Hindawi Publishing Corporation

EURASIP Journal on Wireless Communications and Networking
Volume 2008, Article ID 720852, 10 pages
d0i:10.1155/2008/720852

Research Article

A Stabilizing Algorithm for Clustering of Line Networks

Mehmet Hakan Karaata

Department of Computer Engineering, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

Correspondence should be addressed to Mehmet Hakan Karaata, karaata@eng.kuniv.edu.kw

Received 27 March 2007; Accepted 25 October 2007

Recommended by Bhaskar Krishnamachari

We present a stabilizing algorithm for finding clustering of path (line) networks on a distributed model of computation. Clustering
is defined as covering of nodes of a network by subpaths (sublines) such that the intersection of any two subpaths (sublines) is at
most a single node and the difference between the sizes of the largest and the smallest clusters is minimal. The proposed algorithm
evenly partitions the network into nearly the same size clusters and places resources and services for each cluster at its center
to minimize the cost of sharing resources and using the services within the cluster. Due to being stabilizing, the algorithm can
withstand transient faults and does not require initialization. We expect that this stabilizing algorithm will shed light on stabilizing
solutions to the problem for other topologies such as grids, hypercubes, and so on.

Copyright © 2008 Mehmet Hakan Karaata. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION

Path clustering is defined as covering of nodes of a path (line)
network by subpaths such that the difference between the
sizes of the largest subpath and the smallest subpath is min-
imal, and the intersection of any two subpaths is at most a
single node. Partitioning of computer networks into clusters
is a fundamental problem with many applications where each
cluster is a disjoint subset of the nodes and the links of the
network that share the usage of a set of resources and/or ser-
vices. The resources and the services distributed to clusters
may include replicas, databases, tables such as routing tables,
and name, mail, web servers, and so on. The distribution of
the resources and/or services to clusters reduces the access
time, the communication costs, allows the customization of
the services provided within each cluster, and eliminates bot-
tlenecks in a distributed system. For instance, the clustering
problem is used to model the placement of emergency facili-
ties such as fire stations or hospitals where the aim is to have
a minimum guaranteed response time between a client and
its facility center.

The problem of clustering is closely related to the graph
theoretic problem of p-center and p-median problems, also
known as the Min-Max multicenter and Min-Sum multi-
center problems, respectively. The problems of finding a p-
center of a graph was originated by Hakimi [1-3] and are
discussed in a number of papers [4-10]. Although the prob-

lem is known to be np-complete for general graphs [1], there
are a number of sequential algorithms [11-15] for cluster-
ing of trees which are generalizations of paths. In [16], Wang
proposes a parallel algorithm for p-centers and r-dominating
sets of tree networks.

Stabilizing clustering algorithms for ring and tree net-
works are available in the literature [17, 18]. In [17], Karaata
presents a simple self stabilizing algorithm for the p-centers
and r-dominating sets of ring networks. The self stabiliz-
ing algorithm of Karaata is capable of withstanding transient
faults and changes in the size of the ring network. The prob-
lem of ring clustering is less challenging than the problem of
path clustering. This is due to the fact that a ring is a regular
topology where each process has a right and a left neighbor
allowing a relatively simple scheme to be employed, whereas
the two endpoints of a path require a special treatment. A
stabilizing tree clustering algorithm is presented in [18]. Al-
though this algorithm can be used to obtain clustering of
paths, the relative simplicity of the proposed algorithm due
to being specially tailored for path networks makes it more
extensible to other topologies such as grid, torus, and hy-
percube networks. Clustering of grid, torus, and hypercube
networks is highly desirable for sensor and mobile ad hoc
networks.

To the best of our knowledge, no distributed algorithm
for path clustering is available in the literature. Although
the sequential solution to the problem is relatively easy for

2 EURASIP Journal on Wireless Communications and Networking

a static topology where faults do not exist, the challenge
lies in achieving it through local actions without global
knowledge in a distributed environment, and in making it
resilient to both transient failures and topology changes in
the form of addition and/or removal of edges and vertices.
We view a fault that perturbs the state of the system but not
the program as a transient failure.

In this paper, we present a simple stabilizing distributed
algorithm for path clustering. The proposed algorithm en-
sures that cluster sizes are ascending from left to right, and
the difference between the smallest cluster size and the largest
cluster size is at most one in the path network. The proposed
solution to the clustering problem for paths also constitutes
a solution to the p-center and p-median problems for paths.
A stabilizing system guarantees that regardless of the current
configuration, the system reaches a legal state in a bounded
number of steps and the system state remains legal thereafter.
Due to being stabilized, the proposed algorithm can with-
stand transient failures and can deal with topology changes
in a transparent manner.

The paper is organized as follows. Section 2 contains ad-
ditional motivations, required notations, and the compu-
tational model. In Section 3, we present the basis of the
proposed algorithm. Section 4 presents the stabilizing algo-
rithm. In Section 5, we provide a correctness proof of the
proposed algorithm, a proof of the time complexity bound,
and a proof of stabilization of the algorithm. We conclude the
paper in Section 6 with some final remarks.

2. PRELIMINARIES
2.1. Motivation

Ad hoc mobile wireless networks consist of a set of identical
nodes that move freely and independently, and communi-
cate with other nodes via wireless links. Such networks may
be logically represented as a set of clusters by grouping to-
gether nodes that are in close proximity with one another.
Using a distributed clustering algorithm, specific nodes are
elected to be clusterheads. Consecutively, all nodes within the
transmission range of a clusterhead are assigned to the same
cluster allowing all nodes in a cluster to communicate with
the clusterhead and (possibly) with each other [19, 20]. Clus-
terheads form a virtual backbone and may be used to route
packets for nodes in their clusters [21]. In such networks, the
aggregation of nodes into clusters each of which is controlled
by a clusterhead provides a convenient framework for the
development of important features such as code separation
(among clusters), channel access, routing, and bandwidth al-
location [19, 22].

