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preprocessor is implemented using either a special purpose spatial filter to mitigate the CCI or maximum ratio diversity combining
to achieve diversity gain. Simulation results and a complexity analysis indicate that the approach is suitable for practical application.
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1. INTRODUCTION

The use of multiple receive antennas allows significant
increases in capacity and reliability of wireless data transfer
by exploiting spatial diversity [1–4]. Space-time processing
for the detection of the signals from multiple users is now
receiving considerable attention. Wireless systems where the
number of signals to be resolved exceeds the number of
receive antennas are referred to as overloaded systems [5].
Severe cochannel interference (CCI) occurs in such systems.
Under overload, the receive antenna array’s number of
degrees of freedom is exceeded. This causes linear detection
techniques to perform poorly [2, 6]. Multiuser detection
(MUD) of the user signals is then difficult.

Comprehensive fundamental work on MUD is available
in [7]. Here, we restrict ourselves to reviewing literature
specifically focused on MUD in the overloaded case. Signal
separation and detection in overloaded environments has
been shown to be possible by exploiting the response
differences among the user’s received cochannel signals [4].
In [8, 9], maximum likelihood approaches to blind MUD in
nonoverloaded receivers with antenna arrays were studied.
This work was extended to the overloaded case in [5, 10],

which showed that under overload, linear detection algo-
rithms suffer severe degradation and that joint maximum
likelihood (JML) detection is optimum. JML requires an
exhaustive search over all possible symbol combinations.
Due to the search complexity, JML is not feasible for most
applications. Therefore, reduced complexity algorithms that
achieve near JML performance are of significant interest.
This is particularly important under overloaded conditions.

Several reduced complexity algorithms have been devel-
oped. In [6, 10–14], a high-altitude receiver with symbol-
synchronous signals impinging on a circular antenna array
is considered. This is often referred to as the “base station
in the sky” model. For this model it has been shown that
a preprocessor at the receiver can improve performance of
reduced complexity detection [5, 15]. The work of [6, 11–
14] employs a spatial filter as a preprocessor to mitigate CCI.
It achieves no diversity gain since it employs beam forming.

The detectors in [11–13] use either successive or parallel
interference cancellation following preprocessing. Compared
to JML, complexity is low but the performance is poor if
the user signals have similar energies. In contrast, spatially
reduced search joint detection (SRSJD) [6], when used with
a circular array, achieves near JML performance. It employs
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a beam former as a preprocessor and reduces complexity by
searching a reduced-state search trellis, constructed over the
subset of signals with “dominant” energy in each beam. (The
term “dominant” refers to a user signal that has significantly
more energy than other signals.) The search relies on
delayed-decision feedback sequence estimation (DDFSE)
[16] and is efficiently done using the Viterbi algorithm [17].
SRSJD requires the user’s overall channel matrix as seen at
the receiver to have a “trellis-oriented” form which is achieved
by only a few array geometries such as circular arrays. (A
matrix is said to be “trellis-oriented” if it has a diagonal
banded structure.)

Recently, we have developed two iterative list-based
parallel detection algorithms for use under overloaded
conditions. These employ list feedback of the best estimates
[14, 18]. One, known as parallel symbol detection with
reduced complexity interference estimation (PSD-RCIE)
[14], uses the linear beam former of [6] as its preprocessor.
The second, known as parallel symbol detection with parallel
interference cancellation (PSD-PIC) [18], uses maximum
ratio combining (MRC) in the preprocessing stage. A linear
spatial beam former employed by a receiver with an M-
element array can at most cancel M − 1 interfering signals
[19] and provides no diversity gain. On the other hand, MRC
maximizes the instantaneous signal-to-noise ratio (SNR) at
the combiner output [20] but fails to eliminate CCI under
overload. The residual CCI level increases in both cases with
the receiver overload factor.

In the detection stage, PSD-RCIE explicitly estimates
the residual CCI based on a trellis representation and is
hence restricted to trellis-oriented array geometries. PSD-
PIC does not have this limitation. Following MRC, it
performs iterative parallel interference cancellation (PIC)
coupled with joint list-based detection of the user symbols.
Both algorithms use estimates of the residual CCI to cancel
interference. In both instances, a list of the most likely
symbols in each interval is obtained by searching over the
signal symbols with “dominant” energy. This is done for each
received signal and creates a list for each. These per signal lists
are combined into a global list which is fed back to obtain
improved symbol estimates. After several iterations, the
global list is output by the detector. The iterative approach
has the advantage that, even with inaccurate estimates of the
residual CCI, symbol detection is possible.

In this paper, we develop a unified list-based, iterative
approach to MUD in overloaded receivers that includes the
PSD-RCIE and PSD-PIC approaches we proposed in [14, 18]
as special cases. The algorithm is here applied to receivers
with either a uniform circular array (UCA) or a uniform
linear array (ULA) but can easily be extended to an arbitrary
geometry. Both a linear spatial prefilter and an MRC-
based diversity combiner are considered as preprocessors.
Performance is evaluated using Monte Carlo simulation. The
results show that our MUD approach outperforms existing
reduced complexity algorithms and approximates JML at
lower complexity, especially under heavy overload.

In Section 2, the system model and the receiver structure
are introduced. Spatial filtering and diversity combining
are discussed in Section 3. Symbol detection is described

in Section 4 and performance is evaluated in Section 5.
Complexity is analyzed in Section 6. Conclusions are drawn
in Section 7.

2. SYSTEMMODEL AND RECEIVER STRUCTURE

Consider a single-input multiple-output (SIMO) communi-
cation system with an M-element arbitrary receive array and
D single-antenna users. The receiver load factor is f = D/M,
where f > 1 under overload. The D users are assumed
to transmit QAM signals which are incident on all receive
antennas. For simplicity, we consider symbol synchronous
signals with no intersymbol interference present in the
channel. (The extension to the symbol nonsynchronous case
is straightforward.) Figure 1 shows a model of the proposed
receiver. At each antenna, the received signal is passed
through a filter matched to the transmitted pulse shape and
then sampled at symbol rate to give the M×1 received signal
vector

x = As + z, (1)

where s = [s1 s2 · · · sD]T is the D × 1 symbol vector
containing the user symbols, sd. Each user symbol sd is
independent and uniformly drawn from an alphabet A. The
vector s is multiplied by the M×D composite array response
matrix A = [a[1] a[2] · · · a[D]] with a[d] being the M × 1
array steering vector for the dth user. (In a more complex
channel, the matrix A also includes the channel response.)
We assume that A is computed by a channel estimator which
estimates the direction of arrival for each of the D signals.
The quantity z is an M × 1 temporally uncorrelated noise
vector with zero mean and autocorrelation Φzz = E[zzH],
where E[·] denotes expectation. For spatially uncorrelated
noise, Φzz = σ2

z I, where σ2
z denotes the noise variance and

I is the M ×M identity matrix. Throughout this paper, any
time dependance in equations is dropped for convenience.

