
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2008, Article ID 729180, 8 pages
doi:10.1155/2008/729180

Research Article
Decoding LDPC Convolutional Codes onMarkov Channels

Manohar Kashyap and Chris Winstead

Department of Electrical and Computer Engineering, College of Engineering, Utah State University, Logan, UT 84322-4120, USA

Correspondence should be addressed to Manohar Kashyap, manohar.kashyap@gmail.com

Received 31 August 2007; Accepted 26 February 2008

Recommended by Yonghui Li

This paper describes a pipelined iterative technique for joint decoding and channel state estimation of LDPC convolutional
codes over Markov channels. Example designs are presented for the Gilbert-Elliott discrete channel model. We also compare
the performance and complexity of our algorithm against joint decoding and state estimation of conventional LDPC block codes.
Complexity analysis reveals that our pipelined algorithm reduces the number of operations per time step compared to LDPC block
codes, at the expense of increased memory and latency. This tradeoff is favorable for low-power applications.

Copyright © 2008 M. Kashyap and C. Winstead. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

LDPC convolutional codes (LDPC-CCs) are the convolu-
tional counterparts of LDPC block codes (LDPC-BCs) and
were first presented in 1999 by Feltström and Zigangirov
[1]. Algorithms have been studied for decoding LDPC
Convolutional codes over memoryless channels, such as the
additive white Gaussian noise (AWGN) channel. LDPC-
CC decoding over channels with memory has not been
addressed to date. Wireless channels typically have memory,
and are often approximated using discrete Markov channel
models, of which the simplest is the well-known Gilbert-
Elliott model.

LDPC-CC codes are attractive for three main reasons.
First, they support arbitrary frame lengths, which is useful
in packet-switched networks. Second, they achieve perfor-
mance comparable to conventional LDPC codes. Finally,
LDPC-CC decoders can be implemented using a pipelined
architecture that significantly reduces the number of active
operations required per iteration.

Markov models are widely used to represent time-
varying communication channels [2]. If the channel is
subject to significant variation within a transmitted frame,
then performance can be significantly improved if decoding
and channel state estimation are performed jointly using
iterative algorithms.

This paper introduces a new algorithm for LDPC-
CC decoding over Markov channels. The new algorithm
applies the general principles of joint inference [3, 4] to

the specialized problem of efficient LDPC-CC decoding on
channels with memory. We demonstrate that joint decoding
and channel state estimation can be performed by adding
a few steps to the pipeline decoding algorithm. This means
that the cost of adding joint channel state estimation to an
existing LDPC-CC decoder is extremely small. We show that
when complexity is measured as arithmetic operations per
iteration, joint state estimation and decoding is much less
complex for LDPC-CCs than for traditional LDPC block
codes. The tradeoff is that LDPC-CC decoders require con-
siderably more memory, but in most cases this is a favorable
trade in terms of power, complexity, and circuit area.

As a proof-of-concept demonstration, we apply our algo-
rithm to joint decoding and state estimation on the Gilbert-
Elliott channel. The Gilbert-Elliott channel [5] represents a
burst-error channel which toggles between “good” and “bad”
binary symmetric channel states. Interleaving methods were
previously used to remove the memory from a Gilbert-Elliott
channel, but this technique resulted in substantially reducing
the channel’s effective capacity [6]. More recently, it was
shown that joint state estimation and decoding of turbo
codes on Gilbert-Elliott channels allows transmission at rates
closer to the Gilbert-Elliott channel’s native capacity [7].
Our algorithm provides a power-efficient adaptation of these
approaches for the LDPC-CC case.

The paper is organized as follows. Section 2 reviews
LDPC-CC codes and their pipelined decoding algorithms for
memoryless channels. Section 3 reviews methods for joint
decoding and channel state estimation for Markov channels.