In sensor networks, scalability is a major issue since they
are expected to operate with up to millions of nodes. This has
implications particularly with energy which ideally should
not be wasted on sending data to base stations that are po-
tentially far away. Energy waste can be prevented by separat-
ing the sensor networks into clusters and nominating nodes
that carry out aggregation and forward the data to the base
station [23].

In traditional networks, when a data object is accessed
from multiple locations in a network, it is often advantageous
to replicate the object and disperse the replicas through-
out the network [24, 25]. Potential benefits of data repli-
cation include increased availability of data, decreased ac-
cess time, and decreased communications traffic cost. As a
result, distributed algorithms for finding clustering of net-
works are extremely useful. These potential benefits can be
realized when the clustering parameters, such as the num-
ber and the relative sizes of the clusters, and the placement of
the resources and/or services within each cluster are carefully
determined.

The key parameter influencing the benefits of the cluster-
ing is the relative sizes of the clusters. Observe that if some
clusters are relatively small whereas some are relatively large
implying that the resources and/or services concentrate in a
section of the network, they cannot be utilized as desired and
the utilization of the resources and/or services in a fair man-
ner is reduced. Therefore, the cluster sizes should be approx-
imately the same. In addition, in each cluster the resources
and/or services should be located at some particular loca-
tions (nodes) such as the center of the cluster, a location that
minimizes the maximum distance to this location in the clus-
ter. Clearly, these choices decrease the access time and the
communications traffic cost to the services and resources by
minimizing the maximum distance from a node to its closest
facility center.

This work is primarily concerned with the placement of
resources and/or services in a distributed system. The other
aspects of management of resources such as maintaining the
consistency of replicas, and the distribution of databases, ta-
bles, and services are outside the scope of this work.

In traditional networks, a nonfault tolerant path cluster-
ing can be achieved in linear time by collecting the required
topology information at a predefined process and comput-
ing the path clustering at this process. To make such a pro-
tocol fault tolerant, this process has to be repeated at certain
time intervals. Unlike traditional networks, clustering can-
not readily be performed in this manner in sensor networks
due to power and memory limitations. This establishes the
viability of the less efficient stabilizing solutions.

Path clustering is an interesting problem since it estab-
lishes the basis of solutions to clustering of other topologies
such as mesh, torus, hypercube, and star networks. A dis-
cussion on how the proposed solution can be used to solve
clustering problems for other topologies is out of the scope
of this paper.

2.2. Notation

In a distributed system, the ideal location for the placement
of resources and/or services within each cluster is often a
center (or a median) of the cluster [2, 3]. For a simple con-
nected graph representing a cluster, the eccentricity of a ver-
tex is defined as the largest distance from the vertex to any
vertex in the graph, then a vertex with minimum eccentric-
ity is called a center of the cluster. We call a center or a me-
dian of each cluster where the resources and/or services are
placed as a clusterhead. Similar to a token or a mobile agent,

Mehmet Hakan Karaata

clusterhead is a property of nodes such that this property can
be transferred from a node to another and a node may pos-
sess at most one clusterhead. Each node in G containing a
clusterhead is called as a clusterhead node, or simply a cluster-
head. Similarly, a node without a clusterhead will be referred
to as a nonclusterhead node. The property of being a cluster-
head can be transferred by a clusterhead move from a node
that possesses it to a neighboring node that does not pos-
sess the property. A clusterhead move by clusterhead i corre-
sponds to the transfer of the clusterhead contained in process
i to a neighboring process.

Consider a connected graph G = (V, E) representing the
network of computation, where V is the set of n nodes, and
E is the set of e edges. Let the shortest path between nodes
i,j € V be denoted by d(i, j), referred to as the distance
between nodes i, j € V. We assume that an arbitrary set of
nodes in G contain p clusterheads. Let C < V be a set of clus-
terheads such that 0 < |C| < | V. Two clusterheads i, j € C
connected by a path not containing another clusterhead are
referred to as adjacent or neighboring clusterhead nodes. De-
fine cluster C;, where i € C, as the set of connected nodes
that are closer to clusterhead i € C than any other cluster-
head in C, that is, for node j € V, j € C; if and only if i is
a clusterhead at a minimal distance from node j. (Observe
that based on the above definition, if a node is at the same
distance from two distinct clusterheads, then it is in two clus-
ters.) The size of cluster C; is the maximum distance between
processes j, k € C;. It is easy to see that set of clusterheads
C defines a clustering of G. The two clusters C; and C; are
referred to as the neighboring clusters if and only if i and j are
neighboring clusterheads. Observe that p clusterheads in the
system, where 0 < p < n, partition the graph into p clusters
of varying sizes such that each cluster has a clusterhead at its
centroid.

The p-clustering problem, or simply the clustering prob-
lem, is defined for path networks as starting from an arbi-
trary initial clustering defined by p clusterheads, or after a
change in the number of clusters or in the topology of the
path, covering of nodes in G by subpaths such that the in-
tersection of any two subpaths is at most a single node and
the difference between the size of the largest and the smallest
cluster is minimal. Therefore, the clear objective of cluster-
ing is to ensure that all the clusters are nearly the same size.
Observe that when a network is partitioned into p clusters of
nearly equal sizes, clusterheads are evenly distributed in the
network and vice versa.

The p-eccentricity of node i € V is defined as the dis-
tance of i to the nearest clusterhead. Note that the term ec-
centricity is related to center finding problem, whereas the
term p-eccentricity is related to p-center finding problem.
Let the radius, or p-radius, of cluster C;, i € C, be the largest
p-eccentricity of nodes in cluster C;.

We illustrate the above ideas using the following illustra-
tive example. A path on 9 nodes is given in Figure 1. In the
figure, the p-eccentricity values, that is, the distance of node
i to the closest clusterhead, are given by the nodes. Although
the selection is not unique, since the maximum p-eccentricity
is minimal, nodes {2, 5, 8} are identified as the 3-clustering of
the path.