2.1. Uniform circular array

The UCA has isotropic antenna elements equispaced on a
circle with radius R as shown in Figure 2. Following [21],
the array steering vector for each of the D signals is denoted
a(θd) = [a1 a2 · · · aM]T with components given by

am = exp
(
− j

2πR
λ

cos
(
π

2
− θd − φm

)
sin εd

)
,

d = 1, 2, . . . ,D,

(2)

where

θd is the estimated azimuthal angle of arrival (AOA),

εd is the elevation (or depression) angle,

λ is the wavelength at the carrier frequency,

φm = 2π(m − 1)/M is the angle of the mth element in
azimuth [22].

For simplicity, only azimuth is considered (εd= 90◦). How-
ever, the results can easily be extended to three dimensions.
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Figure 2: System model for a ULA and a UCA withM = 4-elements
and D > M single-antenna users.

2.2. Uniform linear array

In the ULA configuration, isotropic antenna elements are
located in a straight line with equal spacing between the
elements, B, as in Figure 2 [23]. The array steering vector for
each signal is again denoted a(θd) = [a1 a2 · · · aM]T , but
with components given by [21]

am = exp
(
− j

2πB(m− 1)
λ

sin θd

)
, d = 1, 2, . . . ,D. (3)

3. PREPROCESSOR

The estimated array response matrix A and the received
signal vector x, following matched filtering, are input to a
preprocessor as shown in Figure 1. It exploits the spatial
separation of the users to mitigate CCI effects so as to enable
complexity reduction in the subsequent MUD stage. We
will consider two approaches, but we first find an alternate

form of the JML criterion that lends itself to suboptimal
approximation.

If no intersymbol interference is present, JML leads to the
symbol by symbol detector given by [10]

ŝ = arg min
s∈AD

(x − As)HΦ−1
zz (x− As), (4)

where (·)H denotes Hermitian transpose. The minimization
requires a search over all |A|D possible transmit symbol
combinations. The resulting complexity mandates approxi-
mation.

The key to approximating (4) is to find a transform
that maps the M × 1 received vector x into the D × 1
vector y = [y[1], y[2], . . . , y[D]]T and the M × D array
response matrix A into a D × D square matrix H =
[h[1], h[2], . . . , h[D]]T , where y[d] is the dth component of
y and h[d] = [hd1,hd2, . . . ,hdD] is the corresponding 1 × D
row vector of H with elements hdu. We seek a transform that
maps

x(M×1) �−→ y(D×1),

A(M×D) �−→ H(D×D).
(5)

We call y the transformed receive vector and H the user
channel matrix. There are two interpretations possible for
the transform of (5), either spatial filtering or diversity
combining. (Note that both are essentially projection oper-
ations.) In each case, the solution is a D×M complex weight
matrix W such that

y = Wx. (6)

3.1. Spatial filtering

A spatial filter exploits the fact that user signals incident on
the antenna array with greater spread in AOA interfere with
each other less than signals that are closely spaced in AOA.
CCI from users reasonably widely spaced in AOA can thus
be effectively reduced. This is essentially a beam forming
operation.
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The matrix W can be derived from the JML criterion of
(4) by choosing y and H such that [6]

HHH = AHΦ−1
zz A,

HHy = AHΦ−1
zz x.

(7)

This satisfies the mapping of (5) and yields the JML detector
in the form

ŝ = arg min
s∈AD

‖y −Hs‖2

= arg min
s∈AD

D∑
d=1

∣∣y[d]− h[d]s
∣∣2

= arg min
s∈AD

D∑
d=1

∣∣∣∣∣y[d]−
D∑
u=1

hdusu

∣∣∣∣∣
2

.

(8)

From (7), we find W = (HH)
†

AHΦ−1
zz , where (·)† denotes the

pseudoinverse. The matrix W is a trellis-oriented multiple-
input multiple-output (MIMO) beam former since each row
places a beam in the direction of only one transmitted signal
[6]. It increases the number of observation samples and
acts as a noise whitening interference rejection filter. The
elements of y denote the received signal in each of the D
beams and each row of H shows the energy contribution to
the received signal in the dth beam.

Figure 3(a) shows the form of H for a receiver employing
a spatial filter as a preprocessor. The receiver has an M =
5-element UCA front end with radius R = 0.2λ. Data is
received from D = 6 equal energy users uniformly spaced
in AOA. We see that most of the energy is concentrated on or
near the main diagonal of H, resulting in a banded structure,
where in each row only a few elements contain most of the
energy.

3.2. Diversity combining

In contrast to (7), if we consider (5) from the viewpoint
of diversity combining, we seek to combine the multiple
replicas of the received information-bearing signal in an
advantageous way. MRC is the classical and optimal [24]
diversity combining technique. The combiner output is a
weighted linear combination of the signal replicas. For MRC
with perfect channel estimation, the optimum weight matrix
in (6) is W = AH [24].

MRC tries to map the receive vector x into y such that
each user has maximum SNR in one of the components of y.
Defining the channel matrix H such that

H = AHA (9)

allows us to write the JML detector as in (8) with the
difference being the definitions of W and H in the two cases.
The row elements of H denote the energy contribution from
the D users to the received signal in which the SNR of the
corresponding user is maximized.

In Figure 3(c), the form of H is illustrated for a receiver
using MRC as a preprocessor. The antenna array is anM = 5-
element ULA. Again D = 6 users transmit equal energy

signals. The users are uniformly spaced within the array’s
view angle defined as θmax = ±60◦. Hence the user’s azimuth
AOAs are θd = {±60◦,±36◦,±12◦} with d = 1, 2, . . . , 6.
The antenna elements are spaced at distance B = 3λ
apart. In contrast to Figure 3(a), the energy is not uniformly
concentrated along the main diagonal of H as there are
elements with “high” energy further away from the main
diagonal. (At this stage, the term “high” refers to an intuitive
definition of matrix elements with significant energy. The
mathematical definition is given later.) Thus H does not have
a banded structure and is not trellis-oriented.

