of SNR on differ-
ent transmitter-receiver links with different exponents. Let
SNR; = u“ for some fixed a; greater than zero (we adopt the
notation of [8] to denote =, < and > to represent exponential
equality and inequalities) for some base SNR denoted by u
(In other words, o; £ lim, .. (10g(SNR;)/log(u))) (1 can be
chosen to be any base SNR, e.g., max(SNR;) or min(SNR;) or
an average). For our asymptotic analysis, we take the rates
to vary as R; = r;log(SNR;). Thus, R; = r;log(SNR;) =
rio;log(u).

..,7k) 1s SNR-achievable
nry log(SNR;) 2nr2 log( SNRZ)

Definition 2. A rate tuple (ry,712,.
if there exists a sequence of ((2

, 21mclog(SNR)) ') codes with error probablhty P, — 0
as u — oo (equivalently, SNR; = u% — o0). The SNR-
capacity region is the closure of all SNR-achievable rate
tuples (r1,72,...,7K).

The next result proves the SNR-capacity region; and
Figure 2 shows an example capacity-region when a; > ;.

Lemma 2. The SNR-capacity region of Gaussian multiple-
access channel is given by closure of all (r1,12,..., k) satisfying

1

E rio; < —maxa; , (4)
2 ies

ieS

where S is any subset of {1,2,..
above.

.K}, where w; is defined as

Proof. The achievability proof can be given on similar lines
as in [9]. Consider the ensemble of ii.d. random codes.
Specifically, each user generates a codebook C”) containing

2"Ri = SNR!™ codewords denoted as X(’) X&Rr,n Fach

codeword is n-length vector with i.i.d. Gaussian entries with
zero mean and unit variance. Once picked, the codebooks
are revealed to the receiver. In each block period, transmitted
signal of user i is chosen from C",

Consider detection error probability of joint maximum-
likelihood receiver. We first define for each nonempty set S =
{1,2,...,K} an error event

eS & {m; = m;Vie S and my#m;Vi € S}, (5)

where m; is the decoded message of user i while m; is the
actual message. Thus &% is the event that receiver makes
wrong decisions of all users in set S and makes correct for
the rest. Clearly, we have the probability of error P,(u) as

P.(u) = Pr0b<U85> < Z Prob(&%). (6)

S S

Without loss of generality, we assume S = {1,2,...,]S|}.
Let X = (X(Ol),...,X(OK)) be the transmitted signal where
X((;) € CY is the codeword transmitted by user i. Denote by
X, another codeword that differs from X, on the symbols
transmitted by all users in S but coincide on those by other
users, that is, X; = (X(l) X(‘SI , X lSHI),...,X(OK)).

The error event &5 occurs if the receiver makes a wrong
decision in favor of any such X;. This happens when

s i

1=<i<K

ZW/SNR xy -x)

i€S

2
IZII? 2

(7)

Note that (7) is similar to (27) in [9] with H = [ /SNR;,
VSNRy,...,+/SNRs/ ] and number of transmit and receive
antennas as unity. Hence by comments following (27) in [9],
we consider this as a single-user error probability with overall
rate > ;e R;, |S| transmit antennas and 1 receive antenna.
Following [8], we use pairwise error probability (PEP)
to bound average probability of error. Recall that X, and X,
differ in set S < {1,2,...,K}. Construct a matrix AX of size
[S| X n containing X — X; at all |S| users.This reflects the
difference in transmit matrices for |S| transmit antennas.

) (8)

Pl’Ob(Xo — Xl)

2

s fomxd

ieS

= Prob( ZI> = =

- Prob( iI\HAXHz)

Since AX is isotropic, [|[HAX||? has same distribution as
ev(HHT)||Ax||?> where ev(HHT) is defined as the eigen-value
of HH' and equals X ;cg SNR; = u™=s% and Ax any row
vector of AX. Hence,

Prob(Xo — Xi) = Prob(l > fZSNR |Ax||2)

ZES

4
= (”AXH2 = ZzesSNR) (9)

n/2
< (4 ) .
Dics SNR;
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As the number of possible choices of X; is [ [;cs(SNR!" —
1), the overall error probability

n/2
PI'Ob(SS) S (n(SNR:m — 1)) (Z‘ALSI\TR>
ieS i

ieS

(10)

= " 2ies iy~ (n/2)maxies a;

= " Cies riai—(1/2)maxies @)

Hence, the error probability goes to zero when > ;cg it —
(1/2)maxies a; < 0 for all S which is true by the statement of
the theorem.