2.3. Computational model

Let G = (V, E) be an arbitrary path with node set V and edge
set E, where | V| = n. We assume that each node i of G with a
unique id i is a process. The computational model used is
an asynchronous network of processes where each process
maintains a set of local variables whose values can be up-
dated only by the process. Moreover, corresponding to each
edge of the graph, one bidirectional, noninterfering commu-
nication link is assumed. A communication link between a
pair of processes i and j consists of two FIFO channels: one
for transmitting messages form 7 to j and one for transmit-
ting messages from j to i. We assume that the proposed al-
gorithm always starts with the processes at the beginning of
their programs (i.e., each program starts executing the first
line of its program when the system is started) and commu-
nication links are empty. As a result, the proposed algorithm
is not self stabilizing in the traditional sense of being able
to tolerate an arbitrary transient failure and only supports a
weaker property of self stabilization. We later relax these as-
sumptions and present a mechanism to make the algorithm
self stabilizing in the traditional sense. No common or global
memory is shared by the nodal processors for interprocessor
communication. Instead the interprocess communication is
done by exchanging messages. It is assumed that the network
is sufficiently reliable such that there is no process or chan-
nel failure during the transmission. We consider a very sim-
ple protocol for message communication, where if process A
sends a message to a neighbor process B, then the message
gets appended at the end of the input buffer of B and this
process takes a finite but arbitrary time (due to the transmis-
sion delay). Two or more messages arriving simultaneously at
an input buffer are ordered arbitrarily and appended to the
buffer. A process receives a message by removing it from the
corresponding buffer and waits for a message if the buffer is
empty. Therefore, the receive primitives are of blocking type,
whereas the sent primitives are of nonblocking type.

We assume a simple message format for interprocess
communication. A message is a triple and is expressed as

(type, id, parameter(s)), (1)

where type may be DIST, BACK, or CHEAD and CCHEAD
(the functions of which are explained later), id is the process
id of the sender or the recipient of the message; the meaning
of parameter fields is self explanatory. The parameter field of
a message depends on its type field.

We say that a clusterhead is enabled if the conditions are
satisfied for it to move to a neighboring process, disabled,
otherwise. We assume the weak fairness of processes, that is, if
an enabled clusterhead remains enabled, it eventually makes
a move. We also assume that each clusterhead takes the deci-
sion to move mutually exclusively among its neighbors, that
is, while a clusterhead is in the process of deciding whether to
move or not, no neighboring clusterhead can take such a de-
cision but can be involved in other activities. In addition, we
assume that each local computation is atomic and no tran-
sient fault will take place while a local computation is taking
place.

4 EURASIP Journal on Wireless Communications and Networking

Eccentricities 1 0 1 1 0 1 1 0 1

FiGURE 1: The 3-centers of a path on 9 nodes.

The state of a process is composed of the set of variables
at the process. The system state is the Cartesian product of
the states of the processes in the system. A state of the system
is an element of the state space. The system state before the
system is started is referred to as the initial state.

3. BASIS OF THE ALGORITHM

Prior to formally describing the SPC algorithm, we first
present the basis of the algorithm.

The stabilizing path clustering algorithm is based on the
following important observation. This is presented in the
form of the following lemma, whose proof is straightforward
and hence omitted.

Lemma 1. For any directed path G on n nodes, and any p <
n, there exists a p-clustering such that on each path from the
leftmost to the rightmost process, cluster sizes are ascending, and
the difference between the smallest cluster size and the largest
cluster size is at most one.

In the path, the arbitrary initial placement of p cluster-
heads in G decides the initial formation of the clusters. Start-
ing in such an initial state, each clusterhead moves so as to
reduce the size of the largest cluster in the network. Prior to
making a move, each clusterhead i finds its distance from its
left and right neighbors and the difference between the size
of the largest cluster and that of cluster i. Consecutively, the
clusterhead moves towards a neighboring clusterhead so as
to the cluster sizes are ascending from left to right and the
difference between the maximum and the minimum cluster
sizes is minimal.

These moves ensure that clusterheads move towards the
largest cluster to reduce its size without forming new clusters
with size larger than that of the largest cluster in the network.
In addition, variations between moves towards the right and
the left are introduced to ensure that the clusters are sorted
in the aforementioned manner.

The above concepts are illustrated with the help of an ex-
ample in Figure 1. In the example, a path on nine processes
is shown. In addition, clusterhead and nonclusterhead pro-
cesses after entering a stable state are shown. The path con-
tains three clusterhead processes, namely, 2, 5, 8.

If two neighboring clusterheads are allowed to make
moves simultaneously, then these moves may undo the ef-
fect of each other. Therefore, we assume that each cluster-
head moves mutually exclusively in its neighborhood. That
is, while a clusterhead moves, no neighbor of the cluster-
head can move simultaneously. Though it appears that this
is a strong assumption, the mutual exclusion requirement is
local with respect to the entire network and can be imple-
mented locally reducing the overhead. The mutual exclusion

algorithm ensuring mutually exclusive moves of neighboring
clusterheads can readily be adapted from [26], hence omit-
ted. Also observe that the problem is significantly harder (if
solvable) without this assumption. In addition, we ensure
that after a neighbor moves, the clusterhead has to recompute
its distance from its neighbors and then may move again.

To facilitate the description of the algorithm, we intro-
duce several internal functions (variables) that return the
current state of the process.