2 EURASIP Journal on Wireless Communications and Networking

Section 3.4 presents the new pipelined estimation-decoding
algorithm for LDPC-CCs. Section 4 presents performance
and complexity analysis, for example, LDPC and LDPC-
CC codes over the Gilbert-Elliott channel. Section 5 offers
conclusions.

The paper uses the following notation. Random variables
and their quantities are indicated by lower-case Latin letters.
If X and Y are random variables, then Pr{x | y} should be
taken to mean the probability that X = x, given that Y = y.
Sets are indicated by upper-case Latin letters. Sequences are
indicated by lower-case bold letters, and matrices by upper-
case bold letters. Lower-case Greek letters are used to indicate
probability messages in the decoding algorithm.

2. LDPC CONVOLUTIONAL CODES

2.1. Code structure

LDPC-CCs are a family of time-varying convolutional codes
with characteristics similar to conventional LDPC block
codes (LDPC-BCs). LDPC-CCs are defined by a periodic
low-density parity-check matrix:

HT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

HT
0 (0) · · · HT

M(M)

. . .
. . .

HT
0 (t) · · · HT

M(t + M)

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

where M is the memory and T is the period of the LDPC-
CC, and t ∈ Z is the time index. The submatrices HT

i (t +
i), i = 0, . . . ,M are c× (c− b) binary matrices, where b is the
number of information bits that enter the encoder, and c is
the number of coded bits that exit the encoder at a given time
index. The rate of the code is R = b/c. The memory is equal
to the largest i such that HT

i (t + i) is a nonzero matrix, and
T =M(c−b). An example parity-check matrix for an M = 7
rate-1/2 LDPC-CC is shown in Figure 1.

Similar to the Tanner graph representation of LDPC-BCs,
LDPC-CCs can also be represented graphically [8]. Figure 2
shows a Tanner graph representation corresponding to the
parity-check matrix in Figure 1. The Tanner graph exhibits
a pattern that repeats itself (for time invariant LDPC-CCs)
every M time indices or, equivalently, every Mc symbol
nodes. Edges are present between symbols and check nodes
when a “1” is present in the corresponding location of the
parity-check matrix.

2.2. Decoding LDPC-CCs onmemoryless channels

The seminal paper on LDPC-CCs [1] presented an iterative
decoding strategy for memoryless channels. In this subsec-
tion, we briefly review the LDPC sliding window decoding
algorithm using factor graphs as in [8].

The LDPC-CC decoder is a chain of sliding window
processors performing sum product algorithm (SPA) [9]
calculations on symbols within the window. While an LDPC-
BC decoder performs parallel operations on symbol and

1

1
1

1
11

1

1 1
1

1
1

1 1
1

1 1
1
1 1

1
1 1

1
1

1
1
1

1 1
1

1
111

1
1 1

1 1
1

1 1 1
1 1 1

1 1 1
11 1
1 1 1

1 1 1
1 1

1
1
1 1

1 1 1
111

1 1
1 1

1
1

1

Period T =M(c − b)

. . .

M
c

Figure 1: An example parity-check matrix, HT , for a rate-1/2
LDPC-CC. The row indices correspond to symbols (i.e., channel
bits), and the column indices correspond to parity check equations.

M

· · ·

Figure 2: Tanner graph corresponding to Figure 1. The circles
indicate symbol nodes, and the squares indicate parity-check nodes.

parity-check nodes, iterations in the LDPC-CC decoder
happen sequentially. As a symbol node shifts through the
sliding window, SPA operations are performed on some
of its edges. SPA operations are split into two phases per
time index. During the vertical phase, SPA operations are
performed on b parity-check nodes. During the horizontal
phase, SPA operations are performed on c symbol nodes.
The LDPC-CC H matrix is designed to guarantee that all
necessary SPA operations are performed on a node afterM+1
time shifts, just before the symbol node exits the window
[1]. For a rate-b/c(J ,K) LDPC-CC decoder, the vertical
and horizontal phases require Kb and Jc SPA operations,
respectively.

