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Channel models for outdoor wireless systems usually assume two-dimensional (2D) random scattering media. In the practical
outdoor wireless channels, the impact of the wave propagation in the third-dimension is definitely important; especially when the
communication system efficiently exploits potentials of multiple antennas. In this paper, we propose a new model for multiple-
input multiple-output (MIMO) multicarrier propagation channels in a three-dimensional (3D) environment. Specifically, the
proposed model describes the cross-correlation function (CCF) between two subchannels of an outdoor MIMO channel
employing directional antennas and in the presence of nonisotropic wave propagation in 3D space. The derived CCF consists
of some correlation terms. Each correlation term is in the form of a linear series expansion of averaged Bessel functions of the
first kind with different orders. In practice, each correlation term has a limited number of Bessel components. Our numerical
evaluations show the impact of different parameters of the propagation environment as well as the employed antennas on the
resulting CCE. Using the proposed CCF, we also establish simple formulas to approximate the coherence time, the coherence
bandwidth and the spatial coherence of such channels. The numerical curve fitting results fit to the empirical results reported in
the channel modeling literature.
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1. INTRODUCTION

Space-time-frequency (STF) models are required to real-
istically evaluate the performance and to comprehensively
understand the behavior of multiple-input multiple-output
(MIMO) multicarrier communication systems in the pres-
ence of fading(s) [1]. Most of existing MIMO models for
outdoor environments assume wave propagation in a two-
dimensional (2D) horizontal space, considering a special
geometry for the scatterers combined with appropriate prob-
ability density functions (pdfs) for the physical parameters,
for example, [2, 3]. On the other hand, outdoor wireless
channels are significantly influenced by nonisotropic dis-
tribution of scatterers in the propagation environment, the
response of the employed antennas as well as the direction

and the speed of the mobile station (MS). This paper is
motivated in order to consider the following:

(i) the impact of the wave propagation in a three-
dimensional (3D) nonisotropic environment without
employing any specific geometry for randomly dis-
tributed scatterers in the space;

(ii) the impact of 3D directional antennas at both
transmitter and receiver arrays;

(iii) the impact of multicarrier communication in a
MIMO system.

We introduce an STF cross-correlation function (CCF) for
two subchannels of a MIMO multicarrier wireless channel,
that is, of two pairs of antenna elements, two time indices
and at two carrier frequencies.
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The calculation of the CCF for a 3D-MIMO prop-
agation environment has attracted the attention of sev-
eral researchers, for example, [4-10]. Mohasseb and Fitz
in [4] propose a 3D generalization of the Clarke/Jake’s
model [11] for a MIMO system. The model considers the
famous one-ring geometry for the distribution of scatterers.
Abhayapala et al., develop a 3D spatial channel model to
provide insight into spatial aspects of multiple antenna
communication systems [5]. Yong and Thompson derive
a closed-form expression of the spatial fading correlation
function employing a uniform rectangular array in a 3D
multipath channel [6]. Yao and Pitzold investigate the
spatial-temporal characteristics of a 3D theoretical channel
model for scatterers that form a half-spheroid with a given
axial length ratio [7]. Using a 3D cylinder scattering model
(specific geometry for the distribution of scatterers), Leong
et al. in [8] propose a closed-form formula for the space-
time correlation function for MIMO systems. Ozdemir et
al. suggest a model to combine improved sum-of-sinusoids
simulation models proposed for fading channels, and the
2D models proposed for MIMO systems, in a 3D scattering
environment [9]. The distribution of 3D scattering is
uniform in horizontal plane and Gaussian in the elevated
plane. Teal et al. generalize the well-known results of the
spatial correlation function for two-dimensional and three-
dimensional diffuse fields of narrowband signals to the case
of general distributions of scatterers [10].

As a summary, our literature review shows that available
CCFs for 3D-MIMO outdoor environments are mostly based
on specific geometries of scatterers in the space and therefore,
each model is just capable to predict the behavior of that
particular propagation scenario. Moreover, they are not able
to investigate the spatial, the temporal, and the frequency
aspects of the wireless channel in one single model. In
this paper, we propose a framework to calculate the STF-
CCF for MIMO multicarrier (e.g., orthogonal frequency
division multiplexing) channels for a class of 3D outdoor
propagation environments. In contrast to some recent works,
we do not assume a special geometry to describe the relative
position/distribution of scatterers in the space. Besides, we
assume that the direction of arrivals (to the receiver) and
the direction of departures (from the transmitter) are inde-
pendent. This assumption is a sufficient condition—and not
necessary—for our model to be valid, and represents the class
of microcell urban propagation environments. We employ
the Fourier series expansion (FSE) of pdfs of the nonisotropic
azimuth angle spread (AAS) and the nonisotropic elevation
angle spread (EAS) for both MS and base station (BS)
sides. Measurements for outdoor environments show that
the AAS is either truncated Laplacian or truncated Normally
distributed [12-14]. In addition, we introduce a class of pdfs
for the EAS as a basis such that any arbitrary (isotropic or
nonisotropic) EAS can be represented by a convex linear
combination of members of this class. By this means, the
CCEF is represented as the same linear combination of CCFs
associated to these pdfs. This allows accurate modeling for
various 3D wireless propagation environments. We use the
Fourier series coefficients (FSCs) of 3D antenna propagation
patterns (APPs) to investigate the impact of directional

antennas in this model. We extensively evaluate the behavior
of the CCF in terms of the propagation environment, the
employed antennas as well as the direction and the speed of
the MS in both time and frequency domains.

In Section 2, the assumptions on the parameters of
the propagation medium and the employed antennas are
described. The proposed CCF is calculated in Section 3.
Numerical analysis on the derived CCF is proposed in
Section 4. This includes the Fourier analysis of the CCF
to result in the channel power spectrum, the coherence-
time (CT), and the coherence-bandwidth (CB) in different
circumstances. The discussions and conclusions are brought
together in Section 5.