3.3. Spatial filtering versus diversity combining

The beam forming spatial filter works best if relatively closely
spaced antenna elements are available to form beam patterns.
To ensure sufficient correlation, the element spacing should
be within half a wavelength at the carrier frequency. This
follows from the Nyquist sampling theorem [25]. We note
that a linear spatial filter cannot cancel more than D =M−1
interfering cochannel users (see, e.g., [19]). In overloaded
receivers, the advantage of beam forming tends to be lost as
there will still be significant CCI.

In contrast, diversity combining requires little or no
cross-correlation between the antenna elements. If a signal at
one element goes through a deep fade, it is then unlikely that
the other elements encounter a deep fade for the same signal
at the same time. Hence combining the signals from different
elements can improve receive performance as there is nearly
always good reception at one of them. Antenna spacing is
usually on the order of several carrier frequency wavelengths
and does not satisfy the Nyquist sampling theorem. As a
result, spatial aliasing and grating lobes occur [26] when the
array properties are considered. This is offset by the diversity
gain attained. We will see that our unified MUD algorithm
works well with both types of preprocessors.

3.4. Sparsity pattern

The two examples of the channel matrix H in Figures 3(a)
and 3(c) show that only a few elements in each row contain
most of the signal energy. Therefore, we can derive a sparsity
matrix, P, that contains unity entries for elements with
“high” energy and zeros for elements with “low” energy
[6]. (We describe the selection of matrix elements with
“high” and “low” energy later. Here it is only an intuitive
definition.) The sparsity matrix is a D × D matrix, P =
[p[1], p[2], . . . , p[D]]T , where each element pdu corresponds
to the element hdu in H for d,u = 1, . . . ,D. Its use allows
reduced complexity approximations to the JML detector of
(4). The sparsity matrices for Figures 3(a) and 3(c) are shown
in Figures 3(b) and 3(d), respectively.

We first define enumeration sets, Ue[d], which contain the
column indices of the unity elements in each row p[d] ∈ P.
(As in [6], the term enumeration set is used because the
detection algorithm enumerates over all combinations of
user symbols {su|u ∈ Ue[d]}.) The indices in Ue[d] indicate
users with “high” energy. For example, in the first row of
H in Figure 3(a), Ue[1] = {6, 1, 2} and Ue[1] = {3, 4, 5}
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Figure 3: (a) Spectral square root (HHH) (1/2) of H and (b) sparsity matrix P for a 5-element UCA. The users are uniformly spaced in AOA.

(c) Spectral square root (HHH) (1/2) of H and (d) sparsity matrix P for a 5-element ULA. The user AOAs are uniform within θmax = ±60◦.
There are D = 6 equal energy users. Elements with “1” in P are obtained by using the SEAIR and SSSER criteria with thresholds T1 = 2 and
T2 = 0.1, respectively.

are the column user indices of elements with “high” and
“low” energy, respectively. Hence the corresponding sparsity
pattern in Figure 3(b) is p[1] = [1, 1, 0, 0, 0, 1].

The quality of the sparsity matrix found depends on the
criterion used to choose its elements. A so-called desired
energy to interference ratio (DEIR) criterion was used in [6,
14]. In [18], the strongest energy to interference ratio (SEIR)
was used. (Note that the SEIR [18] and DEIR [6] criteria are
equivalent if, in the dth row h[d] ∈ H, the diagonal element
hdd has the most signal power, |hdd|2 = max1≤u≤D|hdu|2.)
Both use a threshold which, if chosen poorly, erroneously
treats signals with low energy as high-energy signals, and
results in higher detection complexity than necessary for
a given level of performance. A poor choice can also lead
to considering strong signals as low energy signals, which

results in lower complexity at the cost of poorer overall
performance.

Here we present a different approach to the construction
of P that appears robust over a wider range of cochannel
users than the DEIR and SEIR criteria. It is based on two
empirically chosen thresholds T1 and T2 and determines
the complexity-performance tradeoff of subsequent MUD.
Because this approach considers energy separation of the
preprocessed user signals, it is limited to scenarios where
sufficient separation can be achieved, meaning that it tends to
perform poorly if, after preprocessing, the user signals have
too similar energies. As a result, either too few or too many
signals with high energy would be selected. This can occur
under extreme overload when using a linear preprocessor.
The optimum choice of T1 and T2 is an open research topic.
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In general, the choice depends on the desired complexity/
performance tradeoff, the receive antenna geometry, the type
of preprocessor, the number of receive antennas M, and the
number of cochannel users D.

We first compute the signal energy to average interference
ratio (SEAIR) and use the empirical threshold T1 to ensure
sufficient separation between high-energy and low-energy
signals. The SEAIR is defined as

SEAIR[d,u] = E
[∣∣hdusu∣∣2]

(
1/
∣∣Ue[d]

∣∣)E[∑v∈Ue[d]

∣∣hdvsv∣∣2]

=
∣∣hdu∣∣2

(
1/
∣∣Ue[d]

∣∣)∑
v∈Ue[d]

∣∣hdv∣∣2 ,

(10)

where the numerator represents a high-energy signal and
the denominator is the average interference energy with
|Ue[d]| = D − |Ue[d]| denoting the number of signals
outside the enumeration set Ue[d]. The quantities su and
sv are the user symbols corresponding to hdu and hdv,
respectively. We find the column indices u ∈ Ue[d] by
choosing

Ue[d] =
{

arg
(ξ)

max
1≤u≤D

∣∣hdu∣∣2
}

, 1 ≤ ξ ≤ ρ[d], (11)

where max(ξ) denotes the ξth greatest value and ρ[d] is
the number of column indices considered in the dth row.
Computation stops if the ξth SEAIR value is below the
predefined threshold, T1, or when all ξ = ρ[d] indices have
been processed. (Ideally, we would choose ρ[d] = D to allow
all signals to be considered. The choice ρ[d] < D leads to an
upper bound on the complexity of the detection algorithm
which is desirable for practical systems.) The selected indices
u are then retained in the selected enumeration set Ue[d]
only if they fulfill a second criteria, specified by the signal
to strongest signal energy ratio (SSSER) defined as

SSSER[d,u] = E
[∣∣hdusu∣∣2]

E
[
max1≤v≤D

∣∣hdvsv∣∣2] =
∣∣hdu∣∣2

max1≤v≤D
∣∣hdv∣∣2 ,

(12)

where the numerator represents the energy of the uth user
signal in Ue[d] and the denominator is the energy of the
strongest signal in h[d]. We compute the SSSER for all
selected column indices u ∈ Ue[d]. The second predefined
threshold T2 is used to remove indices u with SSSER[d,u] <
T2 from the set Ue[d].