To carry out multiple iterations, abutting sliding window
processors are used. As a node exits one processor, it enters
the next processor for an additional iteration. Therefore, for
I iterations, the decoder has a latency of I(M + 1) time units.
Hard decisions are made based on the a posteriori probability
value of a symbol as it exits the last processor in the chain.

M. Kashyap and C. Winstead 3

Proc I Proc I-1 Proc 2 Proc 1

· · ·

Figure 3: The LDPC-CC decoder sliding window represented as a
series of processors.

1 1.5 2 2.5

Eb/N0

−6

−5

−4

−3

−2

−1

0

lo
g

10
(B

E
R

)

M = 128
M = 512
M = 2048

Figure 4: LDPC-CC decoder performance over the AWGN channel,
based on codes and algorithms from [10].

Figure 3 shows the decoder window in operation over a rate
1/2 code, sliding from right to left.

The sliding window abstraction is very useful from
a hardware design perspective. A designer only needs to
implement one of these processors as a hardware block. The
complete decoder is then constructed by tiling I copies of
the processor block. As a point of reference, a comparison
of the BER plots for rate 1/2 LDPC-CC and LDPC-BC
codes on the AWGN channel [10] reveals that an M =
128 LDPC-CC has roughly the same performance as an
N = 1024 LDPC-BC. In Section 4, we demonstrate that this
rough equivalence also holds for joint decoding and state
estimation on Gilbert-Elliott channels. Figure 4 summarizes
AWGN decoding results obtained in [10].

3. JOINT ESTIMATION DECODING

In this section, we present an iterative decoding algorithm
for LDPC-CCs over channels with memory. Memory in
channel states is modeled as a Markov chain, hence the name
Markov channel. We review the Gilbert-Elliott channel and
LDPC-BC decoding over Markov channels before presenting
the LDPC-CC decoding algorithm. All of these algorithms
employ the SPA on factor graphs of the decoder. The general
procedure followed in deriving these algorithms is as follows,
summarized from [11]:

(1) derive the factor graph (or, equivalently, the Tanner
graph) of the code constraints. The factor graph
represents the probability mass function (PMF) of
the code itself, as elaborated in [9]. In the typical
case where all codewords are equiprobable, the code’s
PMF is determined by the characteristic function:

Υ(x) =
⎧⎨
⎩

1, x is a code word

0, otherwise.
(2)

(2) Derive the conditional joint PMF of the received
vector y and the channel states s, that is, Pr(y, s | x).
For discrete channels, the PMF takes the form of
a Markov state-transition model, which has a well-
known factor graph structure.

(3) The joint PMF describing the code and channel,
Pr(y, s, x), is the product of the above derived PMFs,
Υ(x) and Pr(y, s | x). The corresponding decoder
factor graph is constructed by joining together the
channel graph and the code graph at their intersect-
ing symbol nodes.

3.1. Markov channels

A Markov channel is characterized by a set of states, S,
which models the channel’s memory. At any time index i,
the channel is in some state si ∈ S. At each time index, the
channel’s state can undergo a random transition governed by
the state transition probability matrix P. Let ρi be the PMF
vector for the channel’s state at time i. Then ρi+1 = P× ρi.

For a general Markov channel, the PMF of the channel
state process can be written as

Pr(s) = Pr(s1)
n∏

i=1

Pr(si+1 | si), (3)

where Pr(si+1 | si) are obtained from P, the state transition
probability matrix of a general Markov channel. The channel
state affects the channel output probability through a
conditional PDF fyi(yi | xi, si) for each si ∈ S. Let γi be the
channel information which is conditional upon the channel
state, defined as

γi(yi, xi, si, si+1) = Pr(si+1 | si) fyi(yi | xi, si). (4)

In the sequel, the arguments to γi are be omitted, but
γi should always be understood to have the functional
dependence as expressed by (4).