2. THREE-DIMENSIONAL MIMO MODEL DESCRIPTION

Figure 1 shows a pair of BS-MS antennas from a multiele-
ment communication system in a 3D propagation environ-
ment. The figure shows the coordinates of the moving MS
and the fixed BS. This figure also shows the elevation and the
azimuth angles in either the BS or the MS coordinates. The
following are the employed notations throughout the paper.

(i) OB, OM: BS coordinate, MS coordinate;

(ii) hpm(t,w): channel TF between pth BS antenna
element and mth MS antenna element;

(iii) afg: position vector of the pth antenna element on the
BS side relative to O5;

(iv) aM: position vector of the mth antenna element on
the MS side relative to OM;

(v) W2: the unity vector pointing to the direction-of-
departure (DOD) of the ith path from the BS;

(vi) ¥M: the unity vector pointing to the direction-of-
arrival (DOA) of the ith path to the MS;

(vii) ®%; ®M: the DOD azimuthal angle from the BS; the
DOA azimuthal angle to the MS;

(viii) QF; QM: the DOD elevation angle from the BS; the
DOA elevation angle to the MS;

(ix) G(®%,OF; w): antenna propagation pattern of the
pth antenna element of the BS array;

(x) GM(®M, OM; w): antenna propagation pattern of the
mth antenna element of the MS array;

(xi) v; c: MS speed vector; wave propagation velocity;

(xii) Tp,m;: delay between pth BS antenna element and mth
MS antenna element via ith path;

(xiii) gpm;i: gain between pth BS and mth MS antenna
elements via the ith path, approximated by g;;

(xiv) ¢;; w: phase contribution along the ith path; carrier
frequency;

(xv) T; o: mean and delay spread of the time-delay
distribution function 7;;

(xvi) #; I: pathloss exponent; number of total paths.
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FIGURE 1: 3D space. One pair of BS-MS antennas in the 3D space: pth (gth) antenna element of BS and mth (nth) antenna element of MS in
their local coordinate axis in a 3D wave propagation environment. Azimuth and elevation angles in the 3D propagation environment.

Superscripts B and M indicate variables at the BS and
the MS sides, respectively; vectors are bolded lowercased
letters or bolded Roman letters, and (-)7 represents the
transpose operation. One should note that here we have
¥, 2 [cos(Q;) cos(®;), cos(Q;) sin(®;), sin(Q:)]T [15]. In
the multipath propagation environment, the received signal
is composed of a linear combination of plane waves where
each received waveform (the ith received waveform) is
associated with a path attenuation gain g, i, a path phase
shift ¢;, a time-varying delay 7, ,(f), and a complex gain
composed of the antenna patterns at both BS and MS
Gh(O7F, 0 w)GH (O, OM; w). The APPs G5 (©F, OF; w) and
GM(@M, OM; w) are known functions in terms of the prop-
agation directions and the carrier frequency. The channel
transfer-function (CTF) of each subchannel consisting of the
transmitting antenna element located at a3, the propagation
environment, and the receiving antenna element located at
m?! is given by

I
hom(t, ) £ > GE(OF, QF; 0) GY (O, OM; ) gpmsi 0
i=1

xexp (jgi = joTpmi(t)),

where [ is the number of mutipath waveforms resulting from
scattering. The CTEF, hp(, w), is defined as the gain between
baseband representation of the input and the output of the
channel assuming that the bandwidth of the transmitted
signal is smaller than the channel bandwidth (see [2, 16]
for more information). The propagation delay over the ith
path, 7p (1) 2 Tpmi — (t/c)vIWM, is time-varying due
to the mobility of the MS. Substituting the time-varying
delay in (1), the CTF of such a propagation environment is
represented by

1
hom(t, @) = > Gh(OF, OF 0) G (OM, OM; ) gp mi @)
i=1

X exp (joi + j@it — jwTpmi)s
where the shifted frequency of the ith received waveform

caused by the Doppler effect is denoted by the Doppler shift

@; 2 (w/c)vVT¥M, w is the carrier frequency, and v and c are
the MS velocity vector and the speed of light, respectively. We
make the following further assumptions.

(A1) We assume that the distance between scatterers
and antenna arrays is much larger than the interelement
antenna distances. Therefore, propagation waveforms in the
scattering environment are plane waves and there is no
interelement scattering. We also assume that the number
of propagation paths is large enough such that the channel
is Rayleigh by virtue of the central limit theorem [16].
The transmitted signal travels between the MS and the BS,
from each transmitting antenna to each receiving antenna.
The signal travels through the media via a number of
multipath waveforms with different lengths. Here, we assume
no line-of-sight, however, the line-of-sight propagation path
between the transmitter and the receiver can be separately
treated [2, 17].

(A2) The pdfs of the azimuth propagation directions,
f2(@8) and fM(@M) over [—m,7), characterize the non-
isotropic propagation environment in the 2D azimuthal
plane. Since these density functions are periodic functions
with period 27, we represent them by their FSE pairs as
follows:

Fix — f2(0°),

F— fAeM),  (3a)

+ 00
f(@) = S Fagelt®.

1 (" ,
= —jk®
Fx zﬂjiﬂfA(GD)e 40, 2
(3b)

Reported measurement results suggest two candidates for
these pdfs, namely, truncated-Normal and truncated-Laplace
distributions [12-14]. In [18], authors give a complete
investigation on these distributions and their FSEs.

