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1. INTRODUCTION

In this paper, we consider the problem of resource allocation
in wireless multihop networks, where a source node is
simultaneously transmitting common information to a set
of destinations via relay nodes. In contrast with the wired
networks, link capacities are not fixed rather in general can
be functions of communication resources such as transmit
power. Hence achieving optimal throughput requires joint
optimization of data flow routing and resource allocation.

As shown by Ahlswede et al. in [1], data routing can be
performed efficiently through network coding where nodes
are allowed to mix information and send certain functions
of received data on their outgoing links. Network coding
was originally developed for wired networks (more precisely,
a network with fixed capacity and lossless links). In such
networks, multicast capacity (which is an upper bound for
multicast throughput) is always achievable by network cod-
ing, whereas in general it may not be achievable with routing
[1, 2]. Li et al. showed in [3] that linear coding usually
suffices in achieving the maximum rate. A polynomial-time
algorithm to achieve the maximum multicast rate in directed

networks is proposed in [4]. Alternatively, Ho et al. in [5]
designed a distributed algorithm based on random network
coding. Li et al. in [6] formulated the problem of computing
optimal throughput as a linear optimization problem and
proposed a distributed algorithm to solve this problem.

The problem of joint optimization of data flow rout-
ing and resource allocation has also been investigated by
different researchers. In wireline networks, where multicast
routing scenarios is considered, the problem is equivalent
to the Steiner tree problem which is known to be NP-hard
[7]. However, by the use of network coding, this problem
can be solved efficiently in a distributed manner. The main
idea is to assume a convex (concave) cost (utility) objective
function so that the problem can be formulated as a convex
optimization problem and be solved efficiently by using
Lagrange relaxation and subgradient methods [8, 9]. A game
theoretic solution to this problem has also been proposed by
Bhadra et al. in [10]. However, solving the aforementioned
problem is more difficult in wireless networks. Since link
capacity is in general a function of link power, achieving the
optimal result requires consideration of both network and
physical layers. Finding optimal multicast routing in routed
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wireless network is an NP-hard problem [11]. The joint
optimization of routing and resource allocation based on
multicommodity is investigated in [12, 13] where distributed
cross-layer solutions are offered. As shown in [12], with the
assumption that link capacity is a concave and increasing
function of the communication resources allocated to the
link, the problem will become a convex optimization prob-
lem which can be solved efficiently by dual decomposition.
In [13], CDMA wireless networks are considered and it is
shown that for relatively high values of SINR, this problem
can also be turned into a convex optimization problem. In
addition, based on single Steiner tree routing, Cheng et al. in
[14] addressed energy-efficient routing in multihop ad-hoc
wireless networks. They proposed a distributed algorithm
for optimal routing in interference-free networks through
proper power allocation to each link.

Recently, the problem of joint optimization of data
flow routing and resource allocation in wireless networks
when network coding is used in the network layer has also
become of interest. Minimum cost multicast problem has
been considered in [15, 16]. They formulated the problem
as a convex optimization problem using time sharing to
eliminate interference between links and offered a centralized
cross-layer approach. Yuan et al. in [17] have offered a cross-
layer optimization framework to achieve optimal throughput
in wireless networks. They showed that by use of time
(frequency) sharing or applying logarithmic transformation
at high SINR values, as well as assuming concave util-
ity function, a distributed solution can be obtained via
dual decomposition. An analogous approach has also been
adopted in [18].

The main goal of this paper is to extend the scope of such
problems to high interference scenarios (low SINR) as well
as nonconvex (concave) cost (utility) objective functions,
where we deal with a nonconvex optimization problem and
traditional optimization techniques are not applicable any
more. Our approach will focus on cases where network
coding or routing is applied in network layer. When network
coding is applied in network layer, we use max flow-min
cut theorem [1] to formulate the problem as a nonlinear
constrained problem. Then by the use of the new probability
collectives (PCs) method, the problem is turned into a
convex optimization problem over the space of probability
distribution functions. Consequently, it will be shown that
the new problem can be decomposed into two subproblems
that are coupled via a set of Lagrangian multipliers: data
routing in network layer and power management in physical
layer. Subsequently, distributed cross-layer algorithms are
proposed in order to obtain the solution in the new
framework. It should be mentioned that one of the main
features of our method is providing a distributed and parallel
solution, in contrast with traditional centralized schemes for
solving nonlinear constrained optimization problems (e.g.,
projection method [19]) or evolutionary algorithms (e.g.,
genetic algorithms [20] or particle swarm optimizations
[21]). This feature provides the possibility of applying
this method to multihop wireless networks without an
infrastructure support.

Finally, extension of the proposed method to routing
problems based on traditional multicommodity and single
Steiner tree is also presented and it is shown that as expected,
network coding-based solutions can generally lead to better
performance in comparison with routing-based solutions.

The organization of the paper is as follows. Section 2
describes the original optimization problem addressed in
the paper and in Section 3, it is shown how by use of
probability collectives the problem will be transformed into
a convex form and subsequently decomposed to achieve
a fully distributed solution. Instead of maximizing the
throughput, in some scenarios the goal is to minimize a
cost function (e.g., energy) while fulfilling a certain achiev-
able multicast throughput. Section 4 extends the methods
described in Section 3 to such min-cost multicast problems.
Subsequently, extension of the proposed approach to single
tree solutions is provided in Section 5. Simulation results
are presented in Section 6, and finally Section 7 concludes
the paper. A summary of probability collectives optimization
scheme is also presented in the appendix.