Then the conditional joint PMF of the received symbols
and channel states is

Pr(y, s | x) = Pr(s1)
n∏

i=1

γi, (5)

where y is the received symbol sequence and x is the
transmitted sequence.

4 EURASIP Journal on Wireless Communications and Networking

3.2. Gilbert-Elliott channel

The Gilbert-Elliott (GE) channel [5] is a binary input-output
Markov channel. It is a binary symmetric channel (BSC)
whose inversion probability is modulated by a Markov chain.
It can be described as

y = x ⊕ z, x, y, z ∈ {0, 1}n, (6)

where x, y, and z are the channel input, the channel output,
and the error sequence, respectively. The GE channel has two
states, good and bad, as indicated in the channel model [5].
Each state contains a BSC with its own inversion probability.
In the good state, the inversion probability is lower than the
bad state. The error sequence z is a random sequence. At any
given time, the error probability is

Pr(zi = 1 | si) =
⎧⎨
⎩
ηB, si = B;

ηG, si = G;
(7)

where ηB and ηG are the inversion probabilities in the bad
and good channel states, respectively.

If the good and bad states are assigned to numerical
values 1 and 0, respectively, then the state transition matrix
P is

P =
⎡
⎣1− g g

b 1− b

⎤
⎦ , (8)

where b and g are the 1→0 and 0→1 transition probabilities,
respectively. The matrix elements are pjk = Pr(si+1 = j | si =
k). The last term needed to compute γi is the channel PDF:

fyi(yi | xi, si) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− ηG), xi = yi, si = G

ηG, xi /= yi, si = G

(1− ηB), xi = yi, si = B

ηB, xi /= yi, si = B.

(9)

3.3. LDPC BC decoding onMarkov channels

Iteratively decoded codes allow for channel estimation
during the decoding process and these estimates can further
assist in decoding and vice versa. This is known as joint esti-
mation decoding. In this subsection, we review an estimation-
decoding algorithm first presented in [6] and analyzed for
LDPC-BCs in [3, 4, 11, 12]. In Section 3.4, these concepts are
adapted for use with LDPC-CCs.

To characterize the PMF of the channel, it is convenient
to decompose the characteristic function, Υ(x), into compo-
nent functions hj(x) representing the individual rows of the
parity-check matrix:

Υ(x) =
M∏

j=1

hj(x). (10)

The joint PMF of the transmitted codeword received
symbol sequence and channel states is then given by

Pr(y, s, x) = ξPr(s1)
N∏

i=1

γi

M∏

j=1

hj(x), (11)

si−1

γi−1

xi−1

si

γi

si+1

xi

· · ·

· · ·· · ·

· · ·
β α

ζχ

Figure 5: Joint factor graph for decoding and channel state
estimation of an LDPC-BC on a Markov channel [11].

where ξ is the normalization constant for Υ(x), and N and
M are the dimensions of the parity-check matrix.

The factor graph corresponding to (11) is shown in
Figure 5. The channel state and transition nodes comprising
the Markov chain form the Markov subgraph. The symbol
and check nodes of the classic LDPC graph form the LDPC
subgraph. Joint state estimation and decoding are then
performed by applying the SPA using a flooding schedule.
In the LDPC subgraph, the ζ messages are substituted in
place of the channel information. The χ messages are the
a posteriori probabilities computed using the usual LDPC
decoding computations.

In the Markov subgraph, BCJR operations are performed
with the χ messages applied as a priori information. At the
start of each iteration, every node in the factor graph receives
messages from adjacent nodes in the graph. Each message is
a local conditional PMF. To complete the iteration, the SPA
algorithm is applied to update the outgoing messages at each
node in the graph. The α, β, and ζ messages have the usual
definition, based on the BCJR algorithm, and are updated
according to the standard rules:

αi =
∑

si−1∈S
αi−1

∑

xi∈{0,1}
χi−1γi−1,

βi =
∑

si+1∈S
βi+1

∑

xi∈{0,1}
χi+1γi+1,

ζi =
∑
si ,si+1

αiβi+1γi,

(12)

where αi and βi are functions of si, χi and ζi are functions of
xi, and the function arguments are again omitted.