(A3) The pdfs of the elevation propagation directions,
2(@P) and fM(@M) over [-m, ), characterize the non-
isotropic propagation environment in the elevation. Simi-
larly, we use their FSE pairs as follows:

Fip — £(QF),  Fh— £1QM), ()

+o0
fol@) = S Frgel®,

1 (" .
- —jkQ
Fax ZﬂjiﬂfE(Q)e o, 2
(4b)

For simplicity of expressions, EAS pdfs are defined over
[-m,7m) while they are nonzero only in the range of
[—7/2,7/2). The distribution of the EAS follows indepen-
dent and identically distributed (i.i.d.) random variables. It
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is clear that the majority of incoming/outgoing waves do
travel in nearly horizontal directions. The determination of
the EAS of such waves requires some considerations, as it
depends on the environmental parameters like the degree
of urbanization [19]. This determination has attracted the
attention of some theoretical/experimental researchers [19—
23]. Aulin in [20] and Parsons and Turkmani in [19] suggest
realistic pdfs for EAS in a microcellular environment. These
pdfs do not result in closed-form or easy-to-use expressions
for the CCF in the case of MIMO systems. Qu and Yeap in
[21] suggest a family of pdfs with two parameters for both
symmetrical and asymmetrical pdfs of the EAS. Kuchar et
al. in [22] measure the power angle spectrum at the MS
in downtown Paris at 890 MHz. According to this work,
propagation over the roofs is significant; typically 65% of
energy is incident with an elevation larger than 10°. Kalliola
et al. measure the EAS distribution at an MS in different
radio propagation environments at 2.15 GHz [23]. Results
show that in non-LOS situations, the power distribution
in elevation has the shape of a double-sided exponential
function, with different slopes on the negative and the
positive sides of the peak. The slopes and the peak elevation
angle depend on the environment and the BS antenna height.
In order to satisfy the requirements of a pdf for realistic EAS
previously proposed in the literature, we consider a family
of distributions for [Q| < /2 (fg(Q) = 0, |Q] > 7n/2) as
follows [10, 24]:

I+ 1)cos**(Q)

EAST:  fz(Q) = Jal(a+12) (5a)
. 2a
EAS II: fE(Q):2|Sm(§2|+1C°S(Q), (5b)

where T'(u) = [ £* e td& is the Gamma function [15, page
258], and a = 0 is related to the degree of urbanization.
The parameter a specifies the type of the environment
in the sense of how many waves are scattered into the
third dimension of the space; the larger «, the more waves
scattered into the third dimension. In another words, larger
values for « characterize more urban environments in
which more multipath waves are propagated into the third
dimension. Interestingly, a linear convex combination of
the members of this class as a pdf covers a wide class of
distributions that is able to realistically model a nonisotropic
environment in the third dimension. Empirical data taken
from real measurement scenarios are needed to calculate
the coefficients of this linear combination. After the pdf
of the EAS is approximated, it is then expanded into its
series of FSCs in order to substitute the resulting pdf with
its equivalent FSE. Therefore, it is possible to substitute the
infinite series of FSCs with a limited number of coefficients to
the extent that it holds a certain level of accuracy to represent
the original pdf. Figure 2 compares the FSCs of the suggested
pdfs in two cases: EAS I and EAS 11, and for different values
of a. Simulations results show that when the value of «
increases, the necessary number of FSCs to reconstruct the
EAS distribution increases.

(A4) The complex APPs of the pth antenna at the BS
and the mth antenna at the MS and in the carrier frequency

w, Gﬁ(@B,QB;w) and GM(®M, OM; w), give the response of
antenna elements in terms of the azimuth and the elevation
propagation directions and the carrier frequency. These
pattern functions are periodic functions in terms of ® and
Q with the period 27, therefore, we represent them by their
FSE pairs as follows:

G(O, % w),

s
Gk, h, (0) = #JJ G(©, Q% w)e hCe 104 dQ,
=7
(6a)

+o0 +oo

GO,%0) = D> D Ghk(w)efOesb (6b)

ki=—o00 ky=—o00

For simplicity, APPs in the third dimension and for the
parameter Q) are defined over [, 7r), while they are periodic
with fundamental period of 7. 3D-APPs of two commonly
used antennas in wireless applications are as follows (@ €
[-m,m), Q€ [-m,m) [25]):

half-wavelength dipole:

o .cos((71/2) cos ©) sin((w/c)hsin® cos Q)
G(8, 0;.0) = Goj sin @ sin((w/2¢)h sin © cos Q) ’
(7a)

horizontal electric dipole:
. .2 .2 . w (7b)
G(0,Q;w) = Gpjy1 — sin“Bsin“Q sin (?hcos®),

where h is proportional to the size of the antenna and Gy
is the real and positive constant antenna gain that varies
for each antenna. We note that an omnidirectional antenna
is represented by a constant APP, that is, G(®,Q;w) =
Gy. Figure 3 shows the absolute value of the FSCs of these
APPs, where h = ¢/2f and the carrier frequency of w =
27 f. We observe that for these antennas, the value of G, «,
is considerable only for a limited number of coefficients.
Also, we usually need more coefficients when the size of
the antenna increases. One should note that the horizontal
electric dipole needs more number of coefficients to precisely
construct the related APP.

(A5) We decompose the ith path propagation delay, 7, i
into three components: one major delay because of the
distance between BS and MS, and two relative propagation
delays with respect to local coordinates across BS and MS
antenna arrays, as follows:

Tpmsi = Ti = (Tp; + Thy) (8a)
BT\yB Ty M

Béap‘lli Méa%‘yi b

Tp;i - c > Tm;i - c > ( )

where (-)T represents the transpose operator, 7; represents
the delay between OF and OM, and 7,; and 7}y!; represent
relative propagation delays from antenna elements, aj or
aM, to corresponding coordinates, OF or OM, respectively
[17]. We must note that the propagation delay and the
Doppler shift for each individual multipath component are
functions of DOA and/or DOD, and hence they may be
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FIGURE 2: Fourier series coefficients of different suggested elevation pdfs (EASs), in two different propagation environments: (a) EAS I and (b)
EAS II. Different environments are specified by different values of the degree of urbanization a.
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FIGURE 3: Normalized Fourier series coefficients, |G, k, |/maxy, i, |G, |, for h = ¢/2 f and (a) half-wavelength dipole, (b) horizontal-electric

dipole.

dependent. However in this work, the major delay 7; is
assumed to be independent of DOA and/or DOD, and
therefore, it is also independent from the Doppler spread.
Relative large and random displacements of scatterers may
make this assumption invalid. The impact of the random
displacements of scatterers is investigated in [26]. In outdoor
propagation environments, the time-delays 7; are commonly
assumed to be i.i.d. random variables which are exponen-
tially distributed [3, 16]. The distribution of the time-delay
7 is fr(x) = (1/0)e " ™99 for all x > T — g, where
T = E[1;] is the mean value to specify the distance (major
propagation distance) between the MS and the BS, and ¢ is
the delay spread. The moment generating function (MGF)
of the time-delay pdf is given by ®.(s) = e™=%/(1 — os).
Given a random variable x with the pdf fx(x), the MGF of
this random variable is defined as follows: ®x(s) = E[e/X] =

55 e f(§)dE.