Dg, Dp: V—{0,...,n— 1} denote distances of process i from
the right and left neighboring clusterheads, and re-
ferred to as the Dg-value and Dy-value of process i,
respectively.

clusterhead: V— {true, false} denotes whether or not pro-
cess i contains a clusterhead referred to as the
clusterhead-value of i.

inc: V—{0,...,n} denotes the difference between Dg-value
of i and the Dg-value of the largest cluster in size to
the right of clusterhead i. If inc = 0 for clusterhead i,
then no clusterhead with a larger size exists to the right
of clusterhead i. Whereas if inc = k for clusterhead i,
then the difference between Dg-value of i and the Dg-
value of the largest cluster in size to the right of clus-
terhead i is k. The inc-value of process i is meaningful
only when cluster sizes are ascending from clusterhead
i to its right. Note that the inc-value of each process is
calculated through local interactions of processes.

For each clusterhead i, boundgr and bound; denote
whether or not clusterhead i is the rightmost and the left-
most clusterhead, respectively. In addition, r_enabledr de-
notes whether or not the right neighbor of clusterhead i is en-
abled to make a right move. Clusterhead i € C, where C = V
is the set of clusterheads, makes a right move when (Dg —
D; >1)V (Dr— Dy = 1A inc >1 A ~boundg A —bound;)
holds. In addition, clusterhead i € C makes a left move when
(DL —Dr >1) Vv (D — Dr =1 A r_enabledp A =boundp A
—bound;) holds. Eventually, it is guaranteed that the set of
clusterheads yields a clustering of G.

To facilitate the description of the predicate that holds
after the clusterhead moves terminate, we need the following
notation and definitions.

Let C = c1,¢,...,¢p, where p > 1, be an ordered set C
V of clusterheads in the system from left to right, where ¢;_;
is the left neighbor ¢; for 1 < i < p. Let D = dy,dy,...,d,
be the sequence of distances between clusterheads such that
dy denotes the distance of ¢; from the leftmost process, d,,
denotes the distance of ¢, from the rightmost process, and d;,
where 0 < i < p, denotes the distance between clusterheads c;
and c;y1, thatis, d; = d(c;, ciy1).

Mehmet Hakan Karaata

Now, we define predicate P as follows:

(di=2dyvd =2dy+1Vvd =2dy—1)
Adpy=2dyvdy 1 =2dy+1Vvdy | =2d,—1)
AJicjep((djmr =djvdj1 =dj - 1)

A Viscici(dr = di) AV j<icp(dp-1 = di))-(:
2

The first conjunction of predicate P describes the rela-
tionship between the distance of the left endpoint of the
line from the leftmost clusterhead and distance d; between
the leftmost clusterhead and its right neighboring cluster-
head. Similarly, the second conjunction describes the rela-
tionship between distance d, of the right endpoint of the
line from the rightmost clusterhead and the distance d,; be-
tween the rightmost clusterhead and its left neighboring clus-
terhead. The third conjunction describes the relationships of
distances between neighboring clusterheads such that these
distances between any two clusterheads (or a clusterhead and
an endpoint) differ at most by one and distances are ascend-
ing from left to right.

Notice that P is a predicate description of the system state
in terms of the distance between two neighboring cluster-
heads or a clusterhead and an endpoint of the line satisfying
the conditions mentioned in the statement of Lemma 1 thata
solution to the p-clustering problem satisfies. Recall that this
condition states that cluster sizes of processes are ascending
from left to right and cluster sizes between any two processes
differ by at most one.

When the above predicate is satisfied, the path clustering
is obtained by the algorithm. This is presented in the form of
the following lemma whose proof is omitted.

Lemma 2. If predicate P holds, C is a path clustering.

4. ALGORITHM

This section presents the stabilizing algorithm for clustering
of a path implementing the strategy described above.

We use the following notation: R,L denote right and
left neighbors of process i, respectively. jo denotes the other
neighbor of i. That is, if j is the left neighbor of i, jo denotes
the right; otherwise, it denoted the left neighbor of i. update,
updater, and update; denote atomic operations updating
the variables of clusterheads i, its right and left neighboring
clusterheads, respectively. In addition, r_enabledr denote the
right enabledness status of the right neighbor of clusterhead
i, that is, whether or not the right neighbor of clusterhead i is
enabled to make a right move. The implementations of these
are not given for the sake of brevity. However, it is easy to
see that these functions and predicates can be implemented
through a message exchange between clusterhead i and its
neighbors in mutual exclusion implemented by primitives
begin(mutex) and end(mutex) in the proposed algorithm.

The messages of the algorithm are described as follows.

DIST: two DIST messages are sent by process i to its right
and left neighbors to find process i’s distance from the
processes with clusterhead on its right and on its left.

BACK: when a clusterhead process receives a DIST message,
it sends a BACK message with a zero distance value in
the reverse direction. Until the BACK message reaches
a clusterhead process, each time it encounters a non-
clusterhead process, it increments its distance value.
Therefore, when the BACK message reaches a cluster-
head process, its distance value denotes the distance
from the clusterhead on the direction from where the
BACK message is received.

CHEAD: the CHEAD message is sent by a clusterhead pro-
cess i to a neighboring nonclusterhead process j to
transfer the clusterhead from process i to process j.

The stabilizing algorithm, called SPC algorithm, for find-
ing the clustering in a path is given in Algorithm 1. Notice
that the algorithm is uniform, that is, each process executes
the same algorithm.

5. CORRECTNESS

Now, we show that algorithm SPC is stabilizing.

Let PRE be a predicate defined over SYS, the set of global
states of the system. An algorithm ALG running on SYS is
said to be stabilizing with respect to PRE if it satisfies the fol-
lowing.

Closure: if a global state g satisfies PRE, then any global state
that is reachable from g using algorithm ALG also sat-
isfies PRE.

Convergence: starting from an arbitrary global state, the dis-
tributed system SYS is guaranteed to reach a global
state satisfying PRE in a finite number of steps of ALG.

Global states satisfying PRE are said to be stable. Simi-
larly, a global state that does not satisfy PRE is referred to
as an instable state. To show that an algorithm is stabiliz-
ing with respect to PRE, we need to show the satisfiability
of both closure and convergence conditions. In addition, to
show that an algorithm solves a certain problem, we need to
either prove partial correctness or show that through transi-
tions made by the algorithm among stable states the problem
is solved.