For the converse, let > ;cg rio; > (1/2)max;cs o; for some
S. Again, assume that S = {1,2,...,[S|} without loss of
generality. The probability of error can be bounded by Fano’s
inequality as

P.(u) = Prob(e®)

| LK X Y Xy oK)
log (ZnR -1)

>

(11)

where R = >csR;. Since I(X7, X7,..., X[s5 Y X[§1 415+
Xz) = (n/2)log(1+ >;cs Pi/N), we get
U T(XE, XY, Xy Y | Xy XE)

P.(u)>1- ”
log (2 Ko

_ ( 1/2)max,'€s o

=1
Dlies it

> 0.
(12)

This shows that the error probability cannot be brought arbi-
trarily close to zero in the limit of high SNR when ;g ria; >
(1/2)max;cs o; for any S, thus proving the converse. O

We will sometimes use the term interior of the capacity
region or interior of SNR-capacity region to imply that the
vector is not on the boundary, but inside the region.

2.3. Stable throughput region

In the case of finite SNR, stable throughput region is the
region formed by the closure of vectors of mean arrival rates
at the different queues for which there exists a transmission
scheme in which the queues are stable. In our discussion,
stability of queues implies that the ratio of queue length
to block length is finite with probability one for large
block-lengths. The above definition of stability of queues
corresponds to a “time-observed” version of the stability
definition used in standard practice [12, 20, 21], according to
which the queue length is finite with probability one. There
are some other weaker notions of stability in literature like
substability [12, 17, 20, 21] which also hold when the queues
satisfy stability. Formally, we will use the following definition
of the stable throughput region

Definition 3 (Stable throughput (large n and finite SNR)).
The stable throughput region in the case when n — oo is
defined as the closure of all (A1, A,,...,Ak), such that, there
exists a transmission scheme, such that, the signal received
at destination has probability of error P, — 0 as n — oo.
Furthermore, there exists an integer M such that all the
queues are stable for n > M. In other words, there exists an
integer M such that lim; .., Pr[Qi(j) < nx] = F(x,n) and
limy_.o F(x,n) = 1, fori = 1,2,...,K and n > M, when the
arrival rates at user i is A;.

When the SNR is large, large amount of data can be
serviced in a time-slot even if the time-slot is not large.
Hence, the stability of the queue is defined by normalizing
with the order of amount of information that can be serviced
in each block-length which is of the order of log(u) as
mentioned in Section 2.2. As we can serve such large rates,
the incoming rates which are of lower order than log(u)
can definitely be served; hence we assume that the incoming
arrival rates are also of the order of log(u) (ie, A;i =
Iilog(SNR;) = lia;log(u)). Hence, stable throughput region
in this case is the region formed by the closure of vectors
of normalized mean arrival rates at the different queues for
which there exists a transmission scheme in which the queues
are stable. In our discussion, stability of queues implies that
the ratio of queue length to log(u) is finite with probability
one for large SNR (or u). Hence, the stable throughput region
in this case is defined as follows.

Definition 4 (SNR-stable throughput (finite n and large
SNR)). The SNR-stable throughput region in the case when
SNR —  is defined as the closure of all (1, L,...,Ix) such
that there exists a transmission scheme such that the signal
received at destination has probability of error P, — 0 as
u — oo. Furthermore, all the queues are stable for u large
enough. In other words, there exists M < oo such that
lim; . Pr[Qi(j) < xlog(u)] = F(x,u) and lim, . F(x,u) =
1,fori=1,2,...,K and u > M, when the arrival rate at user
iis A; = Liavilog(u).