2. PROBLEM FORMULATION

In traditional routing, nodes are only allowed to replicate
and forward received data packets. In such networks, each
data unit is transmitted in a tree-structure. This tree
includes a path from source to each destination known as
the Steiner tree. Maximum achievable throughput can be
obtained by computing the maximum number of pairwise
capacity-disjoint trees resulting in a centralized process
with high computational complexity. In order to reduce
the complexity, two suboptimal solutions can be applied:
multicommodity flow routingand single Steiner tree routing
[22]. In multicommodity flow routing, multicast session is
treated as multiple unicast sessions and dedicated bit rate
resources are allocated to different destinations. In this case,
the multicast rate r is feasible if there is a flow vector between
a source and each destination with a rate equal or greater
than r, and also the sum of these flows at each link does not
exceed the link capacity. As will be shown in Section 6, this
property simplifies the problem formulation and enables us
to achieve a distributed solution. Another special case of the
general routing problem is to send information via a single
Steiner tree. Although this case is of special importance in
networks modelled by unlimited capacity links (e.g., wireless
optical networks [23]), it is still applicable in limited capacity
networks if link capacity of each tree is not less than r, and
data can be sent to destination at rate r via such tree. By use
of network coding, the multicast rate r is feasible if and only
if there is a flow vector between source and each destination
(called conceptual flow) with a rate equal or greater than
r, and also max of these flows (called max of flows or link
flow) does not exceed the link capacity. In this paper, we
will consider both approaches and provide corresponding
optimization solutions in each scenario.

A data network can be represented by a directed graph
G = (V ,E), where the vertex set V and the edge set E denote
the nodes and links, respectively. An s − d flow with value
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r is a length-|E| nonnegative vector x satisfying the flow
conservation constraint:

∑

l∈O(n)

xl −
∑

l∈I(n)

xl =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

r, n = s,

0, ∀n ∈ V − {s,di
}

,

−r, n = di,

(1)

where I(n) and O(n) are defined as the set of incoming
and outgoing links at node n, respectively. Also, s, di,
and N denote sender (source), ith receiver (destination)
and the number of receivers, respectively. Let fl, cl, and
ei,l, respectively, denote flow, capacity, and conceptual flow
associated with ith destination of link l. In order to achieve a
tractable solution for the problem addressed in this paper,
which is inherently difficult to solve due to its inherent
nonconvex structure, it is assumed that network topology is
time invariant, in other words nodes are static, not moving,
and connected via fixed links. Such assumption is valid in
quasistationary wireless mesh networks as well as static ad-
hoc networks. However, in multihop wireless networks, due
to interference, each achievable link rate not only depends on
the power allocated to the link itself, but also on the power
allocated to other links. Consequently, achievable rate of a
link may be formulated as a function of SINR defined as

SINRl = Gll pl∑
j /=lGl j p j + σ2

l

. (2)

For example, in CDMA wireless networks the achievable
rate can be defined as

cl(p) = log
(
1 + SINRl

)
, (3)

where Gll, pl, and σ2
l are the link gain, power, and noise

variance, respectively, and Gl j is the interference gain from
link j to link l. The power constraints for each link and node
can then be constrained as

0 ≤ pl ≤ pl,max,
∑

l∈O(n)

pl ≤ Pn,max. (4)

Consequently, the maximum utility derived by a feasible
multicast rate can be achieved by the following optimization
problem:

maximize U(r) ≡ minimize−U(r)

subject to: r ∈ [rmin, rmax],
(5)

∑

l∈O(n)

ei,l −
∑

l∈I(n)

ei,l = si,n =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

r, n = s,

0, ∀n ∈ V − {s,di
}

,

−r, n = di,

(6)

ei,l ≥ 0 ∀i, ∀l ∈ E, (7)

fl ≥ 0 ∀l ∈ E, (8)

ei,l ≤ fl ∀i, ∀l ∈ E, (9)

fl ≤ cl(p) ∀l ∈ E, (10)

0 ≤ pl ≤ pl,max ∀l ∈ E, (11)
∑

l∈O(n)

pl ≤ Pn,max ∀n ∈ V. (12)

3. OBTAINING A DISTRIBUTED PC-BASED SOLUTION

In order to obtain a manageable solution for the problem
presented in Section 2, we adopt the probability collectives
(PCs) optimization method. As will be shown subsequently,
by proper use of PC approach, the problem will be trans-
formed into a convex form and subsequently decomposed
to achieve a fully distributed solution. A brief introduction
to PC and its key concepts such as Maxent Lagrangian is
presented in the appendix.

3.1. The general framework of PC-based optimization

Lets assume that the variables r, fl, ei,l, and pl take a finite
number of values in the ranges [rmin, rmax], [0, rmax], [0, rmax],
and [0, pl,max], respectively. In this way, it is ensured that the
solutions obtained at each step satisfy the constraints (5), (7),
(8), and (11). It should be noted that the other constraints are
already included in Maxent Lagrangian and also all feasible
values for ei,l and fi are in the range [0, rmax]. The equality
constraint (6) can be rewritten as

∑

l∈O(n)

ei,l −
∑

l∈I(n)

ei,l ≤ si,n. (13)

Since the above constraint ensures that the source node
injects a flow of at most r in the network, at each inter-
mediate node the outgoing flow is less than the incoming
flow and each of the receivers receive at a flow rate greater
than or equal to r. This is possible, if and only if, the flow
conservation constraint (6) is satisfied. This is an important
issue since we assumed that all constraints are of the form of
nonequalities. Let q(t)

r , q(t)
ei,l , q

(t)
fl

, and q(t)
pl denote probability

distributions associated with variables r, ei,l, fl, and pl, at step
t, respectively. By expanding the Lagrangian, the following
convex optimization problem will be obtained:

minimize
qr ,q fl

,qei,l ,qpl
E

{
−U(r)+

∑

i∈D

∑

n∈V
μi,n

(
∑

l∈O(n)

ei,l−
∑

l∈I(n)

ei,l−si,n
)

+
∑

i∈D

∑

l∈E
ξi,l
(
ei,l − fl

)

+
∑

n∈V
νn

(
∑

l∈O(n)

pl − Pn,max

)

+
∑

l∈E
λl
(
fl − cl

)
}
− T

∑

i∈D

∑

l∈E
S
(
qei,l
)