We now show that algorithm SPC is stabilizing by estab-
lishing the convergence and the closure properties.

Following lemmas establish the convergence of the algo-
rithm.

Lemma 3. If the clusterheads eventually stop moving, after the
clusterheads stop, predicate P (defined in Section 3) is satisfied.

Proof (contradiction). Assume the contrary, that is, no right
or left moves are enabled; however, P is false. Then, we know
that one Of(d] =2XdyV dl = 2Xdy+ 1), (dp—l =2 X
dp \4 dpfl =2 X dp — 1), or E|1<j<Pj((dj71 = dj \% djfl =
dj + 1) A for alllgiql’(dl = dl) A for alljgkpi(dp,l = dl)) is
false. Now, we consider each one of the above cases.

Case 1. (dy =2XdyVd; =2xdy+1)is false. Then, clearly,

dy #2xdyand dy # 2 X dy+ 1 hold. It is easy to see that ¢;
is enabled to make a move. This is a contradiction.

Case 2. (dp-1 =2xd, vdy, | =2xd,~1)is false. Then,
clearly, (d, 1 # 2xdp) and (d, 1 # 2xd,—1) hold. We know
that ¢, is enabled to make a move. This a contradiction.

EURASIP Journal on Wireless Communications and Networking

[Program for each clusterhead i € V|
while (clusterhead(7))

begin(mutex)

send(DIST, R);

send(DIST, L);

receive(BACK, R, Dy, incg, boundy);
receive(BACK, L, Dy, incy, bound;);

if (boundp)
Dy := Dp*2;
then : :
inc := 0;

if (DR > DL)

then {inc := incg + 1;

else if (Dr = Dy A incg)
else then {inc := incg;
do 1 else {inc := 0;
if (bound;)

then {DL := Dy %x2;

send(CHEAD, R);

then
clusterhead(i) := false;
if(DL —Dp>1)Vv (DL —Dp =

’ Upon receipt of a DIST message from j ‘
receive(DIST, j);

send(BACK, j, 0, inc, false);

[Program for each nonclusterhead process

’ Upon receipt of a DIST message from j ‘

receive(DIST, j);
if (j is not a boundary process)
then {send(DIST,jo);
else {send(BACK, j, 0, false, true);

’ Upon receipt of an BACK message from j ‘

receive(BACK, j, d, inc, bound);
send(BACK, jo, d + 1, inc, bound);

if (Dr — Dy >1) v (Dgr — Dy, =1 Ainc > 1 A =boundi A =bound;)

else send(CHEAD, L);
hen
clusterhead(i) := false;
update;
updateg;
updater;
lend (mutex)

’ Upon receipt of a CHEAD message from j ‘

receive(CHEAD, j);
clusterhead(i) := true;

1 A —r_enabledr A —boundgr A =bound;)

ieV]

ALGORITHM 1

Case 3. Ell<j<pj((dj—1 = dj\/dj—l = dj‘i‘l)/\fOI‘ alllskji(dl =
di) A forallj<icpi(d, 1 = d;)) is false. Then, we know that
either 31.j<pjIjarepk(dj1 = dj — 1 Adr1 = di — 1) or
31<]'<P(dj_1 * dj A (dj_1 < dj -1v dj—l > dj)) holds. If

Ell<j<PjE|j<k<Pk(dj—1 = d] —-1A dk—l = dk - 1) hOldS, since
no move (right or left) is enabled and 31« j3 jck<pk(dj 1 =
dj — 1 Adk_y = dr — 1) holds, we know that for clusterhead
¢j-1, Dr — D = 1 A incg holds and ¢; - is enabled to make

Mehmet Hakan Karaata

a right move. This is a contradiction. If 3,.j<,(d; 1 # d; A
(dj-1 <dj—1vdj_, >d;)) holds, since no action is enabled,
31<]‘<P(dj_1 * dj AN (dj—l < dj -1v dj_1 > d])) holds, ei-
ther ¢;_; is enabled to make a move. This is a contradiction.
Hence, the proof follows. O

We now show the partial correctness of the proposed al-
gorithm.

Lemma 4 (partial correctness). If the clusterheads eventually
stop moving, after the termination of the clusterhead moves, the
set of clusterhead processes C is a clustering of G , where p is the
number of clusterheads.

Proof. The proof immediately follows from Lemmas 2 and 3.
O

Now, we present the worst case time complexity or the
upper bound of the SPC algorithm. We first classify the
moves of the algorithm into two categories called initial
moves and noninitial moves. The initial moves are the ones
that are caused by arbitrary initialization and the noninitial
moves are the ones that are caused by other moves in the sys-
tem. We categorize each move by a clusterhead as an initial
move or as a noninitial move as follows.

Clusterhead move M, by clusterhead i is a noninitial
move if there exits a move M, by clusterhead j adjacent
to clusterhead i such that move M, happens before move
M., moves M, and M, are in the same direction, and move
My is not enabled to make a move in this direction prior to
move My, or |Dg.i — Dy.i| is increased. Otherwise, a move is
referred to as an initial move. We say that a move is enabled
if the conditions are satisfied for the move to take place.
Let M,, be the last such move. Move M, is referred to as the
cause of move M,.

An execution in a distributed system can be described
as a sequence of moves My, M,..., where M; for j > 0 is
a move made by a process in the system. Consider a cluster-
head move M, by an arbitrary process i. We identify a unique
clusterhead i of process i and a unique move M, where [< k,
by process j to be the “cause” of move M, defined as follows.

Define cause() for initial moves:

(i) cause(M,) = M, if M, is an initial clusterhead move.

Define cause() for noninitial moves:

(ii) cause(My) = M, if M, is a move such that move M,
happens before move M,, moves M, and M, are in the
same direction, and move M, is not enabled prior to
move M,,.