3.4. LDPC convolution decoding onMarkov channels

In this section, we present an algorithm for sequential
decoding of LDPC convolutional codes on general Markov
channels, the Gilbert-Elliott channel LDPC convolutional
decoder is presented as an example. We will show that a
flooding schedule of message-passing between the channel
model and decoder fits conveniently into the pipelined
LDPC-CC decoding algorithm.

M. Kashyap and C. Winstead 5

To derive the decoder graph, we combine the Markov
channel factor graph with the graph of an LDPC con-
volutional code by joining the two graphs at the shared
symbol nodes, xi. The derivation of the LDPC convolutional
code characteristic function, and hence its factor graph, is
followed by the derivation of the decoder PMF, and hence
the decoder graph, in the next few paragraphs.

The sequence υ = (. . . , υ0, υ1, υ2, . . .), υt ∈ Fc2 forms a
convolutional code frame (equivalent to a block codeword) if
and only if the constraint imposed by the syndrome former
of the convolutional code is fulfilled, that is,

υtHT
0 (t) + υt−1HT

1 (t) + · · · + υt−MHT
M(t) = 0. (13)

The characteristic function of the convolutional code is

Υ(υ) =
⎧⎨
⎩

1, if (13) is satisfied for all t ∈ Z,

0, otherwise.
(14)

The convolutional characteristic function can be decom-
posed as a product of component functions over time. Let x j

be defined as the sequence (υ j , υ j−1, . . . υ j−M), corresponding
to the symbols in the encoder’s memory. Then at the jth time
instant, the characteristic component function is

hj(x j) =
⎧⎨
⎩

1 if (13) is satisfied at time t = j,

0 otherwise.
(15)

The convolutional characteristic function is then the
product of the component functions over time:

Υ(υ) =
tend∏

j=0

hj(xj), (16)

where tend is the time at which the convolutional sequence
terminates.

To construct the joint PMF of the convolutional code and
the Markov channel model, we note that there are c channel
symbols per time index in our notation, and therefore also
c Markov channel states per time index. Let n be the total
number of channel symbols transmitted, that is, n = tend× c.
Then,

Pr(y, s, x) = ξPr(s1)
n∏

i=1

γi

tend∏

j=1

hj(x j). (17)

The factor graph for the LDPC convolutional decoder is
shown in Figure 6. Notice that the Markov channel graph
of Figure 5 has been wrapped around the convolutional
graph of Figure 3 resulting in a graph suitable for sequential
operations. As the decoding window slides across this graph,
it completes SPA operations on c channel state variable nodes
along with c symbol nodes and (c − b) check nodes at each
time index.

Joint decoding and estimation is performed using a
flooding schedule as follows. Whenever a symbol node is
updated in the decoder, the adjacent Markov state variables
are also updated. At each time index in the LDPC-CC

si+4

xi+4 γi+4

si+5

xi+5 γi+5

si+6

t + 2

xi+3 γi+3

si+3

xi+2 γi+2

si+2

t + 1

si

xi γi

si+1

xi+1 γi+1

t

· · ·

· · ·· · ·

· · ·

Figure 6: Joint factor graph for an LDPC-CC decoder over a
Markov channel. The Markov model wraps around the LDPC-CC
factor graph.

pipeline, the χ messages are updated for c symbol nodes
using the usual decoding operations. To perform the Markov
state update, the α, β, and ζ messages are subsequently
computed for each updated symbol node.

Whenever processing is completed for a node xi, the
resulting χi message is used to update αi, βi, and ζi. The
entire column of updated messages is then passed to the
next processor, which performs the subsequent iteration.
Messages on the Markov subgraph are updated directly
alongside the xi symbol nodes within the pipeline.