We then construct the sparsity pattern p[d] ∈ P by
assigning unity entries to all users corresponding to indices
u ∈ Ue[d] and zero entries for those where u ∈ Ue[d]. From
p[d] ∈ P, we obtain

τ[d] = {su | u ∈ Ue[d]
}

, ω[d] = {su | u ∈ Ue[d]
}

,
(13)

as the sets of high- and low-energy user symbol vectors,
respectively. The low-energy sets, ω[d], are referred to as
interfering symbol sets, since they correspond to residual

CCI which degrades the detection of the high-energy symbol
sets, τ[d]. For the examples in Figure 3, the SEAIR and
SSSER thresholds were found empirically and set to T1 = 2
and T2 = 0.1, respectively. These yield the sets τ[1] =
{s6, s1, s2} and ω[1] = {s3, s4, s5} in Figure 3(a), and τ[1] =
{s1, s3} and ω[1] = {s2, s4, s5, s6} in Figure 3(c). Similar
results are obtained for all other values of d. Note that
different numbers of users and receive antennas, D and M,
as well as different antenna array geometries and element
spacing may change the empirically determined thresholds
T1 and T2. However, once T1 and T2 have been set for a given
M, the algorithm appears robust over a wide range of D.

4. SYMBOL DETECTION

We now describe the proposed list-based MUD algorithm,
the so-called parallel detection with interference estimation
(PD-IE) algorithm. As shown in Figure 1, it operates on the
preprocessor output and takes the transformed receive vector
y, the channel matrix H, and the estimated sparsity matrix P
as inputs. A structural block diagram is shown in Figure 4. It
uses Q iterations to compute an ordered global list of symbol

vectors S = {ŝ (1), ŝ (2), . . . , ŝ (L)}, where ŝ (l) is the lth D × 1
symbol vector in the list. (The list S is ordered from most to
least likely.)

The rows of the inputs y(D×1), H(D×D), and P(D×D) are first
reordered to produce y′(D×1), H′

(D×D), and P′(D×D) as indicated
by the row ordering block in Figure 4. (Reordering the input
quantities improves performance in subsequent detection
stages.) This ordering is in terms of the SEIR [18] criterion,
which is defined as

SEIR[d] = E
[
max1≤u≤D

∣∣hdusu∣∣2]
E
[∑

v∈Ue[d]

∣∣hdvsv∣∣2] = max1≤u≤D
∣∣hdu∣∣2

∑
v∈Ue[d]

∣∣hdv∣∣2 .

(14)

The numerator denotes the signal power of the strongest user
in the dth row h[d] ∈ H, and the denominator is the overall
power of the signals outside the enumeration set Ue[d]. The
reordering is in order of decreasing SEIR. In Figures 3(c) and
3(d), the rows {1, 2, 3, 4, 5, 6} of y, H, and P become rows
{3, 5, 1, 2, 6, 4} of y′, H′, and P′, respectively.

4.1. Symbol estimation

The key to successful detection in overloaded receivers is
to estimate and cancel residual CCI. We use D parallel
detection branches as shown in Figure 4. Each branch
corresponds to one user and performs CCI cancellation and
symbol estimation. Figure 5 shows two implementations. In
Figure 5(a), residual CCI is estimated explicitly using the
trellis implementation as we proposed in [14]. In contrast,
Figure 5(b) illustrates joint detection as we described in
[18]. (We use the term “joint detection” because the user
symbols and the residual CCI are jointly estimated using
PIC techniques.) Both implementations include identical
high-energy symbol estimators and take y′, H′, P′, and the
tentative global list S as inputs. In addition, y, H, and P
are needed for estimation of the residual CCI in Figure 5(a).
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Each of the D symbol estimators outputs a branch list

Sbr[d] = {ŝ (1)
br [d], ŝ (2)

br [d], . . . , ŝ (L)
br [d]} of (D × 1) symbol

vectors ŝ (k)
br [d], where k = 1, 2, . . . ,L.

Each vector ŝ (k)
br [d] contains estimates of the high- and

low-energy symbol sets τ[d] and ω[d], respectively, and can
be decomposed into

ŝ (k)
br [d] = {τ̂ (k)[d], ω̂ (k)[d]

}
, (15)

where ω̂ (k)[d] and τ̂ (k)[d] are the estimated low- and high-
energy user symbol sets in the dth detection branch. (The
symbol sets τ[d] and ω[d] for each branch list Sbr[d]
are derived from p′[d] ∈ P′.) We consider the low-en-
ergy sets ω̂ (k)[d] as residual CCI and obtain them by an
interference estimation process. The high-energy sets τ̂ (k)[d]
are found by an exhaustive search over all possible |A||τ[d]|

symbol combinations τ[d], where |τ[d]| = |Ue[d]| is
the number of signals in the dth enumeration set Ue[d].
This is done by the high-energy symbol estimators shown
in Figure 5. Each such estimator takes the list W̃[d] =
{ ˜̂ω (1)

[d], ˜̂ω (2)
[d], . . . , ˜̂ω (Id)

[d]} and the quantities y′[d] ∈
y′, h′[d] ∈ H′, and p′[d] ∈ P′ as inputs. The list W̃[d]
contains estimates of the residual CCI with the tilde notation
(̃·) denoting nonredundant list elements. (Storing only the

nonredundant elements ˜̂ω (i)
[d] ∈ W̃ , i = 1, 2, . . . , Id, ensures

that the complexity of high-energy symbol estimation is
minimal.) The list size is Id with 1 ≤ Id ≤ L.

We search over all high-energy symbol sets τ[d] and
compute the Euclidean error metric

e(i, j)[d] = ∣∣y′[d]− ŷ′(i, j)[d]
∣∣2

, (16)

where y′[d] is the dth component of y′ and ŷ′(i, j)[d] is the
(i, j)th “candidate component” used as an approximation

of y′[d]. Values for ŷ′(i, j)[d] are computed as the sum of

an “enumeration component” ŷ′(i)e [d] and an “interference

component” ŷ′(i)if [d] as

ŷ′(i, j)[d] = ŷ′(i)e [d] + ŷ′(i)if [d],

ŷ′(i)e [d] =
∑

u∈Ue[d]

h′dusu,

ŷ′(i)if [d] =
∑

u∈Ue[d]

h′duŝ
(i)
u ,

(17)

where h′du is an element of h′[d] ∈ H′. The values su
for ŷ′(i)e [d] are drawn from the jth high-energy symbol set

τ( j)[d] with j = 1, 2, . . . , |A||τ[d]|. The values ŝ (i)
u in the

interference component ŷ′(i)if [d] are estimates of the residual

CCI, drawn from the ith list element ˜̂ω (i)
[d] ∈ W̃[d].