We now state several useful properties related to the func-
tion cause(). The first property is that distinct moves by a
process have distinct causes.

Proposition 1. If M, and M, are distinct moves by process i,
then

cause(M,) # cause(M,). (3)

Proposition 2. Let M, be a clusterhead move by clusterhead i.
If M, is not an initial move by clusterhead i, then the cluster-
head move cause(My,) is not made by clusterhead i.

The next property that we establish is that the cause rela-
tionship is “acyclic.” The following proposition follows from
the definition of cause.

Proposition 3. Let M, be a clusterhead move by clusterhead
i. If M is not an initial move by clusterhead i, then the move
cause(cause(M,)) is not made by clusterhead i.

Proposition 4. Each clusterhead i € C can make initial moves
only in one direction (right or left).

Proof. The proof immediately follows from the definition of
initial moves. 0

We now show the upper bound on the number of initial
moves.

Lemma 5. The total number of initial moves in the system is
at most .

Proof. By Proposition 4, we know that initial moves by a clus-
terhead can be in one direction. We also know that clus-
terhead i can make at most |d(i, j) — d(i, k)| initial moves,
where ig and i; denote the right and the left neighboring
clusterheads of clusterhead i, respectively. It is easy to see that
> ierld(i,ir) — d(i,ir)| < n. Hence, the proof follows. O

We know that each move is either an initial move or it
has a source which is an initial move such that this initial
move causes the move through a causal chain of noninitial
moves. The following lemmas show the upper bound on the
number of noninitial moves possible with the same initial
source move.

We need the following definitions to facilitate the follow-
ing proofs.

If a clusterhead move by clusterhead i is caused by a
neighboring clusterhead move, such a clusterhead move by
clusterhead i is referred to as a type I clusterhead move. Oth-
erwise, a clusterhead move is referred to as a type II cluster-
head move.

Observe that type I moves are caused by neighboring
clusterhead moves changing D and/or Dy, of i, whereas type
II moves are caused by the right neighbor changing its inc
variable.

Lemma 6. An initial right clusterhead move can be the source
of at most p — 1 right clusterhead moves.

Proof. We first show that a right clusterhead move by cluster-
head i € C can only be caused by a right clusterhead move
of type I by its right or left neighbor, or a right clusterhead
move of type II by a clusterhead to the right of clusterhead i.

We know that a right clusterhead is caused by another
move by changing either the distance variables Dy and Dg,
or the inc variable for clusterhead i.

We first consider those clusterhead moves that change
Dy and Dy of i. Observe that if D = Dy A inc > 1 hold
for clusterhead i, after a right clusterhead move by the left
neighbor of i, we have Dx — D = 1 A inc > 1 for i. Also
observe that if Dg = Dy holds for i and Dg > D; + 1 holds

8 EURASIP Journal on Wireless Communications and Networking

for the right neighbor j of i, after the right move by j, i is
enabled to make a right move. Therefore, i ’s right or left
neighbor’s right clusterhead move may cause a right move
of type I by clusterhead i.

Also observe that a left move by the right or the left neigh-
bor of i cannot cause a right move by a clusterhead by chang-
ing Dr — Dy, since Dg — Dy, is decreased by each such move.

Now, we consider those clusterhead moves that change
inc value of i possibly through other moves changing the inc
variables of clusterheads.

It is easy to see that a right move by clusterhead i can be
caused only when the inc variable of its right neighbor in-
creases when D — D = 1 A inc < 2 hold for clusterhead i.

The cause of such a move can be an initial move by a
clusterhead updating its inc variable to the right of clus-
terhead i. Otherwise, it is caused by a clusterhead move
by a clusterhead to the right of clusterhead i. Clearly, a left
move by a clusterhead to the right of clusterhead i cannot
be the cause of increasing the inc value of i. Then, it can
be caused by a right clusterhead move by a clusterhead to
the right of clusterhead i. It is easy to see that if clusterhead
iy is the right neighbor of i and clusterhead i, is the right
neighbor of ij, and so on, the Dy values for the sequence
of clusterhead 1i,i1,1%2,..., ik ix+1,ik+2 should be such that
Dp — 1,Dg, Dg,...,Dgr — 1,Dg + ¢, where ¢ > 1 and the inc
values for clusterheads i; through ik, has to be 0. Clearly, a
right clusterhead move by clusterhead ix., can be the cause
of a right clusterhead move by clusterhead i and there is
no other right move that can be the cause of such a move
by clusterhead i. We showed that a right clusterhead move
by clusterhead i can cause a right clusterhead move of type
I by a clusterhead to the left of clusterhead i (not the left
neighbor of clusterhead i).

It is easy to see that a type I right clusterhead move can-
not cause a type II clusterhead move through other type
I moves. In addition, from Proposition 3 we know that a
clusterhead move by clusterhead i caused by a clusterhead
move by a neighboring clusterhead j cannot in turn cause a
clusterhead move by clusterhead j. Furthermore, we know
that a clusterhead move cannot be the cause of another
clusterhead move by the same clusterhead by Proposition 2.
Therefore, a right clusterhead move can be the source of at
most p — 1 right clusterhead moves. Hence, the proof fol-
lows. O

Lemma 7. An initial left clusterhead move can be the source of
at most p — 1 left clusterhead moves.

Proof. We first show that a left clusterhead move by cluster-
head i € C can only be caused by a left clusterhead move of
type I by the left or a right neighbor of i, or a left clusterhead
move of type II to the right of clusterhead i. We now consider
these two cases.

Case 1. The move is caused by a type I move by a neighbor.
We know that such a clusterhead move by i can be trig-
gered by another clusterhead move by changing the distance
variables of i. Observe that if D; = Dy A —r_enabledy holds
for clusterhead i, after a left clusterhead move by the left
neighbor of i, we have D; — Dg = 1 A —r_enabledg holds

for i. Similarly, if D = Dg holds for clusterhead i, after a
left clusterhead move by the right neighbor of i, we may have
Dy — Dr = 1 A =r_enabledy for i. Therefore, i ’s left or right
neighbor’s left move can cause a left move by clusterhead i.