Figure 7 shows the memory-based architecture for a
typical LDPC-CC processor, augmented to support joint
channel state estimation [10, 13, 14]. Each column in the
memory grid represents a symbol node. Each row represents
a message passed along an edge in the code’s factor graph.
Each symbol node is connected to the channel and to (up to)
J parity-check nodes. Due to the structure of the LDPC-CC
factor graph, a symbol’s influence vanishes after M × c time
steps, so this is the number of columns that needs to be stored
in the memory.

The processor requires one row to store channel informa-
tion for each symbol and J rows to store messages between
variable and check nodes in the LDPC-CC subgraph. For a
Markov channel with S states, 2S+2 extra rows must be added
to support channel state estimation. In the particular case
of the GE channel, where S = 2, six extra rows are needed.
SPA operations are completed for c symbol nodes per time
index per processor, so each processor needs to update 4c
additional messages per time index per processor to perform
joint state estimation. As these messages pass through the
pipeline of processors, updates propagate across the Markov
subgraph.

3.5. Alternativemessage passing schedules

The flooding schedule produces a very efficient architecture
for joint estimation and decoding in LDPC-CCs. Other
message passing schedules are not expected to coexist well
with the pipelined structure of LDPC-CC decoders. Turbo

6 EURASIP Journal on Wireless Communications and Networking

M×c

J

c

State-estimation
operations

State-
estimation
memory

Figure 7: The memory-based LDPC-CC decoding architecture
for a rate-1/2 code, highlighting the extramemory resources and
additional operations needed to implement joint channel state
estimation.

estimation/decoding, for example, is known to provide
improved performance for LDPC block codes in some cases,
but cannot obviously be applied to the LDPC-CC case.

In the turbo schedule, Markov state estimation is carried
out using the BCJR algorithm on a sliding window. All
α, β, and ζ messages are computed while the χ messages
are held constant. Meanwhile, the decoder computes new χ
messages by performing one iteration with the ζ messages
held constant. This schedule requires that blocks of symbol
messages be exchanged between the estimator and the
decoder. Because the pipelined decoder computes only c
symbol messages per time index, it is not possible to
accumulate a large frame of messages without interrupting
the pipeline.

4. PERFORMANCE RESULTS

Figure 8 shows the BER plot for rate 1/2, (3, 6) LDPC
convolutional codes with memories 128, 256, and 2048 with
channel parameters (b, g,ηG) = (0.01, 0.01, 0.01), where ηB is
swept from 0.04 to 0.18. As expected, decoding gain increases
with memory. As with joint estimation and decoding on
LDPC-BCs, LDPC-CCs are observed to have low error floors.
Figure 9 plots the BERs for an M = 128 code, with iterations
ranging from 10 to 60. Statistically, significant improvements
are not observed for pipelines longer than 50 processors.

4.1. Comparison of LDPC-BC and LDPC-CC decoders

Figure 10 shows the comparative performance of an LDPC-
BC and an LDPC-CC performing joint decoding and state
estimation over the GE channel. The performance of an N =
1024 LDPC-BC is roughly comparable to that of an M = 128
LDPC-CC. The LDPC-CC decoder uses 50 processors, and
the LDPC-BC decoder uses 50 iterations.

The complexity of these decoders is estimated by count-
ing the number of edges that requires SPA updates at each

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Inversion probability

−7

−6

−5

−4

−3

−2

−1

lo
g

10
(B

E
R

)

M = 128
M = 512
M = 2048

Figure 8: LDPC-CC decoding over the Gilbert-Elliott channel.

0.08 0.09 0.1 0.11 0.12 0.13 0.14

Inversion probability

−4

−3.5

−3

−2.5

−2

−1.5

−1

lo
g

10
(B

E
R

)

I = 10
I = 30

I = 50
I = 60

Figure 9: Number of iterations versus performance for an M = 128
LDPC-CC decoder.