We then find the vectors ŝ (k)
br [d] ∈ Sbr[d] by choosing

symbol values from the (i, j) symbol combination with the
kth smallest error metric,

(i, j)(k) = arg
(k)

min
1≤i≤Id

1≤ j≤|A||τ[d]|

{
e(i, j)[d]

}
, k = 1, 2, . . . ,L, (18)

where min(k) denotes the kth smallest value.

To illustrate estimation of the residual CCI, we consider
two examples, one for explicit CCI estimation and the other
using joint detection.

4.1.1. Symbol estimation with explicit CCI estimation

Consider a UCA with a banded sparsity matrix P as illus-
trated in Figure 3(b). The dth CCI estimator in Figure 5(a)
has the inputs y, H, P, p′[d] ∈ P′, and the global tentative
symbol list S. It uses the iterative tail-biting delayed decision
feedback sequence estimation (ITB-DDFSE) algorithm of [6]
to compute estimates of the residual CCI. It constructs a
spatial trellis from P and employs the Viterbi algorithm to
find the minimum cost path through it.

In order to minimize computational complexity, we first
create the list S̃in[d] from S in each receiver branch using
the sparsity pattern p′[d] ∈ P′. It is defined as S̃in[d] =
{˜̂s (1)

in [d], ˜̂s (2)

in [d], . . . , ˜̂s (Kd)

in [d]}, where Kd is the list size with
1 ≤ Kd ≤ L. Its elements contain the nonredundant high-
energy symbol sets together with the best initial estimates of
the residual CCI. Hence the kth symbol vector in the dth list,

˜̂s (k)

in [d] ∈ S̃in[d], is decomposed into

˜̂s (k)

in [d] = {˜̂τ (k)

in [d], ω̂ (k)
in [d]

}
, (19)

where ˜̂τ (k)

in [d] is a high-energy symbol set that is nonre-

dundant in S̃in[d] and the low-energy symbol set ω̂ (k)
in [d] is

the best initial estimate of the residual CCI chosen from S.
(The best initial estimate ω̂ (k)

in [d] can easily be found from
S because the elements in S are ordered from most to least
likely.) The list S̃in[d] is input to the dth CCI estimator in
Figure 5(a). It operates on a spatial trellis having D stages
indexed by c = 1, 2, . . . ,D. It starts and ends in a fixed state.
Note that both fixed states contain the high-energy symbol

set ˜̂τ (k)

in [d] and are equivalent due to the tail-biting trellis
structure. The trellis is applied to each of the Kd symbol

vectors ˜̂s (k)

in [d] ∈ S̃in[d].
Figure 6 depicts an example trellis for the CCI estimator

of Figure 5(a) for the M = 5 antenna, D = 6 user
environment of Figures 3(a) and 3(b) using BPSK signaling.
The extension to other signal types is straightforward. The
states at the cth stage of the trellis are defined as [14]

σ[c] = {su | u ∈ Ue[c − 1]∩Ue[c]
}

= τ[c − 1]∩ τ[c], c = 1, 2, . . . ,D.
(20)

Note that for the chosen example τ[c = 1] = {s6s1s2}
are the high-energy symbols. They are represented by fixed

states in the trellis and initialized with the kth value ˜̂τ (k)

in [d].
The corresponding low-energy symbol sets ω̂ (k)

in [d] are used
as initial estimates of the residual CCI and are stored in
the partial state estimate ν̂[c]. The trellis state sequence is
σ[1] = {s6s1}, σ[2] = {s1s2}, σ[3] = {s2s3}, σ[4] = {s3s4},
σ[5] = {s4s5}, σ[6] = {s5s6} and the number of symbols
with variable state values is {μ[c]} = {0, 0, 1, 2, 2, 1}, where
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Figure 4: Block diagram of the parallel detector with interference estimation (PD-IE).
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Figure 5: The dth symbol estimator in the PD-IE in Figure 4 using (a) explicit CCI estimation and (b) joint detection.
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Figure 6: ITB-DDFSE trellis for explicit CCI estimation in symbol estimator #1 in Figure 5(a). The trellis is shown for the UCA example in
Figures 3(a) and 3(b) using BPSK signals.

c = 1, 2, . . . , 6 is the trellis stage index. We denote the number
of transitions from a previous state i into a new state j as
Tj[c]. The cth trellis stage has j = |A|μ[c] states and there are

T[c] =
|A|μ[c]∑
j=1

Tj[c], (21)

overall transitions. In Figure 6, the sequence of overall
i→ j transitions is {T[c]} = {1, 2, 4, 8, 4, 2}. The algorithm
finds the minimum cost path, according to a Euclidean
distance error metric using the symbols from the current i→ j
transition and the partial state estimate ν̂[c]. After processing
all transitions at the cth trellis stage, the surviving transitions
are stored and the partial state estimate ν̂[c] is updated. After
typically Qitb = 2 or 3 iterations around the tail-biting trellis,
the estimate of the residual CCI, ω̂ (i)[d], is found by tracing
back the trellis path with the least cost. The nonredundant

estimates, ˜̂ω (i)
[d], are stored as the list W̃[d] which is output

by the dth CCI estimator, as shown in Figure 5(a).

4.1.2. Symbol estimation with joint detection

We next consider a ULA with a nonbanded sparsity matrix
P as shown in Figure 3(d). In this case the symbol estimator
of Figure 5(b) is needed. It uses an iterative PIC approach
to jointly find estimates of the low- and high-energy symbol
sets ω[d] and τ[d]. The required inputs to the dth symbol
estimator are the tentative global list S and the dth row
components of y′, H′, and P′.

The symbol estimators compute D tentative branch lists
Sbr[d] by searching over the high-energy symbols τ[d] using
(16) and (17). Each list Sbr[d] serves as input to the (d+ 1)th
high-energy symbol estimator in the (qpic + 1)th iteration.
For qpic = 1, the tentative global list S is chosen as the input.
From the input list to the dth symbol estimator, the list of
estimates of the residual CCI, W̃[d], is obtained using the
sparsity pattern p′[d] ∈ P′. After the Qpicth iteration, the
branch lists Sbr[d] are output by the symbol estimators. We
have found Qpic = 2 to 5 works well.