(A6) Assuming |7;| > max{lrg;,-l, IT%I}, the path-gain
as a function of the time delay will be

P _y
Spm;i = i = \/?Ti " 2> 9)

where # is the pathloss exponent, I is the number of
propagation paths, and P is a normalization constant [27—
29]. Pathloss exponent is usually a function of carrier
frequency, and parameters of the propagation medium such
as obstructions. For example, around 1GHz, it typically
ranges from 2 to 8. The term 1/+/I is introduced to retain
a constant power random process. The appropriate (and
approximate) value for the pathloss exponent is # = 2 for
free-space propagation, = 4 for rural and 1 = 6 for
crowded urban environments [17, 27].
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(A7) As a consequence of the planar wave propagation,
the path phase shift ¢; accurately approximates ¢, ;. We
take into account the phase contribution of scatterers by
uncorrelated random phase changes ¢;~U[—m, 7).

3. THREE-DIMENSIONAL SPACE-TIME-FREQUENCY
CROSS-CORRELATION FUNCTION

Using the above assumptions, we derive an expression
for the STF-CCF between CTFs of two arbitrary MIMO
subchannels, Ay, (¢, w) and hg,(t, w). This CCF is denoted by

Rpmgn(t1, t2; 01, @3) £ E[hpm(t1, 01)hg, (t2, @2)],  (10)

and is a function of sampling times (t;, f,), carrier frequen-
cies (w;,w;), and antenna elements (m, p;n,q). We rewrite
the CCF by replacing (1) in (10) as follows:

Rpmgn (t1, t2; 01, @2)

I
:E[ Z {Gg(@g,ﬂﬁ;wl)G%((Bf‘f,Qf‘f;wl)gp,m;il
i,i=1
v e~ J1Tpmiy (1) 0 (diy =i ) o j@2Tgmiy (£2)

XG?*(@ﬁ,Qg;wg)G%*(@f‘f,Qf\f;wz)gq,n;,-z}}.
(1)

We decompose the expression of Rpmgn(ti,f2;wi,wz) by
regrouping dependent and independent variables in (11),
replacing g; from (9) and using Assumptions A6 and A7:

Rpm,qn (tls tZ; w1, wZ)

I
zg Z {EI:(TilTiz)_”/zej(wﬂiz*wﬂil)]E[ej(¢i|*¢i2)]
i,i=1
x E[GE(0F, 08 w1)GE" (08, Qf; w))

172 11> %)

% e(j/c)(wlagT‘Pf"l ~wyal W8 )]

x E[GM (@M, 0M; w) GM™ (0, OM; w,)

1 2

x eU/o@i(alf—ven) " —wn @l —ve) W) }

(12)

We assume that ¥ and W? are independent in order to
derive the above expression. This assumption is a sufficient
(not a necessary) condition which allows to separate the
last two expectations. In microcell urban environments,
this assumption is accurately valid. However, the proposed
model may be fit to approximately characterize some other
wireless scattering media. In [17, Appendix I], the following
expression is derived for the first expectation of (12):

E[(TilTiz)iﬂ/z exp (j(wati, — w17;))]
_ {Q(T"/Z)(jwz)CD(T"/Z)(—jwl), i # i, (13)

CD(TH) (j (w2 — 1)), iy = i,

where @, (s) = e#=9%/(1 — os) is the MGF of the time-delay

7; and CD(T") (s) = E[r7"exp(ts)] is the y-order integration
of the MGF of the delay profile (DP). (If #/2 is not a positive
integer number, fractional integration or numerical methods

are required to evaluate (I)(T”/z)(s) [18].) We also have
E[e/#1-$2)] = {0’ 1.1 7 l?’ (14)
1, 11 = 1.

The last two expectations in (12) are calculated in
Appendix A. The calculation is proposed for the case when
iy = i, since the corresponding term to i # i, vanishes
(because of the fact that E[e/ (1 ~#2)] = 0 for i} # ;). Hereby,
we formulate the CCF as follows:

Rpm,qn (tl) t2; w1, wz)
= PO (j(w; — w))
XW(AE 65, 1 (@) @GE, " (@) & (Fiy F,))

* lrod lrod
xw(d,, gAm/[;kl,kz (w1)® g’lf:?kbkz (w2)® (fAA;/fq fE%[(z))a

(15a)
where,
W (d’ J{kbkz)
+00
S {‘%kl K, jK1 ek arctan(y/x)
k],k2=7oo
/2
)(J ej(k20+(z/c) sin Q)
—/2
cos Q/x2 + y?
><]k1 <\/67) dﬂ},
(15b)
d;, 2 wiah — wyal,
(15¢)

A
dﬁf,n 2 (waty — wit)) v+ (w2 — wra),

where d 2 [x,y,z]T is a separation vector, Gk k,)(w),
Fax and Fgpx are the kth FSCs of the APP, the AAS,
and the EAS in the corresponding coordinate and/or

the corresponding antenna element, respectively, Ji(u) 2
(j~k/m)[geiketucost)dE is the kth-order Bessel function of
the first kind, and ® denotes the 2D linear convolution.
The two-dimensional linear convolution of discrete-time

signals X, and y, is denoted and defined by x,,, ®

A .
Ymn = Zf,oo Zfiw Xkl Ym—k,n—1- The separation vectors

dg:; demonstrate the impact of the location of the antenna
elements, the time indices, the carrier frequencies, and the
MS direction and speed.