− T
∑

l∈E
S
(
q fl

)− TS
(
qr
)− T

∑

l∈E
S
(
qpl
)
,

(14)

where T and S are part of the PC optimization framework
briefly described in the appendix. In addition, in order
to reduce the number of equations, the constraints for
nonnegative probabilities and unity probability distributions
are not explicitly mentioned. Also, the time dependency of
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probability distributions is assumed implicitly. Finally, the
Lagrange multipliers are updated according to (A.9):

μ(t+1)
i,n =

[
μ(t)
i,n + ημi,nE

(
∑

l∈O(n)

ei,l −
∑

l∈I(n)

ei,l − si,n

)]+

, (15)

ξ(t+1)
i,l = [ξ(t)

i,l + ηξi,l E
(
ei,l − fl

)]+
, (16)

ν(t+1)
n =

[
ν(t)
n + ηνnE

(
∑

l∈O(n)

pl − Pn,max

)]+

, (17)

λ(t+1)
l = [λ(t)

l + ηλlE
(
fl − cl

)]+
. (18)

3.2. Problem decomposition

Subsequently, minimizing the Maxent Lagrangian can be
decomposed into the following subproblems in network and
physical layers, respectively, as follows:

minimize
qr ,qei,l ,q fl

E

{
−U(r)+

∑

i∈D

∑

n∈V
μi,n

(
∑

l∈O(n)

ei,l−
∑

l∈I(n)

ei,l−si,n
)

+
∑

i∈D

∑

l∈E
ξi,l
(
ei,l − fl

)
+
∑

l∈E
λl fl

}

− T
∑

i∈D

∑

l∈E
S
(
qei,l
)− T

∑

l∈E
S
(
q fl

)− TS
(
qr
)
,

minimize
qpl

E

{
∑

n∈V
νn

(
∑

l∈O(n)

pl − Pn,max

)
−
∑

l∈E
λlcl

}

− T
∑

l∈E
S
(
qpl
)
.

(19)

The network layer subproblem can be further decom-
posed into a set of single variable subproblems as follows:

minimize
qr

E

{
−U(r) + r

( N∑

i=1

μi,di −
N∑

i=1

μi,s

)}
− TS

(
qr
)
,

minimize
qei,l

E
{
ei,l
(
μi,head(l) − μi,tail(l) + ξi,l

)}

− TS
(
qei,l
)

i ∈ D, l ∈ E ,

minimize
q fl

E

{
fl

(
λl −

N∑

i=1

ξi,l

)}
− TS

(
q fl

)
l ∈ E ,

(20)

where

head (l) = {n | n ∈ V&l ∈ O(n)
}

,

tail (l) = {n | n ∈ V&l ∈ I(n)
}
.

(21)

The physical layer subproblem can also be decomposed
into a set of the following subproblems at each link:

minimize
qpl

E

{
νhead(l)pl −

∑

l∈E
λlcl

}
− TS

(
qpl
)

l ∈ E . (22)

By use of Newton updating scheme for subproblems
(20)–(22), we will obtain updating rules similar to (A.7) for
qr(xi), qei,l (xi), q fl (xi), and qpl(xi) where G is replaced by G1

to G4, in each case as follows:

G1 = −U(r) + r

( N∑

i=1

μi,di −
N∑

i=1

μi,s

)
, (23)

G2 = ei,l
(
μi,head(l) − μi,tail(l) + ξi,l

)
, (24)

G3 = fl

(
λl −

N∑

i=1

ξi,l

)
, (25)

G4 = νhead(l)pl −
∑

l∈E
λlcl. (26)

3.3. Proposed distributed algorithm

The overall distributed algorithm is subsequently given by
Algorithm 1

The “exact” convergence is achieved when all constraints
are satisfied and the probability distributions converge
to impulse function. However, in practice “approximate”
convergence criteria can also be defined [24]. For example, if
the following constraints are satisfied at iteration t + 1, then
an “approximate” convergence is achieved

∥∥q(t+1)
i − q(t)

i

∥∥ ≤ δi,

Ci
(
x∗(t+1)

) ≤ εi,
(27)

where Ci is a non-equally constraint of the form Ci(x) ≤ 0,
δi, and εi are sufficiently small positive scalars.

The aforementioned algorithm can consequently be
performed in a distributed fashion: at network layer qr , qei,l ,
q fl , and ξi,l are updated based on local information: updating
qr , qei,l , and q fl needs only previous probability distributions
associated with variables r, ei,l, and fl, respectively (see (23)–
(25) and (A.7)). Also, ξi,l can be updated by computing
E(ei,l − fl) requiring only probability distributions qei,l and
q fl . μi,n can be updated at each node (except at the receivers)
using probability distributions of flow and conceptual flows
of the incoming and outgoing links. At the receivers, E(r)
should also be taken into account. Therefore, in step 2a,
the source also broadcasts E(r). At the physical layer, each
link can calculate its expected capacity and broadcast E(λlcl)
to other links. Consequently, each link can update its
probability distribution based on (26).

The overall algorithm then works as follows: at network
layer, at iteration t, each node n uses the previous probability

distributions associated with its outgoing link (i.e., q(t−1)
fl

,

q(t−1)
ei,l , l ∈ O(n)) as well as Lagrange multipliers, μ(t−1)

i,n and

ξ(t−1)
i,l , (l ∈ O(n)) in order to coordinate with other nodes and

obtain new appropriate values for its outgoing links flows

(i.e., f ∗(t)
i,l ). This procedure can be performed in parallel

since each node uses previous probability distributions and
Lagrange multipliers corresponding to its neighboring nodes
(i.e., nodes that have at least a common link with this
node). In a similar way, nodes at the physical layer update
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(1) Initialize
(a) Assign the starting probabilities for each variable, typically a uniform distribution over its possible values.
(b) Set the parameters {T ,α,η}

(2) Optimize the Lagrangian
At network layer:
(a) At the source node, qr is updated according to (23) and (A.7). E(r) is calculated and broadcasted to the network.
(b) For each link, qei,l and q fl is updated according to (24), (25), and (A.7).
(c) Lagrange multipliers μi,n and ξi,l are updated according to (15) and (16).
At physical layer:
(d) qpl ’s are updated according to (26) and (A.7) and broadcasted to the network.
(e) Lagrange multipliers νn are updated based on (17).
Cross Layer Optimization:
(f) Lagrange multipliers λi are updated based on (18).
(g) T is decreased at the rate β (T := βT , 0 < β < 1 )

(3) Repeat until convergence is achieved.