4.2. List combining

The D branch lists Sbr[d] are output by the symbol
estimators and input to a list combiner (cf. Figure 4). The
symbols in each branch vector ŝbr[d] ∈ Sbr[d] contain
estimates of both the low- and high-energy symbol sets
ω[d] and τ[d]. Here instead of an exhaustive search over all

symbol combinations as in (8), only the high-energy symbol
sets τ[d] are searched using the error metric of (16). Because
of the estimation process, the JML vector ŝ satisfying (8) may
not be included in the D branch lists Sbr[d]. By searching and
combining the branch lists, we can find improved estimates
with high probability of including the desired symbol vector
ŝ. In [14], we proposed a list combining algorithm that finds
the L-member tentative ordered global list S of most likely

symbol estimate vectors ŝ (l) ∈ S, l = 1, 2, . . . ,L. We briefly
summarize the algorithm here.

The list combiner in Figure 4 takes as inputs y, H, P′,
and the D branch lists Sbr[d]. For the qth global iteration,
the tentative global list S and the corresponding list of error
metrics E = {e (1), e (2), . . . , e (L)} are stored and S is fed back
to the D detector branches. If q = Q (Q is arbitrarily set), S
is output by the detector as an estimate of the ordered list
of most likely symbol vectors. Typically, only Q = 2 or 3
iterations are necessary. A decision device then selects the

first element ŝ (1) ∈ S as the best estimate. Alternatively,
S can be used to provide soft information to subsequent
receiver stages such as error control decoders. List combining
is done in two stages: initial update and iterative search over
the estimates of the high-energy symbol sets τ[d]. In the
initial update, the stored lists S and E are updated with the
symbol vectors and error metrics obtained in the current
iteration. The iterative search combines the estimates of the
high-energy symbol sets τ[d] with the symbols stored in S.
This typically requires Qlc = 2 or 3 iterations. The algorithm
uses dynamic programming principles and is summarized in
Algorithm 1.

5. PERFORMANCE EVALUATION

Analytical performance bounds for PD-IE are difficult to
obtain due to the iterative and list reduction processes.
Hence, we use Monte Carlo simulation to compare per-
formance to other MUD algorithms under overload. We
assume D single-antenna users transmitting equal power
symbol synchronous QPSK (4-QAM) signals. The signals
are incident on a receiver with an M-element UCA or ULA
where D > M. For simplicity, we assume the same phase
reference is used for all signals. The SNR at each receive
antenna is defined as the ratio of signal to noise variances,
SNR = 10 log10(σ2

s /σ
2
z ), where σ2

s is the average received
power per signal. Simulations are stopped after one user
experiences 50 errors.
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Initial Update

1. Define a list of D × 1 branch symbol vectors, S̃br. Initialize the elements ˜̂s (k)

br ∈ S̃br with the nonredundant
symbol vectors from the D branch lists Sbr[d]. Note that k = 1, 2, . . . ,K and 1 ≤ K ≤ LD.

2. Corresponding to S̃br, define the list of error metrics Ebr = {e (1)
br , e (2)

br , . . . , e (K)
br }. Compute each e (k)

br ∈ Ebr as

e (k)
br = ‖y −H˜̂s (k)

br ‖2, where ˜̂s (k)

br ∈ S̃br.

3. Define the list of L tentative minimum error metrics, Emin, and the corresponding list of D×1 symbol vectors,
Smin. Obtain the elements e (l)

min ∈ Emin by searching

e (l)
min =

(l)

min
1≤i≤L

1≤k≤K

{
e (k)

br , e (i)
}

, l = 1, 2, . . . ,L,

where e (i) is the ith element in E , obtained in the (q − 1)th iteration. For q = 1, choose E = {∞}. Find the

elements ŝ (l)
min ∈ Smin by choosing symbol values from the corresponding lists S̃br and S.

4. Set S = Smin and E = Emin.

Iterative Search

5. Define the d = 1, 2, . . . ,D lists T̃ [d]. Find the elements ˜̂τ ( j)
[d] ∈ T̃ [d] by using p′[d] ∈ P′ to select the

nonredundant high-energy symbol sets from Sbr[d]. Note that j = 1, 2, . . . , Jd and Jd ≤ L.

6. Define the lists S̃cand = {˜̂s (1)

cand, ˜̂s (2)

cand, . . . , ˜̂s (L)

cand} and Ecand = {e (1)
cand, e (2)

cand, . . . , e (L)
cand}. These store D × 1 candidate

symbol vectors and corresponding error metrics.

7. For each iteration qlc = 1, 2, . . . ,Qlc and all j = 1, 2, . . . , Jd elements ˜̂τ ( j)
[d] ∈ T̃ [d] of the d = 1, 2, . . . ,D

lists, T̃ [d],

(i) Use p[d]′ ∈ P′ to find the estimates of the low-energy symbol sets ω[d] in the list S and copy the
nonredundant sets into S̃cand. The resulting list S̃cand has size Ld with 1 ≤ Ld ≤ L.

(ii) For each element ˜̂s (k)

cand ∈ S̃cand, k = 1, 2, . . . ,Ld , do

(a) Copy the high-energy symbol set estimate ˜̂τ ( j)
[d] into ˜̂s (k)

cand.

(b) Compute the error metric, e (k)
cand = ‖y −H˜̂s (k)

cand‖2.

(iii) Update the tentative list Emin by finding the l smallest metrics,

e (l)
min =

(l)

min
1≤i≤L

1≤k≤Ld

{
e (k)

cand, e (i)
}

, l = 1, 2, . . . ,L,

where e (i) ∈ E is the ith element in E . Update the corresponding list Smin by choosing the l = 1, 2, . . . ,L
symbol vectors from S̃cand and S with minimum error metric e (l)

min.

(iv) Set S = Smin and E = Emin.

8. Terminate the list combining algorithm. Set q = q + 1.

Algorithm 1: Iterative list combining algorithm.