As u — oo, the region is defined as the closure of
(I, b,...,Ix) which is a finite region although A; go to co.
Let us say /; as the arrival rate per SNR-unit which we use
in defining the stable throughput region for large SNR in
contrast to A; which is the arrival rate per unit time and
is used to define stable throughput region for large n. The
stability of the queues refer to the queue length per growth
is finite with probability one, where the growth is the block-
length (n) in case of large n, while log(u) in the case of large
SNR. Also, the stable throughput region is defined as the
region in which the arrival rates per unit-growth (per time-
unit or per SNR-unit in the two cases) lie so that the queues
remain stable.

2.4. Sourceside information

To keep our analysis tractable, we consider the case of
ii.d. arrivals. Thus, each source i is described by an arrival
distribution p;(a), and the joint distribution of the arrival



6 EURASIP Journal on Wireless Communications and Networking

process is p(a) = [[;pi(a). While the joint distribution
is often used in capacity analysis to obtain best possible
capacity region [5], it is seldom known in such detail in
operational systems. In source coding parlance, this is a
problem of universal source coding over noisy channels,
where the distribution is only partially known (see universal
source coding over noiseless channels in [5]). Our objective
is to study the role of this statistical information on the
stability of multiuser-queuing system and, in the process,
understand the interplay between statistical information and
instantaneous source information (in the form of queue state
Qi(j)). Hence we will study the following series of cases.

(1a) Full statistical information p(a) known to all nodes—
K transmitters and the central receiver.

(1b) Each node knows arrival means (E(a;), E(ay),...,
E(ag)) for all nodes and transmitters convey 1-bit
of quantized queue information to the receiver every
time-slot.

(2a) Each transmitter only knows its own arrival statistics
pi(a) but the receiver knows p(a) and is allowed to
feedback some information to all the transmitters.

(2b) Each transmitter knows only its own arrival mean
E(a;), and conveys 1-bit of quantized queue infor-
mation to the receiver every time-slot. In this case,
the receiver knows (E(a;), E(ay),...,E(ak)), and is
allowed to feedback some information to all the
transmitters.

(3) No statistical information is available to any node
and the transmitters can convey 1-bit of queue
information.

Our focus is on finite-bit overhead information about
the queue state from transmitters to receiver to counter
lack of statistical knowledge. In the process, we discovered
that a single bit of queue state information is sufficient to
achieve our goals; as a result, we state our results only for
single-bit information and note that the proof techniques can
be generalized to multibit information case. Furthermore,
implicit in our constructions is the desire to use the simplest
multiuser receiver and avoid universal decoding (which is
not matched to any particular source distribution but to a
whole class). Thus, the receiver adapts its decoder to match
the current state of the queues in those cases where the arrival
distributions (and hence the prior message probabilities) are
(partially) unknown.

An analogue of quantized instantaneous source informa-
tion is the quantized channel state information studied in
fading channels [22, 23] where the receivers convey a few bits
of information about the current fading states. In the current
case, the transmitters have instantaneous information about
the sources; and, hence, they convey a few bits to the receiver
to enable improved decoding. This source-channel duality in
information sharing, while interesting in its own right, is not
further discussed in this paper.

Finally, we note that each node in the system is assumed
to know the transmit powers of each user and their channel
gains, and hence knows the capacity region accurately. Thus

the only uncertainty at the transmitters is potentially about
the source arrival statistics of other nodes; and, in some cases
(2a, 2b and 3), about the available capacity for each node.

3. FINITESNRWITH n — o

In this section, we assume that the time-slots can be
made arbitrarily large so that we can use the conventional
large block length coding strategies [5] for multiple-access
channels. We will give an achievable rate region for all five
side information cases listed in Section 2.4. Two main code
constructions are used, namely in Theorem 1 for Case la
and Theorem 2 for Case 1b, and rest of the side-information
cases follow from them (Cases 2a, 2b and 3). Throughout this
section, we assume that 1; < co and lim,,. . (Var(A;(k))/n?) <
0,

Theorem 1 (side-information Case 1a). The stable through-
put region (as in Definition 3) coincides with the Shannon
capacity region given in Lemma 1, when all K + 1 nodes know
the complete arrival distribution of all K sources.