Remark 1. For an omnidirectional antenna, we have G, , =
0 for ki, k; # 0. In this case, the corresponding coefficients
Gk, k, vanish from the CCE. Similarly, for an isotropic
scattering on the azimuth axis around either the BS or
the MS, we have ¥4 = 1/2n and Fux = 0 for k#0,
and we have Fgx = 1/27 for all k. It implies that the
corresponding coefficients, F4;x and Fgy, vanish from the
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CCE In contrast to the isotropic scattering environment
[17], the nonisotropic scattering and the propagation pat-
terns together create higher order Bessel functions in the
CCE Since the AASs, the EASs (the pdfs of azimuth and
the elevation propagation directions), and the APPs are
accurately approximated by a limited number of FSCs, in
practice we obtain an accurate approximation for the CCF
by employing a limited number of Bessel functions in (15a).

Remark 2. Interestingly, the FSCs of the AAS and the EAS
are shown in a multiplicative form. Although we assume
that the pdfs of the propagation directions in azimuth and
elevation are independent from each other, it is evident that
their interaction appears in the final form of the CCEF. For
the scenario when propagation happens in the 2D azimuth
plane, we have Fg = 1/2n for all k, and G, x, = 0 for k, # 0,
and G, k, = G, for ky = 0. Therefore, the expression of W is
presented by a single summation on a linear combination of
Bessel functions of the first kind with different orders.

Remark 3. In general, the calculation of ‘W in (15b) does not
give a closed-form expression. In order to be able to discuss
the physical interpretations of the derived mathematical
equations, here we propose closed-form solutions when the
employed antennas are omnidirectional; that is, Gk, «, = 0 for
ki, ka # 0. These closed-form expressions are addressed using
different cases introduced for the EAS in (5a) and (5b).

EASL,a=0,z=0

This scenario introduces a uniform 3D rich scattering
environment, and employing antennas in the 2D azimuth
plane. Using Bessel integration on (15a), we get

'W:?]f('i), k=2I,1eNuU {0}, (16)
=0

where |-| denotes the Euclidian norm (see [15, page 485] for

3/2]2,1(214 sin(€))d¢ = (n/2)J2(u)). This result is similar to
the 2D scenario; investigated in [18]; however, the 3D case
introduces powers of the Bessel function [5]. This model is a
direct 3D extension of the Clarke/Jake’s model [11].

The following closed-form results are obtained for uni-
form scattering in azimuth, that is, when azimuths of DODs
and DOAs are independently and uniformly distributed over
[0, 27).

EASL,a=1/2,z=0

This scenario introduces uniformly distributed scatterers
on a sphere. Using the Bessel integration expression (see
[15, page 485] for fg/zj'((usin(f))sin(”(f)cos”“(f)df =
(2’T(v + 1)/t ey (1), Re({) > —1, Re(v) > —1.) and
Ji2(u) = /2/m(sin(u)//u) [15, page 437], we get
: 24 2 24 42
o Sy (M) -
X2+ y*/c ¢

This result is consistent with some available results in the
literature [5].

EAS[x=y=0

This scenario studies the vertical separation of antenna ele-
ments in a microcellular propagation environment. Antenna
elements are located at the origin of the azimuth plane.
Using the Bessel integration (see [15, page 360] for J,(u) =
(((1/2)u)"//aT(v + 1/2)) [ cos(u cos(&))sin® (£)dE), we get

_I(a+1) z
W= (2/2¢)" ]O‘(c)' (18)

Using the proposed results in this scenario, we are able to
study different 3D propagation environments by changing
the degree of urbanization, «a.

EASI;z=0

Using (5b) and the Bessel integration [15, page 485], we get

2 2
(Vx e ) (19)
[

(20)* 7 T(a + 1/2)
ca+1)(x2 +y2)a/2+1/4 a+1/2

This simple expression is an extension of the Clarks model
for isotropic propagation.

Remark 4. From (15b) we observe that the expres-
sion arctan(y/x) modulates the coefficients of the lin-
ear combination of averaged Bessel functions, that is,
efkiarcan(y/x) g, (w1, w,). This phase modulation signifi-
cantly affects the behavior of the CCE This phase is a
function of the direction of the MS speed, that is, /v.
Therefore, the direction of the MS speed plays an important
role in the behavior of the CCE Obviously in an isotropic
environment and using omnidirectional antennas, this phase
modulation vanishes. More investigation on this problem is

addressed in the next section.
(n/2)
T

Remark 5. The components @ o

()
T

(—jwr) (jwz) and
(j(wy — wy)) describe the impact of the delay profile
(exponential profile) and the pathloss exponent on the cross-
correlation between CTFs. The CCF also depends on the

carrier frequencies, w;, w, via d® and d™.

Remark 6. The proposed 3D model takes into account the
antenna heights. The vertical separation of antenna elements
is the result of their different heights. Such a difference in
the antenna heights produces phase differences between the
received or the transmitted signals, and consequently puts
impacts on the CCFE. This property can be employed to
improve the space diversity in MIMO wireless systems.