Algorithm 1

the probability distributions associated with their outgoing
links power in order to achieve new appropriate values for
link capacities. The two layers coordinate with each other
in order to balance links flow and links capacities. Finally,
the algorithm will continue until approximate convergence
is achieved. In order to achieve approximate convergence,
all the problem constraints (which can be rewritten in the
form Ci(x) ≤ 0, should not exceed a small specific positive
value (i.e., Ci(x) ≤ εi) and for all probability distributions,

we should have ‖q(t+1)
i − q(t)

i ‖ ≤ δi. In other words,
all constraints should be approximately satisfied and the
probability distributions should converge to an approximate
steady state condition. It is not hard to check that all
the problem constraints can be calculated in a distributed
fashion (see (6)–(12)) in appropriate node at physical or
network layer. Therefore, at each step after updating prob-
ability distributions and achieving new appropriate values

(i.e., x∗(t)
i ), each node can calculate its related constraints and

probability distributions in order to check if they meet the
convergence conditions and subsequently announce it to the
network. The algorithm will be terminated when each node
achieves the aforementioned approximate convergence.

While the network layer tries to allocate appropriate flow
(i.e., bandwidth) to each link in order to achieve an optimal
multicast throughput, the physical layer assigns link powers
in order to support the required bandwidths. Lagrange
multipliers λl’s play an important rule in such coordination
between layers. When (expected) capacity supported by
physical layer is less than the expected flow of the link, λl is
increased in order to enforce physical layer to increase link
capacity by increasing link power and subsequently notifies
network layer to decrease link flow. On the other hand, if
physical layer assigns more bandwidth than is required in
network layer, excess power is allocated by physical layer to
the link. This effect will in turn cause interference to other
links, resulting in a decrease in the capacity of other links.
In this case, by decreasing Lagrange multipliers, physical

layer decreases link power and consequently the link capacity,
while network layer realizes that it can inject more flow to
this link. The optimal solution is achieved when link capacity
and link flow become equal (if we are interested in maximum
throughput, regardless of how much power is consumed it
suffices that each link flow does not exceed link capacity).
However, in the proposed method, since link powers as well
as link flows are selected from a discrete set, these two values
may not be equal in the final solution and the resulting
link capacities are usually more than link flows. Lagrange
multiplier λl can also be interpreted as the bandwidth cost of
link l. Network layer tries to send data via links with relatively
lower cost in order to minimize the total cost incurred, while
physical layer tries to maximize the total benefit achieved by
providing more bandwidth to network layer.

As mentioned in the appendix, the PC algorithm con-
verges to at least a local minimum that satisfies the given
constraints. Therefore, the proposed algorithm achieves a
feasible multicast rate (corresponding to a local maximum of
the utility function). The proposed method is more complex
than traditional convex optimization problems since it
requires updating a probability distribution (associated with
each scalar variable) rather than a scalar value, resulting in
a higher computational complexity as well as more memory
space. However, this additional complexity is inevitable due
to the nonconvexity of the original problem. It should be
noted that it is possible to reduce this complexity by selecting
variables from a smaller set, but this may result in further
suboptimality.

4. EXTENSION TOMINIMUM COSTMULTICAST

In Section 3, we considered joint optimization of data flow
routing and link power adjustment in order to achieve the
optimal throughput. Alternatively, we can investigate the
problem of link power allocation in order to minimize a
cost (e.g., total consumed power) while fulfilling a certain
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achievable multicast throughput. This problem can be
formulated as follows:

minimize
∑

l∈E
gl(p),

subject to:
∑

l∈O(n)

ei,l −
∑

l∈I(n)

ei,l = si,n

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

r0, n = s,

0, ∀n ∈ V − {s,di},
−r0, n = di,

ei,l ≥ 0 ∀i, ∀l ∈ E,

fl ≥ 0 ∀l ∈ E,

ei,l ≤ fl ∀i, ∀l ∈ E,

fl ≤ cl(p) ∀l ∈ E,

0 ≤ pl ≤ pl,max ∀l ∈ E,
∑

l∈O(n)

pl ≤ Pn,max ∀n ∈ V ,

(28)

where gl(p) is an arbitrary (not necessarily convex) function
of link powers. Following a similar approach as presented in
Section 3, a distributed algorithm can be designed by decom-
posing the Maxent Lagrangian. In addition, we can modify
the multicast rate optimization problem to maximization of
a net utility function similar to [9] where the utility function
can be defined as

U(r)−
∑

l∈E
gl(p). (29)

In aforementioned problems, we concentrated on finding
the optimal data flow in network layer, rather than the code
design problem. In order to establish a multicast session with
network coding, it suffices to compute the appropriate data
flow and then compute a code that determines the content of
each link flow following the method presented in [4, 5]. Joint
optimization of data routing and resource allocation using
multicommodity flow can be formulated in a similar way, by
replacing max flow with accumulated flow in the constraints.
Therefore, the constraint fi,l ≤ cl should be replaced with∑

i∈D fi,l ≤ cl. Clearly, in this case, less flow can be dedicated
to each destination, resulting in a suboptimal solution
compared with the network coding-based solutions. In this
respect, our solution can be considered as an extension of
work in [13] to nonconvex cost functions. In addition, while
in [13] only low-interference scenarios where link capacities
are approximated by log (SINR) are taken into account,
our approach does not assume such approximation and can
consequently be applied in both low and high interference
scenarios.