Proof. Let the incoming rates (11,12,...,Ax) be such that
Dieshi < C(CiesPi/N) where S € S and S is
set of all nonempty subsets of {1,2,...,K}. Let 7 =
(1/2K)minges(C (Xjes Pi/N) — Xieshi). Let y; = A + 7.
Note that (y1, y2,..., k) is also in the interior of the capacity
region of Lemma 1.

Suppose that the number of bits with the transmitter
i at the beginning of time-slot k is Q;(k). Then, Q;(k) =
min(Q;(k), ny;) bits are sent to the encoder. The encoding
and decoding operations make use of the prior probabilities
of all the possible 2"+ — 1 messages (consisting of all
messages of length < ny;). The asymptotic rate at user i is
thus no more than y;. Since (y1,¥2,...,yx) is in the interior
of the capacity region, there exists an encoding and decoding
scheme in which average probability of error at the decoder
goes to 0 as n — oo, Note here that we do not change
the codebooks in every time slot. Once chosen in the first
time-slot, the codebook for each user remains the same
throughout the use of the channel in all subsequent time-
slots.

Using the above encoding scheme, the queue update
equation for user i (2) reduces to Qi(k + 1) = Q;(k) —
min(Q;(k), ny;) + Ai(k) = (Qi(k) — ny;)" + Ai(k). This queue
update equation is different from [24] because in our case,
the encoding is done at the beginning of a time-slot. Hence,
Ai(k) bits will remain in the queue at the start of the next
time-slot.We prove that this queue is stable in the appendix.
This completes the proof. O

When there is incomplete information about statistical
information, we can assume a distribution and encode as
if the distribution is known. But, this approach will lead
to a loss in stable throughput region due to mismatch of
the probability distributions at the sources and the actual
distribution (this leads to a loss in the achievable rates as
shown in [25]). To avoid this loss, we consider 1-bit queue
state information which can aid in alleviating the loss in
performance.
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Theorem 2 (side-information Case 1b). The stable through-
put region (as in Definition 3) coincides with the Shannon
capacity region given in Lemma 1, when all K + 1 nodes know
the mean arrival rates of all K sources and transmitters convey
1-bit of quantized queue state information to the receiver in
each time-slot.

Proof. Let the incoming rates (A1,A3,...,Ax) be such that
Dieshi < C(XjesPi/N) where S € S where S is
set of all nonempty subsets of {1,2,...,K}. Let 7 =
(1/2K)minges(C (Xies Pi/N) — DliesAi). Let yi = A +
min(7, A;). Note that (y1,y2,...,yx) is also in the interior of
the capacity region.

Let us consider transmitter i. Suppose that the number
of bits with the transmitter at the beginning of time-slot
k be Q;(k). It Q;(k) < ny;, we serve Q;(k) = 0 bits, else
we serve Q;(k) = ny; bits. The input to the encoder at
transmitter i can have any bit-sequence of length ny;. These
are encoded to 2™ codewords of length n (since we do not
know the whole statistical information,we encode only the
equally likely symbols in contrast to Theorem 1 where we
encode all the possible bit sequences having length at-most
ny;). The transmitter sends the information of Q;(k) = 0
by sending the single bit quantized queue state information.
The codebooks are chosen at the beginning of operation and
stay fixed throughout. Since (y1,92,...,yx) is in the interior
of the capacity region, there exists an encoding and decoding
scheme with average probability of error at the decoder going
to 0 as n goes to infinity.