Table 1: Complexity comparisons for (3,6) rate-1/2 LDPC block
and convolutional codes corresponding to Figure 10.

LDPC-BC, N = 1024 LDPC-CC, M = 128

Processor complexity 12,288 updates 1,000 updates

Memory requirements 13,312 messages 103,200 messages

Latency 50 time steps 6,450 time steps

time in the decoder. The comparative processor complexity,
memory requirements, and latency are reported in Table 1.

M. Kashyap and C. Winstead 7

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Inversion probability

−7

−6

−5

−4

−3

−2

−1

0

lo
g

10
(B

E
R

)

M = 128
N = 1024

Figure 10: M = 128 LDPC-CC and N = 1024 LDPC-BC BER
performance over the same GE channel.

(1) Processor complexity

During a time index, each LDPC-CC processor completes
an iteration on c symbol nodes, each of which requires J
SPA updates during the horizontal phase and K SPA updates
during the vertical phase. Then there are 3 edges to be
updated per symbol node in the Markov subgraph, and two
of those edges have S number of messages on each. Like for
the GE channel, the forward and backward messages have
values for the good and bad states of the channel. Hence
(2S + 1)c SPA updates are needed (the APP edge does not
need to be computed until the very end). Therefore, we have
I∗[c∗(J + 2S+ 1) +K] SPA updates during any time index in
the LDPC-CC decoder.

In the LDPC-BC case, there is one time index per
iteration, in which all messages are updated throughout the
code’s graph. There are J edges per symbol node in the LDPC
subgraph and two SPA updates per edge. The N symbol
nodes result in a total of 2N∗(J + 2S + 1) SPA updates per
time index.

(2) Hardwarememory requirements

In the LDPC-CC case, for each symbol node, we need to
store (2S + 1) messages for the Markov subgraph, 1 channel
message, and J messages in the LDPC subgraph. There are
(M + 1)c symbol nodes per processor, and I processors, for a
total of I∗[(M + 1)(J + 2S + 2)c] messages.

The LDPC-BC decoder needs memory for each SPA
update, and memory to store the channel information,
resulting in N∗[2∗(J + 2S + 1) + 1] messages to be stored.

(3) Decoder delay

The LDPC-CC latency is I∗(M + 1) time steps, the time it
takes for symbols to traverse the entire pipeline. The latency

of the LDPC-BC decoder is the time taken to decode the first
frame. If the decoder uses I iterations, then the latency is
simply I .

For similar performing block and convolutional codes,
LDPC-CCs need a simpler processing unit, that is, the area of
an LDPC-CC decoder chip involved in active computations
is much less than for the LDPC-BC case, hence bringing
down the power usage, but needs more memory. On general
purpose architectures with multiple memory banks, the
LDPC-CC decoder realizations can be very efficient. Apart
from the initial latency, the pipelined LDPC-CC decoder
architecture is well suited for high throughput, low-power
hardware implementations.

5. CONCLUSIONS

This article described a serial, pipelined algorithm for joint
decoding and channel-state estimation of LDPC convolu-
tional decoders over Markov channels. While the general
principles of joint channel state estimation and decoding
are widely known, they were previously applied only to
LDPC block codes. Our work is the first investigation
of joint estimation and decoding for LDPC convolutional
codes. We found that the conventional pipelined LDPC-CC
decoder requires only a few extra operations to implement
joint state estimation, which is a much smaller overhead
than what is required for joint state estimation in known
LDPC block decoding algorithms. Our LDPC-CC algorithm
requires considerably fewer active operations than LDPC
block decoders, and hence is better suited for low-power
implementation of high-performance error control over
Markov channels.

ACKNOWLEDGMENT

The authors would like to extend their gratitude to Dr.
Stephen Bates and Ramkrishna Swamy for providing access
to their LDPC-CC code designs and simulation source code,
which were very helpful to our research.