5. A SOLUTION BASEDON SINGLE TREE ROUTING

In earlier sections, we have offered a distributed algorithm
for a general network by applying network coding at the
network layer. Also, it has been shown that when routing is

used at the network layer, with some modifications, we can
achieve a distributed solution by using multicommodity flow
routing scheme. Another routing-based solution of interest
is based on single Steiner tree. Although such solution is
only suboptimal in relation to that of a general Steiner tree
problem, it can be implemented in a distributed fashion
with lower complexity. Therefore, in this section, we will
also extend our method by presenting a solution based
on single Steiner trees. We study both acyclic and general
networks, where in each case, a Steiner tree is constructed
through which data can be multicasted from source to the
destinations.

5.1. Acyclic networks

First, we consider a network with no cycles (i.e., an acyclic
network) and will address the general problem in Section 5.2.
Consider an arbitrary subgraph G′ = (V ′,E′) V ′ ⊆ V ,
E′ ⊆ E. An indicator variable, el, is associated with each link
defined as follows:

el =
{

1, l ∈ E′,
0, l /∈E′,

l ∈ E. (30)

Note that a subgraph can be characterized by an indicator
vector, e, defined as

e = [el
]
, ∀l ∈ E.

An intermediate node (a node which is neither a source
nor a destination node) in optimum multicast subgraph
should act as a relay node, that is, only retransmit received
packets. Therefore, searching for optimum subgraphs can be
restricted to subgraphs with such property.

Theorem 1. A subgraph includes a path from source to each
destination, if and only if, constraints (31)–(33) are satisfied

∑

l∈O(S)

el > 0, (31)

∑

l∈O(i)

el = 0&
∑

l∈I(i)
el = 0

or
∑

l∈O(i)

el > 0&
∑

l∈I(i)
el > 0

∀i ∈ E − {S,d1,d2, . . . ,dn
}

,

(32)

∑

l∈I(di)
el > 0. (33)

Proof. Assume a subgraph includes a path from a node
to each destination, so it includes the source and one of
its outgoing links and constraint (31) is satisfied. If an
intermediate node included in the subgraph acts as a relay
node, at least one of its outgoing links and one of its
incoming links will be included in the subgraph. Otherwise,
none of its links will be included in the subgraph. In
both cases, constraint (32) is satisfied. The subgraph should
include all destinations and at least one incoming link of each
destination. Consequently, constraint (33) is also satisfied.
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Satisfying constraints (31)–(33) ensures that the sub-
graph includes a path from source to each destination. Since
the network has no cycles, if there is no path from source to
a destination, it should make a cycle with some relay nodes
and/or other destinations in order to satisfy constraint (31),
contradicting the definition of an acyclic network.

Constraints (31)–(33) can be interpreted as follows:
constraint (31) states that the source sends data packets to
network via at least one of its outgoing links. Condition
(32) states that intermediate nodes act as relay nodes and
retransmit received packets. Constraint (33) insures that all
destination nodes receive packets. Consequently, finding the
optimal multicast subgraph can be performed via searching
the set of subgraphs satisfying constraints (31)–(33). It
should be noted that the minimum-cost subgraph has a tree
structure corresponding to the minimum cost Steiner tree.
Since the optimum subgraph includes a path from source to
each destination, it comprises of a tree consisting of such
paths. This tree is sufficient for transmitting information
from source to receivers. Consequently, every other link
in the optimum subgraph is redundant. A subgraph with
minimum cost incurred is the optimal solution and can be
formulated as follows:

minimize
∑

l∈E
elbl,

subject to: hi(e) = 0 ∀i ∈ V,

(34)

where hi(e) is defined as

hs(e) =
⎧
⎪⎨
⎪⎩

0,
∑

l∈O(S)

el > 0,

1, Otherwise,

hi(e) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

(
∑

l∈O(i)

el = 0&
∑

l∈I(i)
el = 0

)

or

(
∑

l∈out(i)

el > 0&
∑

l∈In(i)

el > 0

)
,

1, Otherwise,

∀i ∈ E − {S,d1,d2, . . . ,dN
}

,

hdj (e) =
⎧
⎪⎨
⎪⎩

0,
∑

l∈in(dj )

el > 0,

1, Otherwise,
j = 1, 2, . . . ,N.

(35)

By using the PC theory, the above problem can be
solved as follows: a discrete probability distribution, qel , is
associated with each variable, el. Then the following problem
is solved:

minimize
qel

E

(
∑

l∈E
elbl +

∑

i∈E
ξihi(e)

)
− T

∑

i∈V
S
(
qel
)

l ∈ E .

(36)

Assume the problem of multicasting data at an achievable
rate, r0, with minimum cost incurred. Based on the earlier
discussion, in order to multicast data at rate r0, it suffices

to construct a single Steiner tree with link capacities greater
than or equal to r0. This problem can be formulated as
follows:

minimize
∑

l∈E
gl(p),

subject to: hi(e) = 0, ∀i ∈ V ,

r0el ≤ cl(p), ∀l ∈ E,

0 ≤ pl ≤ pl,max, ∀l ∈ E,
∑

l∈O(n)

pl ≤ Pn,max, ∀n ∈ V.

(37)

Using PC, the above problem can be rewritten as follows:

minimize
qel ,qpl

E

(
∑

l∈E
gl
(
pl
)

+
∑

i∈V
ξihi(e) +

∑

l∈E
λlr0el

−
∑

l∈E
λlcl +

∑

n∈V
νn

(
∑

l∈O(n)

pl − Pn,max

))

− T
∑

l∈E
S
(
qel
)− T

∑

l∈E
S
(
qpl
)
.