Using the above scheme, the queue update (2) reduces to
Qi(k + 1) = f(Qi(k), ny;) + Ai(k), where f(A,B) = A - B
if A > B, and = A otherwise. Note that Q;(k + 1) <
(Qi(k) — 2ny,-)+ + (ny; + Ai(k)). In other words, this queue
is upper bounded by a queue whose stability can be proven
similar to the appendix. Hence, we see that the queues are
stable. This completes the proof. O

Lemma 3 (side-information Case 3). Suppose that the trans-
mit power P; = P for all i. All transmitters send 1-bit
queue information as in Theorem 2. If nodes do not know
anything about arrival distribution of any node (not even its
own), then the stable throughput region contains the closure of
(A],/lz, Ce ,AK) where (A],)Lz, ce ,AK) SatiSfy

1 KP 1)
Ai < EC(W) e (13)

for any predecided variable § > 0 chosen without any
knowledge of arrival distribution or arrival means, and known
to all the transmitting nodes and the base station.

Proof. By choosing y; = (1/K)C(KP/N) — 6/2K and using
the same protocol as in the proof of Theorem 2 to encode, we
see that any point in the above region is in stable throughput
region.

Remark 1. Although § can be chosen arbitrarily small, the
knowledge of same § > 0 at all the nodes can be considered
as a side-information.

Two important conclusions can be drawn from studying
Theorems 1 and 2 and Lemma 3. First, there is a significant
loss in the achievable stable throughput region if the
transmitters do not know anything about the source arrival
statistics at all nodes. This situation represents the common
scenario in actual practice. The loss is entirely due to the fact
that any transmitter has to guarantee that its packets will
be received error-free without any knowledge of amount of
data which other transmitters may be trying to send. Thus,
each transmitter assumes that every source is sending at its
peak rate, so that they essentially split the sum-rate capacity
equally. However, in cases where some sources have lower
arrival rates, this scheme can lead to a large loss compared to
full-information scenario of Theorem 1 or partial knowledge
with feed-forward bit of Theorem 2.

Second, the proofs of Theorems 1 and 2 suggest a
simple architecture to get around the problem of every
transmitter knowing the statistics of every source in the
system. Essentially the transmitters need to know only an
appropriate value of 7 to calculate how far the arrival rate is
from the capacity region and hence decide their transmission
rate. Thus if the receiver knows the statistics or arrival rates
at each node, it can calculate the appropriate “backoff”
parameter 7 and send it to each transmitter. This is akin
to congestion/rate control by base-stations and leads to the
following result.

Corollary 1 (side-information Case 2). The stable through-
put region (as in Definition 3) coincides with the Shannon
capacity region given in Lemma 1 if

(2a) the K transmitters know only their own complete
arrival distribution but the base station knows the
complete arrival distribution of all K sources, or

(2b) the K transmitters know only their own mean arrival
rates but the base station knows all the mean arrival
rates; in addition, transmitters send one bit of instanta-
neous queue state information

if the base station can feedback a real number to all K sources.

Proof. The proof is similar to that of Theorems 1 and 2
except that 7 is calculated at the base station and is fedback
to all the K sources. O

3.1. Discussion

In Theorem 1, it is shown that with full statistical informa-
tion about all the nodes at all the nodes guarantees that
every point in the Shannon capacity region of Lemma 1 is
in stable throughput region. Thus, full statistical informa-
tion guarantees maximal achievable performance. The key
ingredient of this result is that the probability of different bit
sequences is known to the receiver which allows the receiver
to use the optimal maximum a posteriori probability decoder.
Thus, while each codeblock may have different number of
information bits, the receiver has accurate knowledge of the
probability of each message.

As the information about the distribution of source
information bits reduces, the transmitter and the receiver
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no longer can perform optimal allocation of code rates and
thus suffer from additional “overhead” of indicating the
number of encoded bits in every codeword. If we reduce
the information, we may not have the same knowledge of
the encoding rate at the senders and the receiver, which
will result in significant number of errors, and the stable
throughput regions will be much less than the capacity
region. This overhead can surprisingly be eliminated if the
encoders can share one-bit information about their current
queue state. When the distribution of arrivals is not known,
we have to assume that the incoming symbols are equally
likely. For this assumption to hold, we encode equally
likely symbols which have the same number of input bits.
Hence, we send one bit of queue information when the
respective queue has less elements than that supported by the
service rate of that particular transmitter, and send the bits
supported by service rate otherwise. This helps us to send
all the blocks with equal probability. The encoding rates just
need the side information of mean arrival rates rather than
the whole distribution since we know the prior probabilities
of each codeword and do not need the whole distribution for
this information. This is why in Theorem 2 when each node
knows the arrival rates at all the nodes, we get stable queues
when the mean arrival rates are within the capacity region.
There is a loss in achievable rates as we know less and less
information.