4. NUMERICAL EVALUATION OF THE 3D
CROSS-CORRELATION FUNCTION (CCF)

In this section, the CCF is numerically analyzed under
different circumstances. This analysis consists of frequency-
domain analysis and time-domain analysis. Such an analysis
illustrates that the nonuniform distribution of scatterers in
the 3D space along with the 3D directional APPs has major
impact on the 3D-CCE
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4.1. Analysis of the 3D-CCF in stationary scenario

In order to see the temporal variations of the wireless channel
in a 3D propagation medium on the MS side, we analyze the
CCF in the frequency domain. This analysis is performed
on a simple stationary scenario for a multiple-input single-
output (MISO) wireless channel on the MS side when w; =

wy 2 w, 12 = 0,and m = n = 1. In this case from /) =
v+ /(t; — t) and Rlp,lq(tla tw,w) = RlP»lq(At; w), we get
Rlp,lq(At;w)

= 2nPW(d,, 95, () @ gk, | “(w) e (F FE))

+0oo
M M * M oM

X Z {(g’l;klykz ((IJ) ® g’l;klykz ((U) ® (fA;kl fE;kz))

ki,ky=—00 y
/2

: w|v
eszQ]kl<cos QLAt) dQ},
C

(20)

X jkl ejklévj

—/.

where At 2 t, — t1 is the time-difference index. Using (20)
and the Fourier transform of Ji(u), the Fourier transform of
this CCF versus Af results in (Ry,14(At; @) < Rip14(A, 0)):

Rip14(A, @)

1>

+00
I e’JAAtRlp,lq(tl,tz;w,w)dAt

—oo
e 3
T owlvlT TP
+o00
x>

M M M M iki £
{(gl;klvkz(w) @ g’lskl,kz(w)g) (?A;kl fE;kz))eJ Y
kyky=—00

» J’”/2 eROTy (N |v|w cos Q)

dQ},
~1/2 cos Q\/l — (cM|v]wcos Q)?
(21)

where A is the frequency representative of the Doppler shift

in the frequency domain and Tx(A) 2 cos[kcos™1(A)] is

the Chebyshev polynomial of the first kind. The following,
RM(A), represents the impact of the nonisotropic 3D
environment, the directional APP, and the speed on the MS
side:

RY(A)

+ 00

N .
> {(9’]1\/;Ikl,kz(w) ® 9’]1\;Ik1,k2 (w) ® (?A]\;/;(I fEﬁz))e]klév
kl,kz:—oo

>

e 0T (cA/|v|w cos Q)

/2
XJ dQ}.
~m/2 cos Q\/l — (cM|vlwcos Q)?
(22)

The term RM(A) is a power spectral density (PSD) that
represents the temporal channel variations caused by the MS
speed. Because there is no closed-form for this PSD, it may
be numerically evaluated in terms of different parameters as
combinations of different APPs, AASs, EASs, and direction of
MS speed. The major concern of the current analysis is to see
the effects of propagation in the third dimension (elevation),
therefore we assume a fixed AAS that represents a typical

macrocellular urban environment: the AAS is Laplacian
distributed with the parameter a = 0.25 rad (the FSCs are
given by Fax = (e (=1 + 1)27(1 — e ™*)(1 + k2a?).
In Figures 4 and 5, this PSD is depicted for several scenarios
that are produced by combinations of the following:

(1) distribution of propagation directions on the third
dimension around the MS (EAS distribution): EAS
I or EAS II distributions with different values of «;

(2) antenna propagation pattern: half-wavelength dipole
or horizontal wavelength dipole with the size of h =

c/2f;

(3) direction of the MS speed: the positive x-axis direc-
tion in Figure 4 or the positive y-axis direction in
Figure 5.

The figures show that the maximum Doppler shift is
wlvl/c (ie, RM(A) = 0, if |A|] = w|v|/c). In the 3D
propagation environment, the direction of the MS speed
has a less significant impact on the behavior of the CCF
comparing with the 2D nonisotropic propagation scenario
which is studied in [18]. In other words, the 3D-CCF
appears as an averaged form of the 2D-CCF when the
averaging is being applied on the elevation angle. Therefore,
due to this averaging, the FSCs of the EAS pdf have a
more dominant effect on the CCFE. In a 2D propagation
environment, the direction of the MS speed along with the
type of the AAS (waves coming from the azimuthal direction)
substantially affects the CCEF. In contrast, in a 3D propagation
environment, the CCF is influenced by the dominant waves
coming from both azimuthal and elevation directions. Since
the number of incoming waves from the elevation direction
are almost invariant with the speed of MS, the MS speed has a
reduced impact on the CCF in a 3D environment compared
to a 2D scattering environment [18]. In contrast to the 2D
propagation, for example, in the Clarks model [11], the tails
of the PSD graphs in the 3D scenario do not go to infinity,
that is, the U-shaped graphs of the PSD in the 2D scenario
are modified into the flat V-shaped PSD graphs in the 3D
scenario. This result is consistent with the result proposed
by Parsons and Turkmani [19]. We also note that the shape
of the spectrum around A = 0 is deviated from being flat.
This deviation is produced by the directional response of the
antennas.

The shape of the derived PSD is not very sensitive to the
variations of the urbanization factor «, or to the variations
of the type of the employed antenna; however, this shape
significantly changes when we change EAS I into EAS II. This
suggests that the EAS pdfs in (5a) and (5b) represent two
distinct wave propagation mechanisms. Therefore, a realistic
linear convex combination of this family could realistically fit
a nonisotropic environment in the third dimension.

4.2. Coherence bandwidth, coherence time, and
spatial correlation

We evaluate the coherence time (CT) and the coherence
bandwidth (CB) in terms of different related parameters.
The CT, T, is the separation time over which the fading
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(b) Horizontal-electric dipole

FIGURE 4: Power spectral density (PSD) for 3D propagation, when MS moves on the positive direction of the x-axis, for stationary CCF (w;, =
w; = w, k> = 0,and m = n = 1), |v| = 50 Km/h, for two nonisotropic EAS pdfs (EAS I and EAS II pdfs), and nonisotropic AAS (Laplacian
pdf with a = 0.25): (a) half-wavelength dipole and (b) horizontal-electric dipole.

channel remains almost unchanged, and the CB, B, is the
separation between frequencies over which the channel
gain is almost constant. A conventional definition for these
coherence functions in a single-input single-output (SISO)
communication system is the value of A (At =, —t; = 0
or Aw = w; — w; > 0) which satisfies the equation of
the envelope correlation pary = 0.5 or poae = 0.5, where

prcs. = (Elr(ti;00)r(ts w))] — E2[r(t, )])/(E[r*(t; w)] —
Elr(bw)), rbw) 2 |h(to)| and E[r(the)] =
(1/2)+/nR(¢, t; w, w) [11, 30]. This definition is equivalent
t0 Dagse = R(t, b3 1, 00)[7/|R(t, ti3 0, ) [* = 0.5 (see
Appendix B). Therefore, using the expression of the CCF in

(15a), the CB and the CT are given by solving Dga, = 0.5
and Do = 0.5 for Aw and At, respectively.