(38)

The Lagrange multipliers are then updated according to
(A.9):

ξ(t+1)
i = [ξ(t)

i + ηE
(
hi(e)

)]+ ∀i ∈ V ,

ν(t+1)
n =

[
ν(t)
n + ηE

(
∑

l∈O(n)

pl − Pn,max

)]+

∀n ∈ V ,

λ(t+1)
l = [λ(t)

l + ηE
(
r0el − cl

)]+ ∀l ∈ E.
(39)

The minimization problem in (38) can then be decom-
posed into the following subproblems in network and
physical layers, respectively, as follows:

minimize
qel

E

(
∑

i∈V
ξihi(e) +

∑

l∈E
λlr0el

)
− T

∑

l∈E
S
(
qel
)
, ∀l ∈ E,

(40)

minimize
qpl

E

(
∑

l∈E
gl
(
pl
)−

∑

l∈E
λlcl +

∑

n∈V
νn

(
∑

l∈O(n)

pl − Pn,max

))

− T
∑

l∈E
S
(
qpl
)
, ∀l ∈ E.

(41)

Comparing (40) with (36), it can be realized that the net-
work layer problem corresponds to finding minimum-cost
multicast subgraph (i.e., Steiner tree) with link costs equal to
λlr0. The network problem can in turn be decomposed into
the following single-variable subproblems:

minimize
qel

E
(
λlr0el+ξhead(l)hhead(l)(e)+ξtail(l)htail(l)(e)

)−TS(qel
)
.

(42)
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It should be noted that link l, corresponding to el, is in
connection with exactly two nodes, the node whose link exits
from it (head (l)) and the node whose link enters it (tail (l)).
Therefore, only htail (l) and hhead (l) will be functions of el and
should be considered in (42). The physical layer problem can
then be decomposed as follows:

minimize
qpl

E

(
gl
(
pl
)

+ plνhead(l) −
∑

l∈E
λlcl

)
− TS

(
qpl
)
,

(43)

and qel ’s and qpl ’s are updated according to (A.7), where G is
replaced by G5 and G6 as follows:

G5 = λlr0el + ξhead (l)hhead (l)(e) + ξtail (l)htail (l)(e),

G6 = gl(pl) + plνhead (l) −
∑

l∈E
λlcl.

(44)

The probability distributions associated with indica-
tor variables and link powers can be updated in a dis-
tributed fashion, at network and physical layers, respectively.
Updating qel ’s requires computing E(el), E(hhead (l)(e)), and
E(htail (l)(e)). E(hhead (l)(e)) and E(htail (l)(e)) can be computed
by using probability distribution of indicator variables
associated with links connected to nodes head (l) and tail (l),
respectively. Each node can update its outgoing links by
exchanging links probability distributions with its neighbors.
Lagrange multipliers can also be updated at each link l (more
precisely at node this link originates from), using qel and
qpl . Hence a distributed algorithm can be designed and the
proposed approach can be extended to find the maximum
net utility function:

maximize U(r)−
∑

l∈E
gl(p),

subject to: hi(e) = 0, ∀i ∈ V ,

rel ≤ cl(p), ∀l ∈ E,

0 ≤ pl ≤ pl,max, ∀l ∈ E,
∑

l∈O(n)

pl ≤ Pn,max, ∀n ∈ V.

(45)

It can easily be shown that each subproblem at network
layer is given by

minimize
qr ,qel

E

{
−U(r) +

∑

l∈E
rλlel +

∑

i∈V
ξihi(e)

}

− T
∑

l∈E
S
(
qel
)
.

(46)

It should be noted that the subproblems in physical layer
are also of the form given in (41). However, in this case
since variable r couples the subproblems, the network layer
problem cannot be decomposed in a way similar to (40).

5.2. General networks

In this part, we propose a method that can be applied in
an arbitrary (cyclic or acyclic) network, however, at a higher

complexity cost. The s− di binary flow with rate r is defined
as a length-|E| vector fi satisfying the flow constraint:

∑

l∈O(n)

fi,l −
∑

l∈I(n)

fi,l =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

r, n = s,

0, ∀n ∈ V − {s,di
}

−r, n = di,

Δ= Is,di(r),

(47)

where each component of fi, fi,l takes its value from the
set {0, 1}. Note that, by this definition, the s − di binary
flow with unit value corresponds to a path from source
to ith destination. A set of N binary flows from source to
destinations constructs a multicast subgraph, since it ensures
existence of a path between source and each destination.
Therefore, the link l of network graph (G) is included in this
multicast graph (i.e., el = 1) if it is included in at least one
path from a source node to a destination (or equivalently:
∨N

i=1 fi,l = 1, where ∨ denotes logical or). Consequently, we
define el as

el =
N∨

i=1

fi,l . (48)

The optimum graph can be found by exploring all
subgraphs constructed in this way. This problem can be
formulated as

minimize
∑

l∈E
elbl,

subject to:
∑

l∈O(n)

fi,l −
∑

l∈I(n)

fi,l = Is,di(1), i = 1, 2, . . . ,N ,

hj(e) = 0, j ∈ V ,
(49)

where hj(e) is defined as before. A probability distribution
is associated with each variable fi,l (rather than el) and q fi,l .
Then by solving the following problem:

minimize E
qfi,l

{
∑

l∈E
elbl+

N∑

i=1

∑

n∈V
μi,n

(
∑

l∈O(n)

fi,l−
∑

l∈I(n)

fi,l−Is,di(1)

)

+
N∑

i=1

λici(e)

}
−T

N∑

i=1

∑

l∈E
S
(
q fi,l

)
, i=1, . . . ,N , l∈E,

(50)

and based on discussion presented in Section 5.1, the mini-
mum cost multicast problem at rate r0 can be formulated as

minimize
∑

l∈E
gl(p),

subject to:
∑

l∈O(n)

fi,l −
∑

l∈I(n)

fi,l = Is,di(1),

hi(e) = 0, ∀i ∈ V ,

r0el ≤ cl(p), ∀l ∈ E,

0 ≤ pl ≤ pl,max, ∀l ∈ E,
∑

l∈O(n)

pl ≤ Pn,max, ∀n ∈ V.