We further see in Lemma 3 that if we do not know
any information, we have to predecide the encoding and
decoding rates in the interior of the capacity region which
leads to the stability region being smaller than the capacity
region. Note that the 1-bit side information is not needed
when all the queues always have data to send, the case which
is commonly considered in information theoretic analysis
resulting in Lemma 1.

We further see in Corollary 1 that if the base station can
feedback a real number to the transmitting users once, we
need much less side information at the transmitters. This
side information is needed only once and hence can be
communicated the same time when the codebooks are told
to the receivers. In this case, every point in the capacity
region is stable. Hence, we have a practical way akin to
congestion control where we trade side information of other
transmitters at a transmitter by some information from
receiver.

4. FIXED BLOCK-LENGTH n WITH SNR —

Till now, we concentrated on the block-length being large
enough to make the error probability at the receiver
decrease to 0. We now consider the dual-like problem
to keep the block-length fixed, while letting the SNR =
(SNR},SNR;,...,SNRk) high enough for the probability
of error at the decoder to be very small, where SNR; =
Pi//N = u%, where u is some base SNR. We will give an
achievable rate region for all five side-information cases
listed in Section 2.4. Two main code constructions are used,
namely in Theorem 3 for Case la and Theorem 4 for Case
1b, and rest of the side-information cases follows from them
(Cases 2a, 2b, and 3).

In this section, we also assume that limgygr_. (E(A;(k))/
10g(SNR;)) < o0 and limgng-—.« (Var(A;(k))/ logz(SNRi)) < oo,
As the SNR is large enough, the channel can support rates
that are logarithmic in SNR. Hence, we can also support the
arrival rates that are logarithmic in SNR. Hence, we let all
the arrival rates be assumed to be a function of SNR as A; =
Iilog(SNR;) = lia;log(u). We also assume that SNR; for all i
is known to all the nodes.

Theorem 3 (side-information Case 1la). The SNR-stable
throughput region (as in Definition 4) coincides with the SNR-
capacity region given in Lemma 2, when all K + 1 nodes know
the complete arrival distribution of all K sources.

Proof. Let the incoming rates (Aj,As,...,Ax) be A; =
Liailog(u), with > ;cglio; < (1/2)max;es a;, where S € 'S,
where S is set of all nonempty subsets of {1,2,...,K}. Let
7 = (I/K)(1 — maxges(Djes Lioi/(1/2)maxies a;)). Let g =
Ii + 7/4. Note that (g1,£,...,€x) is also in the interior of
the SNR-capacity region. We can take the departure rate
yi = Ai + (gi — ;) log SNR; = gilog SNR; = gia;logu.

The constructive queuing scheme is similar to that in
Theorem 1 with the above arrival and departure rates. We get
probability of error at the decoder going to 0 as u — oo since
(g1,£5-..,4x) is in the interior of the SNR-capacity region.

Using the above scheme, the queue states emerge as
Qi(k + 1) = (Qi(k) — ny;)" + Ai(k). Using similar procedure
as in the appendix, we can easily show that the queues are
stable. O

Theorem 4 (side-information Case 1b). The SNR-stable
throughput region (as in Definition 4) coincides with the SNR-
capacity region given in Lemma 2, when all K + 1 nodes know
the mean arrival rates of all K sources and transmitters convey
1-bit of quantized queue state information to the receiver in
each time-slot.