4.2.1.  Coherence bandwidth

The CB is a characteristic of the random propagation
environment and may be independently investigated from
the employed antenna array. This is justified by the Kro-
necker product form of the CCF and because the response
of the employed antenna array (in terms of the carrier
frequency) could be taken into account, separately. The CB
characterizes the behavior of multicarrier propagation for
a SISO communication system. The CB is defined as the
solution of Dy, = 0.5 for Aw. Our numerical evaluations
derived from this model show that, in practical situations,
the CB mostly depends on the delay spread ¢ (1, = t, =
1second), that is, it is almost invariant with variations of
the parameters of the nonisotropic propagation medium,
the employed antennas, or the MS speed. In other words,

the CB for an outdoor propagation environment is mostly
determined by the delay spread of the DP, 0.

Consistent with the behavior of wide-sense-stationary
uncorrelated-scattering (WSSUS) systems [31], the proposed
CCF in a stationary scenario suggests a WSSUS propagation
system for outdoor environments. Figure 6 shows the CB
with respect to ¢ for a typical urban environment (5 =
2), for crowded urban environment (y = 4) and for
rural environment ( = 6). These values for the CB are
close to the average of reported experimental measurements
in the literature [28, 32-34]. The reported values in the
literature are between 11.5 MHz to 1.2 MHz [33] for delay
spread values of 0.1 microseconds to 2 microseconds [32] in
outdoor propagation environments. It turns out that, the CB
values reported in the literature under various conditions
are accurately predicted using the proposed model. For
example, when |R| = 0.5, Rappaport in [35] reported an
approximation formula for the CB as CB ~ 1/50. This
formula results in CB = 0.2 MHz for ¢ = 1 microseconds
which is very close to what is predicted by (23). In order
to suggest more accurate formulas for the CB in outdoor
environments, Figure 6 illustrates an almost linear relation
between the CB and the time delay spread ¢ in a log-log scale,
that is, using a simple curve fitting, we have

ki = 8.9450, ky = —0.7432; 1n =2,
CB =~ kjo*, ky = 81.4346, k= —0.6088; 1 =4,
ky =351.6372, k,=-0.5212; n5==6.

(23)

The error in this approximation is less than +0.75dB in [R],
when the delay spread lies in [0.1-1.1) microseconds (the
reported range of delay spread for outdoor environments).
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FIGURE 5: Power spectral density (PSD) for 3D propagation when MS moves on the positive direction of the y-axis, for stationary CCF (w; =
wy = w, k> =0,and m = n = 1), |v| = 50 Km/h, for two nonisotropic EAS pdfs (EAS I and EAS II pdfs), and nonisotropic AAS (Laplacian
pdf with a = 0.25). (a) Half-wavelength dipole, (b) horizontal-electric dipole.
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FiGURE 6: Coherence bandwidth, with respect to the delay spread
0; using exponential DP with mean, 7 = 3.33 microseconds, f; =
t, = lsecond, fi = 4GHz, ¥* = 0, SISO communication system
and for different propagation environments with different pathloss
exponents #: free space (typical urban), crowded urban or rural
environments with # = 2,4, or 6, respectively.

4.2.2. Coherence time

Our numerical investigations show that the CT is a function
of the value of the MS speed (or the maximum Doppler
shift), and other parameters such as the EAS pdf. This result
is expected based on the Fourier analysis on the stationary
CCE, as the Doppler effect certainly appears as a function
of different parameters of the nonisotropic propagation
medium and parameters of the employed antenna. As the

results of the Fourier analysis of the CCF do not significantly
depend on the direction of the MS or the value of &, the CT
is only evaluated in two different cases of EASs with fixed
as and employing two different antennas. The CT is defined
as At(Daro = 0.5). Figure 7 shows the CT with respect
to the value of the MS speed in a log-log scale. All these
graphs exhibit an almost linear relation between the value
of the MS speed and the CT in a log-log scale, particularly
when we use horizontal-electric antenna. We point out that
the average CT with EAS I is larger compared to the EAS
II. The CT average value results are in consistency with
available approximation formulas for the CT in the literature.
For example, when |R| = 0.5, Rappaport in [35] reports
an approximation formula for the CT as CT = 9¢/8|v]w,
where ¢ is the speed of light and w is the carrier frequency.
Given |v| = 60Km/h and w = 27f with f = 1GHz,
this formula results in CT = 32.22 milliseconds which is
very close to the results of our model in the scenario of
EAS I. In order to suggest more accurate formulas for the
CT in outdoor environments, we use the same curve-fitting
technique being employed for the CB. This way, we find
a simple linear approximation between the CT and |v]| as
follows (horizontal-electric antenna):

Ky = 11.2934, k= —1.2112;
EAS I; & = 10
CT ~ ki |v]®, ’ > (24
il k= 85378, k= 12103 Y
EASIL a = 1.