REFERENCES

[1] A. J. Feltström and K. S. Zigangirov, “Time-varying periodic
convolutional codes with low-density parity-check matrix,”
IEEE Transactions on Information Theory, vol. 45, no. 6, pp.
2181–2191, 1999.

[2] H. S. Wang and N. Moayeri, “Finite-state Markov channel-
a useful model for radio communication channels,” IEEE
Transactions on Vehicular Technology, vol. 44, no. 1, pp. 163–
171, 1995.

[3] J. Garcia-Frias, “Decoding of low-density parity-check codes
over finite-state binary Markov channels,” IEEE Transactions
on Communications, vol. 52, no. 11, pp. 1840–1843, 2004.

[4] A. W. Eckford, “Low-density parity-check codes for Gilbert-
Elliott and Markov-modulated channels,” Ph.D. dissertation,
University of Toronto, Toronto, Ontario, Canada, 2004,
http://www.cse.yorku.ca/ aeckford/pubs/phd-thesis.pdf.

[5] E. Elliott, “Estimates of error rates for codes on burst-noise
channels,” Bell Systems Technical Journal, vol. 42, no. 9, pp.
1977–1997, 1968.

8 EURASIP Journal on Wireless Communications and Networking

[6] J. Garcia-Frias and J. Villasenor, “Turbo decoding of Gilbert-
Elliott channels,” IEEE Transactions on Communications,
vol. 50, no. 3, pp. 357–363, 2002.

[7] M. Mushkin and I. Bar-David, “Capacity and coding for
the Gilbert-Elliot channels,” IEEE Transactions on Information
Theory, vol. 35, no. 6, pp. 1277–1290, 1989.

[8] M. S. Arvind Sridharan, “Design and analysis of LDPC
convolutional codes,” Ph.D. dissertation, University of Notre
Dame, Notre Dame, Ind, USA, 2005, http://etd.nd.edu/
ETD-db/theses/available/etd-02202005-181524/unrestricted/
SridharanA0202005.pdf.

[9] F. R. Kschischang, B. J. Frey, and H.-H. Loeliger, “Factor
graphs and the sumproduct algorithm,” IEEE Transactions on
Information Theory, vol. 47, no. 2, pp. 498–519, 2001.

[10] S. Bates and Z. Cheng, “Stephen Bate’s online LDPC con-
volutional codes tutorial,” http://www.ece.ualberta.ca/ sbates/
LdpcWeb/perf.html.

[11] A. W. Eckford, F. R. Kschischang, and S. Pasupathy, “On
designing good LDPC codes for Markov channels,” IEEE
Transactions on Information Theory, vol. 53, no. 1, pp. 5–21,
2007.

[12] A. W. Eckford, F. R. Kschischang, and S. Pasupathy, “Analysis
of low-density parity-check codes for the Gilbert-Elliott
channel,” IEEE Transactions on Information Theory, vol. 51,
no. 11, pp. 3872–3889, 2005.

[13] S. Bates and G. Block, “A memory-based architecture for
FPGA implementations of low-density parity-check convo-
lutional decoders,” in Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS ’05), vol. 1, pp.
336–339, Kobe, Japan, May 2005.

[14] R. Swamy, S. Bates, and T. L. Brandon, “Architectures for ASIC
implementations of low-density parity-check convolutional
encoders and decoders,” in Proceedings of the IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS ’05), vol. 5,
pp. 4513–4516, Kobe, Japan, May 2005.

	1. INTRODUCTION
	2. LDPC CONVOLUTIONAL CODES
	2.1. Code structure
	2.2. Decoding LDPC-CCs on memoryless channels

	3. JOINT ESTIMATION DECODING
	3.1. Markov channels
	3.2. Gilbert-Elliott channel
	3.3. LDPC BC decoding on Markov channels
	3.4. LDPC convolution decoding on Markov channels
	3.5. Alternative message passing schedules

	4. PERFORMANCE RESULTS
	4.1. Comparison of LDPC-BC and LDPC-CC decoders

	5. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