Proof. Let the incoming rates (A;,Az,...,Ax) be Ay =
Liailog(u), with > ;csli; < (1/2)maxjesa;, where S € S,
and S is set of all nonempty subsets of {1,2,...,K}. Let
7 = (I/K)(1 — maxses(Xes Lioi/(1/2)max;es ;). Let g =
li+min(l;, 7/4). Note that ( g1, £, .., gk ) is also in the interior
of the SNR-capacity region. We can take the departure rate
yi = Ai + (g — ;) 1og SNR; = gia; log u.

Let us consider transmitter i. Suppose that the number
of bits with the transmitter at the beginning of time-slot
kis Qi(k). If Qi(k) < ny;, we serve Q;(k) = 0 bits, else
we serve Q;(k) = ny; bits. The input to the encoder at
transmitter i can be any bit-sequence of length ny;. These
are encoded to 2" codewords of length n. The transmitter
sends the information of Q;(k) = 0 by sending the single-bit
information that the queue is empty. Since ( g1,£,...,4x) is
in the interior of the SNR-capacity region, there exists u large
enough so that there exist an encoding and decoding scheme
with arbitrarily small average probability of error as u goes to
infinity.

Using the above scheme, the queue states emerge as
Qi(k + 1) = f(Qi(k),ny;) + Ai(k), where f(A,B) = A - B
if A = B, and = A otherwise. Using arguments similar to
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those used in the proof of Theorem 2, we can show that the
queues are stable. O

Lemma 4 (side-information Case 3). Suppose that the trans-
mit power P; = P for all i, hence SNR; = u. All transmitters
send 1-bit queue information as in Theorem 4. If nodes do not
know anything about arrival distribution of any node (not even
its own), then the SNR-stable throughput region contains the
closure of (I1, b, . . ., Ix ), where (I}, I, ..., Ix) satisfy

1 0
< — 14
bk Tk (14)
for any predecided variable § > 0 chosen without any
knowledge of arrival distribution or arrival means, and known
to all the transmitting nodes and the base station.

Proof. The SNR-capacity region in this case is the closure of
Di<i<k i < 1/2. By choosing g; = 1/2K — 6/2K, y; = gilogu
and using the same protocol as in the proof of Theorem 4 to

encode, we see that any point in the above region as stable.
O

We further see that both the Cases 1a and 1b in Theorems
3 and 4 suggest that at a transmitting node, we use the
information of its own arrival distribution/means while the
arrival distributions/means at other nodes are absorbed into
the parameter 7 similar to that in Section 3. Hence we
consider a method where only the receiver knows the full
arrival distribution/mean, computes an appropriate 7, and
then relays it to all the transmitters as in Section 3. Note that
this parameter is needed only once and not in every time slot.
Using this, Theorems 3 and 4 change as follows.

Corollary 2 (side-information Case 2). The SNR-stable
throughput region (as in Definition 4) coincides with the SNR-
capacity region given in Lemma 2, when

(2a) all K-transmitting nodes know the complete arrival
distribution of its own source, the base station knows
the complete arrival distribution of all K sources, or

(2b) all K-transmitting nodes know the mean arrival rates
of its own source, the base station knows the mean
arrival rates of all K sources, transmitters convey 1-bit
of quantized queue state information to the receiver in
each time-slot

if the base station can feedback a real number to all K sources.

Proof. The proof is similar to that of Theorems 3 and 4
except that 7 is calculated at the base station and is fedback
to all the K sources. O

4.1. Discussion

The results follow the similar behavior as in Section 3 for
finite SNR. When each node knows the distribution of
arrivals at all the nodes, the SNR-stable throughput region
coincides with the SNR-capacity region as in Theorem 3.
As we decrease the side information, we loose in the SNR-
stable throughput regions since we would have to predecide

something. With the knowledge of whole distribution of
arrival, we estimated the a priori probability of all the
messages sent from the encoder that gave us the maximum
stable throughput region. We show that the knowledge of
whole distribution of arrival can be relaxed if we allow one
bit of information from the transmitters to indicate whether
the queue is empty. On these lines, if each node knows
the mean arrival rate at all the queues, stable queues are
achieved as long as the mean arrival rates are in the interior
of the SNR-capacity region (Theorem 4). We further see that
there is a loss in the throughput stability regions due to
predeciding some terms when there is a less information.
We further see in Corollary 2 that the knowledge of arrival
distribution/means of other transmitters is not needed at a
transmitter as long as there is a real feedback from the base
station.