5.1. UCA

Figure 7 shows the relative performance of the PD-IE,
SRSJD, and JML algorithms at SNR = 10 dB. The receiver
employs an M = 5-element UCA front end with radius
R = 0.2λ. We use the linear beam former of (7) as a
spatial filter in the preprocessing stage of the detector. The
SEAIR and SSSER thresholds for derivation of the sparsity
matrix P are empirically set to T1 = 2 and T2 = 0.1,
respectively, for up to 100% overload (D ≤ 10). For higher
overload factors (D > 10), we set T1 = 2 and T2 =
0.5, respectively. As a result, for this example, each row
of the channel matrix H contains |τ[d]| = 3 high-energy

symbols τ[d]. The matrix P is used for both the PD-IE and
SRSJD algorithms. SRSJD performs two iterations around
the tail-biting trellis as suggested in [6]. Simulations run
with more iterations achieved only marginal performance
improvements for the increase in SRSJD complexity. The
choices of the PD-IE parameters are shown in Table 1.
In order to compare the two PD-IE symbol estimators
using either explicit CCI estimation (Figure 5(a)) or joint
detection (Figure 5(b)), we set Qitb = 2 and adjust the
iteration parameter Qpic so that both approaches have similar
complexity. Complexity values are presented in Table 1 as
the number of real squaring operations per output symbol
vector.
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Figure 7: SER of the worst user versus number of cochannel signals
at SNR = 10 dB for a 5-element UCA using JML, SRSJD, and PD-IE
algorithms. Iteration parameters for PD-IE are shown in Table 1.

From Figure 7 it can be seen that the symbol error rate
(SER) essentially increases with the number of users D.
This is due to residual CCI in the filtered received signal
which increases with the overload factor of the receiver. The
somewhat better performance for odd numbers of users, for
examble, D = 7, 9, is an artifact of the UCA geometry,
as in these cases there are no user signals received from
opposite AOAs. Note that the AOA dependance of the UCA
is not observed if the SER performance is dominated by
the residual CCI. This occurs under heavier overload (e.g.,
D = 11 users as shown in Figure 7).

JML is the optimum detector and achieves the lowest
SER. SRSJD approximates JML up to D = 8 users but
fails for D > 8. PD-IE outperforms SRSJD at the cost
of higher complexity and achieves near JML performance
when using a global list S of size L = 2D. For L = D,
performance is impaired due to the increased probability of
the transmitted symbols not being in the list S. At a similar
complexity, symbol estimation with explicit CCI estimation
slightly outperforms joint detection in PD-IE for L = 2D,
but performance is worse for L = D. This arises because
the trellis-based CCI estimation process can outperform the
PIC technique if the correct high-energy symbols are already
contained in the global list S. In contrast, joint detection
is able to better estimate the CCI for smaller list sizes L
because it jointly estimates both the CCI and the high-energy
symbols.

Figure 8 illustrates SER versus SNR performance curves
for PD-IE using the same receiver setup as in Figure 7. Results
are shown for the heavily overloaded cases of D = 10 and
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Figure 8: SER of the worst user versus SNR for PD-IE with list sizes
L = D and 2D using a 5-element UCA with D = 10 and 12 users.
The iteration parameters are set to give comparable complexity for
PD-IE with explicit CCI estimation and PD-IE with joint detection
as shown in Table 1.

12 users employing symbol estimators with either explicit
CCI estimation or joint detection. The SER in Figure 8
decreases with increasing SNR until it reaches an error
floor. Its minimum value is dominated by the probability
of the correct symbol values not being included in the
branch lists Sbr[d] which explains the higher error floor
for the smaller list size L = D in contrast to L = 2D.
Increasing the list size L reduces the error floor because more
symbol combinations are considered as candidates. This of
course increases PD-IE complexity. At low SNR (SNR <
10 dB), the performance results are similar for both PD-IE
symbol estimator implementations whereas at higher SNR
(SNR ≥ 15 dB), joint detection clearly outperforms explicit
CCI estimation in PD-IE. This can be explained by the
different symbol estimation processes considered. Since PD-
IE with explicit CCI estimation relies on correct estimates
of the residual CCI, its SER performance is sensitive to CCI
estimation errors. These are more likely to occur if the global
list S contains only erroneous symbols and the list size L
is small. The explicit CCI estimation process has too few
degrees of freedom and cannot possibly accurately estimate
all the CCI. There will then always be significant residual
CCI. In contrast, PD-IE with joint estimation reestimates
both the residual CCI and the high-energy symbol values
during the iterative PIC process. It has more degrees of
freedom and thus higher probability of finding the correct
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symbol estimates even if the list S is small or initially contains
only erroneous estimates. Increasing the size of S from L =
D to 2D reduces the superiority of joint detection due to
better explicit CCI estimation in PD-IE. This is observed in
Figure 8.

5.2. ULA

Figure 9 depicts SER versus SNR curves for a receiver with
an M = 6-element ULA with element spacing B = 3λ.
The users are randomly allocated to D equal size sectors
within the array’s view angle of θmax = ±60◦. (For nonfading
memoryless channels, the ULA is highly selective in AOA.
We therefore use random user spacing into equal size sectors
to obtain comparable results for different numbers of users.)
The transmitted signals are incident with random phase on
the antenna array. We set the SEAIR and SSSER thresholds to
T1 = 2 and T2 = 0.1, respectively. The detection algorithm
is PD-IE with joint detection of user symbols and residual
CCI. The iterative PIC process uses either Qpic = 1 and
Qpic = 5 iterations. The global list S has size L = 2D.
Results are shown for D = 9 and 12 users (50% and
100% overload). All other parameters remain unchanged. It
can be seen that increasing the number of iterations, Qpic,
significantly improves detection performance for D = 12
users. In contrast, performance improvements are much
smaller for D = 9 users as Qpic increases. This is expected
because increasing Qpic yields more accurate estimation of
the residual CCI which is more critical at higher levels of
overload. Furthermore, it is evident that more iterations
(increasedQpic) yield a lower error floor as the SNR increases.
Better CCI estimation comes at the cost of increased
complexity.

6. COMPLEXITY

We now consider the computational complexity of PD-IE.
As a measure of this we use the number of real squaring
operations in the calculation of the Euclidean error metrics,
as this is usually the most hardware intensive operation
[6, 10, 14, 17, 18]. Complexity of PD-IE depends on many
parameters. Among these are the number of users D, the
alphabet size |A|, the number of high-energy symbols
|τ[d]|, the number of iterations Qitb or Qpic, Qlc, and Q, and
the sizes of the lists Sbr[d] and S.