(51)
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The associated PC based problem is then given by

minimize
q fl

,qpl
E

{
∑

l∈E
gl(pl) +

∑

i∈V
ξihi(e) +

∑

l∈E
λlr0el

−
∑

l∈E
λlcl +

∑

n∈V
νn

(
∑

l∈O(n)

pl − Pn,max

)

+
N∑

i=1

∑

n∈V
μi,n

(
∑

l∈O(n)

fi,l −
∑

l∈I(n)

fi,l − Is,di(1)

)}

− T
∑

l∈E
S
(
qel
)− T

∑

l∈E
S
(
qpl
)
.

(52)

Lagrange multipliers μi,n can be updated as follows:

μ(t+1)
i,n =

[
μ(t)
i,n + ηE

(
∑

l∈o(n)

fi,l −
∑

l∈I(n)

fi,l

)]+

, (53)

where Lagrange multipliers ξi, λi, νn can be updated as before.
Finally, the above problem can be decomposed into

subproblems (54) and (40):

minimize
q fi,l

E
{
fi,l
(
μi,head (l) − μi, tail (l)

)
+ r0λlel

+ ξhead (l)hhead (l)(e) + ξtail (l)htail (l)(e)
}

− TS
(
q fi,l

)
,

(54)

where q fi,l ’s can be updated based on the above equations
and qpl ’s are updated as before. In this way, a distributed
algorithm can be designed in a similar way as the algorithm
presented earlier.

Based on the above discussions, the difference between
the proposed method and the distributed algorithm pre-
sented in [14] becomes more evident. In fact, in [14] a link is
assumed to be either enabled, if the received power exceeds
a threshold value and data can be transferred via this link
at a desired rate, or disabled, if the received power does
not reach the threshold level. However, our approach takes
both link capacity and interference into account, reflecting
a more realistic cooperation between different nodes (in
physical and network layers) in order to achieve the desired
throughput.

6. SIMULATION RESULTS

Consider the network represented in Figure 1, as an example.
The source node (S) multicasts data to receivers d1 and d2 via
the network. The goal is to achieve optimal throughput in
the range [0, 2]. The utility function is assumed to be equal
to r2 (which is a not a concave but monotonic function of
r). We define net-utility as r2 − ∑l∈E0.001∗pl (therefore,
the main emphasis will be on achieving maximum rate
rather than minimizing total consumed power). Each link
is assumed to select its transmit power from a discrete set
of values {0, 1, 2, . . . , 5} and each node has a power budget

1 2

3

4 5

67

8 9

s

d1 d2

Figure 1: Network topology.
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Figure 2: The flow and capacity of links 1 and 2.

equal to 10. fl and ei,l are also assumed to take values from
the set {0, .2, .4, . . . , 2}. Link gains, interference gains, and
noise variances are assumed to be equal to 1, 0.05 and 0.1,
respectively. Also, we assume that achievable rate of each link
is given by cl(p) = log(1 + SINRl). Figures 2, 3, 4, 5 show the
flow and capacity associated with each link in this

scenario. Due to the symmetric structure of the network,
some links have the same link flow and capacity. After 2000
iterations, the optimal multicast throughput is achieved.
Figure 6 shows conceptual flows and flows (e1,l, e2,l, fl) of
the links, where e1,l and e2,l satisfy flow conservation and
link capacity constraints and also the multicast rate of 2
is achieved. This multicast rate is feasible since all the
link flows are supported by the physical layer (i.e., each
link has a capacity greater than its flow). Link capac-
ities and link power vectors are consequently given by
[1.35,1.35,1.12,0.84,0.84,1.12,1.35, 1.35, 1.35] and [4, 4, 3, 2,
2, 3, 4, 4, 4], respectively.
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Figure 3: The flow and capacity of links 3 and 6.
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Figure 4: The flow and capacity of links 4 and 5.

It should be noted that if the utility function is assumed
to be given by log(1 + r) rather than r2, we can apply the
method proposed in [13] (i.e., underestimate link capacity by
log(SINRl)) and use logarithmic transformation. However,
the maximum multicast throughput in this case would only
reach the value of 1.54. This is due to the fact that as a
result of the relatively high interference between links, such
underestimation will not lead to the optimal solution.

As an example of minimum cost multicast, consider
the case of multicasting data based on single Steiner tree
at rate r0 = 1.9 with minimum total link power. It can
be verified that the optimal solution is achieved when
link power vector is equal to [4, 4, 4, 0, 0, 4, 0, 0, 0] and
link capacity vector is given by [1.9, 1.9, 1.9, 0, 0, 1.9, 0, 0, 0].

2000150010005000

Iteration

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
at

e

Link flow
Link capacity

Figure 5: The flow and capacity of links 7, 8, and 9.
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(0.4, 0.8, 0.8) (0.8, 0.4, 0.8)

(0.8, 0, 0.8) (0, 0.8, 0.8)

(1.2, 1.2, 1.2)

(1.2, 0, 1.2) (0, 1.2, 1.2)

s

d1 d2

Figure 6: (ei,l , e2,l, fl) of each link at iteration 2000.