Till now, we saw the similarities in the two cases when the
SNR is finite with infinite block-length and when the block-
length is finite while SNR is infinite. The main difference
in the two approaches is the definition of stability. The
definition of stability in the case of infinite block length
means that the queue length has to be finite multiple of
block-length with probability 1. This would mean that a bit
would take extremely large amount of time to get serviced
(As n — o0, each bit even if waits one time-slot means that it
waits for infinite time). In the case of infinite SNR stability
refers to queue length being a finite multiple of log(SNR)
with probability 1. Since, increasingly large number of bits
are being served each time unit, the average bit delay is
smaller.

5. CONCLUSION

In this paper, we studied the impact of side information
on the stable throughput regions. We found that when
every node knows the distribution of the arrival rates of
every node, the stable throughput region coincides with the
Shannon capacity region for both finite time-slots with large
SNR and finite SNR with large time-slots. We also considered
a variant of the side information in which the knowledge of
the whole of the distribution is replaced by the arrival means,
along with one bit of side-information in every time-slot;
and that seems enough. Further, the case of side information
at a node in which a transmitter knows only its own arrival
statistics was studied, and we found that a feedback from the
receiver is enough. Finally, we showed that any information
content that is less than the mean arrival rates known to
all nodes implies a reduced stable throughput region, a case
which is indicative of the performance of real systems.

APPENDIX
STABILITY OF QUEUES IN THEOREM 1

The queues emerge as Q;(k + 1) = (Qi(k) — ny;)" + Ai(k).
Let Qi(k)/n = Vi(k) and bi(k) = Ai(k)/n — ;. Using this,
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we see that
Vl(l) = 07
Vi(2) = max [ Vi(1) + bi(1), A(”)

= max | b;(1),

(
(

max (Vi(2) + b,
(

A(l))

())

M Ly, 80,

=max ( bi(1) + bi(2),

(A1)
Continuing in this way, we get
| MG - 1)
Vij) = max(V(]— D+ b -1, )
:max<bi(l)+---+bi(j— 1, A(1)+b(z)
b - 1), 22 )
n
c+bi(j - 1),...,%).
(A2)
As b;(l) =< A,‘(l)/l’l,
Vi(j)=max( A L oyt +bi(j—1,Ai]§2)
b - 1)%)
(A3)
Let
Vi) =max (MU o)y, U2
+b;(2) + - --+bi(j—2),...,¥)
A(1)+max(0d(2)d(2)+d(3) i)+ -
+di(j - 1)),
(A4)

where d;(k) = (Ai(k) — Ai(k — 1))/n+ bi(k). Vi(j) and V/(j)
have same distribution since we just renamed the labels and
all the b;’s were i.1.d.

Let ei(k) = d:(2) + d,(] - 2)+---di(k—1) fork >
and 0 otherwise. We see that V;(j) can only increase with j,
and hence as j — oo must converge to the (possibly infinite)
random variable \N/i,

V= Al) + sup e;(k).
n k=2

(A.5)

As E(di(k)) < 0, it follows being similar analysis as of [26,
Section 1.7] that sup,.,e;(k) is finite with probability 1 and
has a proper probability distribution (by proper, we mean
that limit of the distribution is 0 and 1 at —oco and oo, resp.).
As mean and variance of A;(1)/n is finite for n large enough,

this has a proper distribution function, V; is finite with
probability 1 and forms a proper distribution function. Since
V; is finite with probability 1, both V;(j) and V/(j) converge
to the same distribution, which is the distribution of \N/}.
Hence, there exists an integer M such that lim;_. ., Pr[Q;(j) <
nx] = F(x,n) and lim,_.F(x,n) = 1, fori = 1,2,...,K and
n > M. Thus, the queues are stable for n large enough.
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