Since a right clusterhead move by a neighbor (right or
left) of i decreases D; — Dg, such a move does not cause a left
move of type I by clusterhead i.

In addition, by Proposition 2, we know that a move by
clusterhead i cannot cause a clusterhead move by i. There-
fore, a left move of type I by i can be caused by only a left
(but not right) move of only the right or left neighbors of i

Case 2. The move of type II by i can be caused by a cluster-
head move by a clusterhead to the right of clusterhead i.

We know that clusterhead i makes a type II left move
only when predicate r_enabledr changes from true to false.
We also know that this can only take place if the inc value of
the right neighbor j of i decreases.

Now, we consider those clusterhead moves that change
inc value of j possibly through other moves changing the inc
values of clusterheads.

It is easy to see that a right move by clusterhead j can
be caused only when the inc variable of its right neighbor
decreases when Dy —Dg = 1A inc = 2 holds for clusterhead j.
Observe that a change of inc value of clusterhead moves and
the changes of inc source of the clusterhead move by 7 can be
an initial move by a clusterhead updating its inc value to the
right of clusterhead j. This inc value change may trigger inc
value changes in the left direction eventually reducing inc of
j and triggering a left move by clusterhead i.

If the inc values are up-to-date to the right of clusterhead
i, then it can be shown that a left clusterhead move may be
the source of inc value changes propagating to the left and
causing a left clusterhead move.

It can readily be shown that a left move by clusterhead i
can cause a type II clusterhead move by its left neighbor k,
however, the move by k cannot in turn cause a left move of
type I by a clusterhead to its left. From the above discussion
and Propositions 2 and 3, we know that the causal relation-
ship is acyclic.

Since a left clusterhead move by i can be caused by a left
clusterhead move by one of the neighbors or a type II left
clusterhead move to the right of clusterhead i and the causal
relationship is acyclic, the proof follows. O

The following lemma establishes the termination of the
algorithm.

Lemma 8 (termination). Algorithm SPC terminates after
O(np) clusterhead moves.

Proof. It is easy to see that the proof follows from Lemmas 5,
6, and 7. O

As a consequence of Lemma 4 and Lemma 8, we now es-
tablish the total correctness of our algorithm.

Lemma 9 (total correctness). Algorithm SPC identifies clus-
tering of G after O(np) moves.

Lemma 10 (alternate proof of termination). Algorithm SPC
eventually terminates.

Mehmet Hakan Karaata

Proof. We know that no clusterhead can move to the left in-
finitely many times without making a right move. There-
fore, if the algorithm does not terminate, then we have at
least one clusterhead that makes infinitely many moves in
both directions (right and left). Let ¢; be a clusterhead that
moves in both directions infinitely many times. By Proposi-
tions 1 and 2, we know that a neighbor ¢; of ¢; also moves in
both directions infinitely many times. Without loss of gen-
erality, let ¢; be the right neighbor of clusterhead c;, that is,
Cj = C(i+1)mod,- By Proposition 3, we have that in order for
clusterhead C(i+1)mod, tO make infinitely many moves in both
directions, clusterhead C(i+2)mod, has to make infinitely many
moves in both directions. Then, it can be shown inductively
that ¢, also makes infinitely many moves in both directions.
This is a contradiction. Hence, the proof follows. O

By Lemmas 4 and 10, we know that predicate P is even-
tually satisfied establishing the convergence property. In ad-
dition, we know that eventually no taken is enabled by
Lemma 10. Therefore, the closure property is trivially sat-
isfied. Hence, algorithm SPC is stabilizing. From the above
discussion, Lemmas 4 and 9, we have the following lemma.

Lemma 11. Algorithm SPC is stabilizing and it identifies a
clustering of G after O(np) moves.

6. CONCLUSIONS

On a distributed or network model of computation, we have
presented a self stabilizing algorithm that identifies the p-
clusterings of a path. We expect that this distributed and self
stabilizing algorithm will shed light on distributed and self
stabilizing solutions to the problem for other topologies such
as grids, hypercubes, and so on. Solutions to the problem for
these topologies have a wide range of applications in paral-
lel, mobile, and distributed computing applications requir-
ing location management. In addition, clustering of sensor
networks yields a number of desirable properties.

We assumed that the proposed algorithm always starts
with the processes at the beginning of their programs, and
communication links are empty. This implicitly brings that
the only self stabilization provided by the algorithm is with
respect to the initial placement of the clusterheads. In addi-
tion, this might have some effect on the claims about dynam-
icity of the protocol, since dynamic changes need to be only
allowed at certain safe states of the algorithm.

The proposed algorithm is unable to cope with arbitrary
transient faults and topology changes primarily since a clus-
terhead may not receive the message it expects as a result
of a transient fault or a topology change and cannot pro-
ceed with the appropriate actions. This problem can be al-
leviated by employing a timeout mechanism for the received
primitive executed by the clusterhead nodes under appropri-
ate synchronization assumptions. That is, when a clusterhead
node does not receive all expected messages, it issues a time-
out and executes its program from its beginning. In addition,
this approach eliminates the need to have background pro-
cesses maintaining p clusterheads in the system and allows
the number of clusterheads to increase and decrease.

A slightly modified version of the proposed algorithm
can work for ring networks but not vice versa. Therefore,
the ring clustering algorithm can be viewed as a special case
of the path clustering algorithm. Furthermore, although the
ring clustering algorithm allows the ring size to change, it
does not allow a link to be broken. Whereas the proposed al-
gorithm allows the path to be split into subpaths and finds
the clustering of the subpaths.

ACKNOWLEDGMENTS

The author would like to thank the anonymous referees for
their suggestions and constructive comments on an earlier
version of the paper. Their suggestions have greatly enhanced
the readability of the paper.