Figure 7 shows the optimum Steiner tree which can be
shown by indicator vector e = [1, 1, 1, 0, 0, 1, 0, 0, 0]. As
shown in Figures 8 and 9, the proposed method converges
to the optimum value where each link flow is equal to
r0el. These figures show that such multicast rate is feasible
since all links flow are supported by the physical layer. Also,
Figures 10 and 11 show that optimum link powers are
also achieved. Considering the problem of minium power
multicast at rate 2, simulation results show that rate 2
can be achieved by a total power of 14. The associated
parameter values are then given by p = [2, 2, 1, 1, 1, 1, 2, 2, 2],
f = [1.2, 1.2, 0.8, 0.8, 0.8, 0.8, 1.2, 1.2, 1.2], e1 = [1.2, 0.8, 0.8,
0.4, 0.8, 0, 1.2, 1.2, 0], e2 = [0.8, 1.2, 0, 0.8, 0.4, 0.8, 0, 1.2, 1.2],
and c = [1.35, 1.35, 0.84, 0.84, 0.84, 0.84, 1.35, 1.35, 1.35].

Therefore, as expected, by using network coding, we can
multicast at a higher rate and with less consumed power
in comparison with single Steiner tree routing. Finally, it is
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s

d1 d2

Figure 7: Steiner tree corresponding to indicator vector e =
[1, 1, 1, 0, 0, 1, 0, 0, 0].
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Figure 8: The flow and capacity of links 1,2,3, and 6.

important to note that while we have considered the network
presented in Figure 1 in our simulations, as presented in
earlier sections, our proposed algorithms are quite general
and can be applied to any network with arbitrary topology.
Since in problem formulation the network is assumed to be
quite arbitrary, our PC-based algorithm converges to at least
a suboptimum solution, corresponding to a local minimum
cost.

7. CONCLUSIONS

In this paper, the problem of finding an optimal multicast
solution in multihop wireless networks with interference
has been addressed. Using the PC method, the problem
has been turned into a convex optimization problem over
probability distributions. Consequently, it was shown that
the new problem can be decomposed into two subprob-
lems at network and physical layers and a corresponding
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Figure 9: The flow and capacity of links 4, 5, 7, 8, and 9.
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Figure 10: Power of links 1, 2, 3, and 6.
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Figure 11: Power of links 4, 5, 7, 8, and 9.
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cross-layer distributed approach to solve the problem has
been proposed. Also, distributed cross-layer algorithms for
multicommodity flow-based routing and single Steiner tree
routing have been proposed.

As expected, the network coding-based solution per-
forms better than the solution based on routing.

APPENDIX

PROBABILITY COLLECTIVES (PCS)
OPTIMIZATION SCHEME

Consider the optimization problem, minxG(x), where each
component of x, xi is a discrete scalar variable assumed to
take a finite number of possible values |Xi|. A continuous
variable with a finite domain can also be approximated with
a variable with a finite number of values. In PC method, each
variable is considered as an agent [24–26] where at each step,
each agent updates its probability distribution according to
the maximum entropy (Maxent) principle and independently
from other agents [27]. Based on this approach, given the
prior knowledge of the utility function, the goal is to find the
probability distribution that is consistent with the a priori
knowledge and also attains the maximum entropy. We will
denote the entropy by

S
(
qi
) = −

∑

xi∈Xi

qi
(
xi
)

ln qi
(
xi
)
, (A.1)

where qi denotes the probability distribution of agent i and
qi(xi) is the probability that agent i takes the value xi. Since
agents are assumed to be independent, the joint distribution
q of the agents will be of the form:

q(x) =
∏

i

qi
(
xi
)
, (A.2)

and consequently,

S(q) =
∑

i

S
(
qi
)
. (A.3)

Using the Maxent principle, the original optimization
problem can then be converted into the following optimiza-
tion problem over the probability distribution [25]:

minimize l(q,T) = E(G)− TS(q),

subject to:
∑

xi

qi(xi) = 1, qi
(
xi
) ≥ 0, ∀xi, (A.4)

where l(q,T) is the Maxent Lagrangian, T is a positive
Lagrange multiplier, and

E(G) =
∑

x

G(x)
∏

i

qi
(
xi
)
. (A.5)

Each agent is aware of the previous probability distribu-
tion of other nodes and updates its probability distribution
as the solution of following convex optimization problem:

q∗i = arg{minimize
qi

E[G]− TS(q)}

= arg

{
minimize

qi

∑
qi
(
xi
)
E
[
G | xi

]

− T
∑

xi

qi(xi) ln
[
qi(xi)

]
}

,

subject to:
∑

xi

qi
(
xi
) = 1, qi

(
xi
) ≥ 0, ∀xi,

(A.6)

where E[G | xi] = ∑
G(x)

∏
j /=iq j(xj). Using Newton

Updating, the following updating rule can be obtained [24]:

q(t+1)
i ( j) = q(t)

i ( j)− αq(t)
i ( j)

×
{
E
(
G | xi = j

)− E(G)
T

+ S
(
q(t)
i

)
+ ln

[
q(t)
i

]}
,

∀ j ∈ Xi ,
(A.7)

where α and t, respectively, denote the step size and the
iteration number. As the parameter T is gradually decreased,
and in the limit when T→0, the set of probability distri-
butions that simultaneously minimize Maxent Lagrangian
will become the same as the set of delta functions at
the local minima of the objective function G [24, 25].
Updating can be performed in parallel for different agents,
since calculating expectations in (A.7) requires previous
(step) probability distributions. Therefore, by exchanging
previous probability distributions, each agent can update its
probability distributions, simultaneously.

Other constraints can also be included by augmenting
the objective function with Lagrange multipliers λi and the
constraint functions Ci(x):

G(x) −→ G(x) +
∑

i

λiCi(x), (A.8)

where ci(x) is a nonequality constraint of the form: Ci(x) ≤ 0
[28]. The updating rule for Lagrange multipliers is obtained
by taking the derivative of the augmented Lagrangian with
respect to each Lagrange multiplier:

λ(t+1)
i =

[
λ(t)
i + ηE

[
Ci(x)

]]+
(A.9)

where [·]+ = max{·, 0} and η is a positive step size.
Consequently, the minimizer of (A.4) when the function G
is augmented with Lagrange multipliers λi corresponds to at
least a local minimum of the original objective function G
subject to the same constraints [26, 29].
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