The overall complexity of PD-IE, C, can be expressed
as the sum of the complexities of the symbol estimator and
the list combiner, namely, Cse and Clc, respectively. From the
block diagram in Figure 4, we find

C = 2Q
(
Cse + Clc

)
, (22)

where Cse = ∑D
d=1Cse[d] is the sum of the individual

symbol estimator complexities, Cse[d]. The scaling factor of
two is introduced because computation of each Euclidean
error metric requires two real squarings. Each symbol
estimator contains a high-energy symbol estimator which
has complexity Chese[d] = Id|A||τ[d]|, where Id denotes the
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Figure 9: SER of the worst user versus SNR for PD-IE using an
M = 6-element ULA with element spacing B = 3λ. There are D = 9
and 12 cochannel users. The size of the global list S is L = 2D.

size of the input list W̃[d] (cf. Figures 5(a) and 5(b)). For
explicit CCI estimation with ITB-DDFSE (Figure 5(a)),

C (itb)
se [d] = Citb[d] + Chese[d], (23)

where Citb[d] = KdQitb
∑D

c=1T[c] is the complexity of each
CCI estimator with Kd being the size of the input list S̃in[d]
and T[c] denoting the number of transitions at the cth trellis
stage defined in (21). For joint detection as in Figure 5(b),
Cse[d] is derived as

C
(pic)
se [d] = QpicChese[d]. (24)

The complexity of the list combining algorithm
(Algorithm 1) is given by

Clc = D

(
K + Qlc

D∑
d=1

JdLd

)
, (25)

where Jd, K , and Ld are the sizes of the lists T̃ [d], S̃br, and
S̃cand, respectively. Note that K and Jd may vary in each of the
Q global iterations, whereas Ld may change in each of the Qlc

list combining iterations.
In Table 2, complexity of the JML [10], SRSJD [6], and

PD-IE algorithms is compared for receivers with an M =
8-element UCA. The array radius is R = λ/4 and the
linear beam former of (7) is used as a preprocessor. JML
requires 2M|A|D while SRSJD needs only 2QitbD|A| (μ[c]+1)

real squarings [6]. Complexity values for PD-IE are shown
for |τ[d]| = 3 high-energy symbols, obtained through
adjusting the SEAIR and SSSER thresholds. The global list
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Table 1: Parameters and complexity for PD-IE simulations in Figures 7 and 8 using an M = 5-element UCA.

Users Size of S, L = D Size of S, L = 2D

Qlc = Q = 2 Qlc = Q = 2

D Qitb Qpic Complexity Qitb Qpic Complexity

6 2 3 ∼2.5E4 2 3 ∼4.2E4

7 2 3 ∼4.0E4 2 4 ∼8.1E4

8 2 4 ∼6.6E4 2 5 ∼1.4E5

9 2 4 ∼1.0E5 2 5 ∼2.2E5

10 2 5 ∼1.5E5 2 6 ∼3.4E5

11 2 5 ∼2.0E5 2 6 ∼4.8E5

12 2 6 ∼2.8E5 2 7 ∼6.8E5

Table 2: Comparison of computational complexity for a receiver with an M = 8-element UCA.

Users JML SRSJD PD-IE

Expl. CCI estimation Joint detection

D C μ[d] C Cse/Clc C Cse/Clc C

9 4.2E06 2 2.3E03 1.2 3.0E5 3.1 1.4E5

10 1.7E07 2 2.6E03 1.3 5.2E5 2.6 1.8E5

11 6.7E07 2 2.8E03 2.7 1.2E6 1.9 2.5E5

12 2.7E08 4 4.9E04 2.8 1.8E6 1.5 3.3E5

13 1.1E09 4 5.3E04 2.7 2.5E6 1.3 4.2E5

14 4.3E09 4 5.7E04 6.4 7.2E6 1.1 5.2E5

15 1.7E10 4 6.1E04 16.7 2.2E7 0.8 7.1E5

S has size L = 2D. We use Qitb = Qlc = Q = 2 iterations
for PD-IE with explicit CCI estimation and Qpic = 3, Qlc =
Q = 2 iterations for PD-IE with joint detection. Both list size
and iteration parameters were chosen empirically to achieve
good detection performance at low complexity. In general,
these parameters provide a complexity-performance tradeoff
and their values may thus be chosen according to practical
restrictions and requirements.

The results of Table 2 clearly show that JML has extremely
high complexity, increasing exponentially with the number
of users. SRSJD achieves the lowest complexity. It has
a linear increase within the subsets of users where μ[d]
is constant and has an exponential dependance with an
increasing number of subsets. PD-IE provides complexity
savings of several orders of magnitude over JML but has
higher complexity than SRSJD. This is the price to pay for the
better performance of PD-IE (cf. Figure 7). The comparison
of symbol estimation with explicit CCI estimation and joint
detection in PD-IE indicates that joint detection of user
symbols and residual CCI has complexity advantages over
explicit CCI estimation. This is expected because explicit
CCI estimation requires an additional trellis stage for each
additional user, whereas for joint detection, the complexity of
each symbol estimator remains constant. This can be seen in
Table 2 by the increasing complexity ratio Cse/Clc for explicit
CCI estimation and decreasing values for joint detection.
Similar results are found when a ULA is used.

7. CONCLUSION

In this paper, a unified algorithmic structure for the sep-
aration and detection of multiple cochannel signals in an
overloaded SIMO environment is proposed. The detection
algorithm is applied to receivers with either a UCA or a ULA.

A linear preprocessor employing either spatial beam
forming or diversity combining is used to reduce the amount
of CCI in the received signals. Due to the overloaded
environment and the linear preprocessing, residual CCI is
still present. The detection of the user symbols is done
using the proposed PD-IE algorithm. It estimates the residual
CCI and performs nonlinear iterative list detection of the
user symbols. Performance is evaluated using Monte Carlo
simulation. PD-IE is shown to approximate the optimum
JML detector with significantly lower complexity and outper-
forms existing low-complexity algorithms. Comparison to
the SRSJD algorithm shows that PD-IE yields better perfor-
mance at the cost of some increase in complexity. Unlike JML
whose complexity is exponential in the number of users, PD-
IE has a much lower rate of complexity increase. Complexity
savings become more significant when the number of receive
antennas is large. PD-IE simulation results suggest that
joint detection and CCI estimation has advantages over
explicit CCI estimation. It achieves a better performance-
complexity tradeoff, yields simpler implementation, and
most importantly, it can be used with arbitrary receive array
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geometries. The parallel processing structure makes PD-IE
well suited for practical implementation.
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