REFERENCES

[1] O.Karivand S. L. Hakimi, “Algorithmic approach to network
location problems I: the p-centers,” SIAM Journal on Applied
Mathematics, vol. 37, no. 3, pp. 513-538, 1979.

[2] S. L. Hakimi, “Optimal distribution of switching centers in a
communication network and some related problems,” Opera-
tions Research, vol. 13, pp. 462—475, 1965.

[3] S.L.Hakimi, “Optimum locations of switching centers and the
absulate centers and medians of a graph,” Operation Research,
vol. 12, pp. 450-459, 1964.

[4] E.Korach, D. Rotem, and N. Santoro, “Distributed algorithms
for finding centers and medians in networks,” ACM Transac-
tions on Programming Languages and Systems, vol. 6, no. 3, pp.
380-401, 1984.

[5] P.M. Dearing and R. L. Francis, “A minimax location problem
on a network,” Transportation Science, vol. 8, no. 4, pp. 333—
343, 1974.

[6] G. Y. Handler, “Minimax network location theory and al-
gorithms,” Tech. Rep. 107, Flight Transportation Laboratory,
Massachussetts Institute of Technology, Cambridge, Mass,
USA, 1974.

[7] G.Y.Handler, “Minimax location of a facility in an undirected
tree graph,” Transportation Science, vol. 7, pp. 287-293, 1973.

[8] S. Halfin, “On fnding the absolute and vertex centers of a tree
with distances,” India Business Insight Database, vol. 8, pp. 75—
77, 1974.

[9] S.L.Hakimi, E. F. Schmeichel, and J. G. Pierce, “On p-Centers
in networks,” Transportation Science, vol. 12, no. 1, pp. 1-15,
1978.

[10] A.J. Goldman, “Minimax location of a facility in a network,”
Transportation Science, vol. 6, no. 4, pp. 407-418, 1972.

[11] M. Nesterenko and A. Arora, “Stabilization-preserving atom-
icity refinement,” in Proceedings of the 13th International Sym-
posium on Distributed Computing (DISC ’99), pp. 254-268,
Springer, Bratislava, Slovak Republic, September 1999.

[12] G. N. Frederickson, “Parametric search and locating supply
centers in trees,” in Algorithms and Data Structures, 2nd Work-
shop (WADS °91), E. Dehne, J.-R. Sack, and N. Santoro, Eds.,
vol. 519 of Lecture Notes in Computer Science, pp. 299-319,
Springer, Ottawa, Canada, August 1991.

[13] T. Sheltami and H. T. Mouftah, “Clusterhead controlled token
for virtual base station on-demand in manets,” in Proceedings
of the 23rd International Conference on Distributed Comput-
ing Systems (ICDCS °03) Workshop in Mobile and Wireless Net-
works (MWN), pp. 716-721, Phoenix, Ariz, USA, April 2003.

10 EURASIP Journal on Wireless Communications and Networking

[14] E.Erkut, R. Francis, and A. Tamir, “Distance-constrained mul-
tifacility minimax location problems on tree networks,” Net-
works: An International Journal, vol. 22, pp. 37-54, 1992.

[15] A. Tamir, “Improved complexity bounds for center location
problems on networks by using dynamic data structures,”
SIAM Journal on Discrete Mathematics, vol. 1, no. 3, pp. 377—
396, 1988.

[16] A. Tamir, D. Pérez-Brito, and J. Moreno-Pérez, “A polynomial
algorithm for the p-centdian problem on a tree,” Networks,
vol. 32, no. 4, pp. 255-262, 1998.

[17] M. H. Karaata, “Stabilizing ring clustering,” Journal of Systems
Architecture, vol. 50, no. 10, pp. 623—-634, 2004.

[18] M. H. Karaata, “Self-stabilizing clustering of tree networks,”
IEEE Transactions on Computers, vol. 55, no. 4, pp. 416-427,
2006.

[19] C.Chiang, H. Wu, W. Liu, and M. Gerla, “Routing in clustered
multihop, mobile wireless networks,” in Proceedings of the
IEEE Singapore International Conference on Networks (SICON
’97), pp. 197-211, April 1997.

[20] T.R.L.Francis, “Convex location problems on tree networks,”
Operations Research, vol. 37, 1976.

[21] A.D. Amis, R. Prakash, D. Huynh, and T. Vuong, “Max-min d-
cluster formation in wireless ad hoc networks,” in Proceedings
of the 19th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 00), vol. 1, pp. 32-41,
Tel Aviv, Israel, March 2000.

[22] E. J. Coyle and S. Bandyopadhyay, “An energy efficient hi-
erarchical clustering algorithm for wireless sensor networks,”
in Proceedings of the IEEE INFOCOM, vol. 3, pp. 1713-1723,
2003.

[23] E. Royer and C. Toh, “A review of current routing protocols
for ad hoc mobile wireless networks,” IEEE Personal Commu-
nications, vol. 6, no. 2, pp. 46-55, 1999.

[24] S. A. Cook, J. Pachl, and 1. S. Pressman, “The optimal location
of replicas in a network using a read-one-write-all policy,” Dis-
tributed Computing, vol. 15, no. 1, pp. 57-66, 2002.

[25] H. Garcia-Molina, “The future of data replication,” in Pro-
ceedings of the IEEE Symposium on Reliability in Distributed
Software and Database Systems, pp. 13—19, Los Angeles, Calif,
USA, January 1986.

[26] E. Minieka, “The m-center problem,” SIAM Review, vol. 12,
no. 1, pp. 138-139, 1970.

	1. INTRODUCTION
	2. PRELIMINARIES
	2.1. Motivation
	2.2. Notation
	2.3. Computational model

	3. BASIS OF THE ALGORITHM
	4. ALGORITHM
	5. CORRECTNESS
	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