4.2.3. Spatial correlation

We evaluate the effect of multiple directional antennas and
their spatial separations at the transmitter/receiver sides
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--- EASTI (a = 10), half-wavelength antenna
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FiGure 7: Coherence time, with respect to the value of the MS speed
[v|, considering two different EASs: EAST (« = 10) and EASII (a =
1), Laplacian AAS pdf (a = 0.25rad), using exponential DP with
7 = 3.33 microseconds, ¢ = 1 microseconds, fi = f, = 1GHz,
and for a SISO communication system; employing half-wavelength

antenna or horizontal-electric antenna.

on the CCF by the spatial coherence (SC) and the spatial
correlation coefficient (SCC). In order to evaluate the SC
at the transmitter (or the receiver) and analogous to the
definition of the CT and the CB, we define the SC with
respect to the antenna separation on the x-axis of the
azimuthal plane as the solution of Ax = [Ry1,41/Ri1,11| = 0.5.
It is noted that the SC could be defined for any direction or
as a nonnegative matrix where results turn out to be similar.
Our simulation results show that the SCC at the transmitter,
that is, [Rp1,41/R11,111 (or at the receiver, i.e., |Rim1n/Ri1,111)
decreases when the distance between two antennas on the
azimuthal plane increases. These variations depend on the
response of the APP main-lobes of two directional antennas
and the type of propagation on the azimuth and the
elevation, that is, the SC is a function of the parameters of
the AAS and the EAS pdfs, the antenna array response, and
the relative position of antennas with respect to each other.
Figure 8 shows the SC or Ax as a function of multicarrier
frequency separations for a MIMO communication system
employing different antenna types and using Laplacian AAS
and EAS I. We observe that this SC curve is almost linear in
the log-log scale. Using the same curve-fitting technique, we
suggest the following approximations between Ax measured
in wavelength ; = ¢/f; and Af measured in GHZ (for
Laplacian AAS and EAS I with & = 10):

SCy 2 Ax ~ ki (Af)R,

ki =0.9585, k, = —0.2526;
using Half-wavelength dipole,
where
ky = 1.0496, k; = —0.2526;
using Horizontal-electric dipole.

(25)

Ax (XA])

10! f

107! 100
Af (GHz)

—— Half-wavelength dipole
- -~ Horizontal-electric dipole

FIGURE 8: Spatial coherence, with respect to separation between
two multicarrier frequencies Af, considering EAS I (« = 10),
Laplacian AAS pdf (a = 0.25 rad), using exponential DP with
T = 3.33microseconds, 0 = 2microseconds, fi = 1GHz,
fr = fi + Af, and for a MIMO communication system at the
transmitter station (BS) when one antenna is located at the center
of the azimuthal plane and the other is located on the x-axis with
the separation distance Ax; employing half-wavelength dipole or
horizontal-electric dipole with the length of h = ¢/2f.

The proposed CCF takes also into account the effect
of antenna elements which are located outside the hor-
izontal plane. Figure 9 shows the SCC at the transmit-
ter, [Rp1q1/Ri1,11l, for a scenario where two antennas are
vertically separated from each other on the z-axis. Using
half-wavelength dipole and horizontal-electric dipole, and
assuming EAS I and EAS II for the elevation propagation,
from our evaluations we observe that the decaying slope
of the CCF mostly depends on the type of propagation in
elevation, EAS I or EAS II. Evidently, such an SCC curve
depends also on the carrier frequencies.

5. CONCLUSIONS

We have calculated the CCF for a MIMO multicarrier
channel in a 3D outdoor environment. The novelty of this
3D-CCF is that it considers the impact of nonisotropic wave
propagation along with directional antenna propagation
patterns. Our derivation is a nongeometry approach as in
[17] where the nonisotropic environment and the antenna
pasterns are described by their Fourier series expansions. The
proposed CCF turns out to be the multiplication of three
correlation functions. The first function is characterized by
the parameters of the antennas at the BS and the scatterers
around the BS. Similarly, the second function is characterized
by the parameters of the antennas at the MS and the
scatterers around the MS. The last one describes the impact
of the delay profile and the pathloss component (see [17] for
more details about this term). The first two CCFs (in each
station) appear as a linear series expansion of averaged Bessel
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[Rp1,q1/R11111

Distance (xA)

—— EAST (a = 10), half-wavelength dipole

--- EASI (a = 10), horizontal-electric dipole
EASTI (a = 1), half-wavelength dipole
EASII (a = 1), horizontal-electric dipole

FIGURE 9: Spatial correlation coefficient, with respect to vertical
distance in wavelength A between two directional antennas located
at the center of the azimuthal plane (one is located at z = 0),
considering two different EASs: EAS I (« = 10) and EASII (« = 1),
Laplacian AAS pdf (a = 0.25rad), using exponential DP with
7 = 3.33 microseconds, ¢ = 2 microseconds, fi = f, = 1 GHz, and
for a MIMO communication system at the transmitter station (BS);
employing half-wavelength dipole or horizontal-electric dipole.

functions of the first kind. The coefficients of this expansion
are given by the 2D linear convolution of the FSCs of the cor-
responding antenna propagation patterns with the FSCs of
the nonisotropic distributions of the angles of scatterers. In
practice, this expansion has a limited number of components
since the coefficients converge to zero rapidly. Our numerical
evaluations on the CCF revealed that the power spectrum
density is sensitive to the environment type (i.e., to the shape
of the pdf of the EAS) and the characteristics of the employed
antenna on the MS side. We also proposed formulas for
approximation of the coherence bandwidth, the coherence
time, and the spatial coherence using the proposed CCE
These approximations are accurately close to the correspond-
ing empirical results reported in the literature for realistic
outdoor propagation channels. The SC is impacted by the
effect of the antenna separation, the APPs, the multicarrier
frequency separation, and the propagation environment.

APPENDICES

A. CALCULATION OF THE CROSS-CORRELATION
FUNCTION

This appendix provides details of the calculation of the last
two expectations in (12), that is,

E[GE(@F, 0% w))GE" (0,08 w

1 12’

) ]/c)(wla ‘I’B—wzaBl‘I’B):I
b

M (@M OM. M* .
E[GM (03,0 0)) GM (02, 0 wy)
5 el/O @i (@ —vt) " —wn (alf 7vrz)”\yg)]

(A.1)

in which ¥; 2 [cos(€;) cos(®;), cos(Q;) sin(©;), sin(Q)]”
[15] (see Figure 1 and the list of notations in Section 2).
The calculation is proposed for the case when i; = i, since
E[ej(¢f1 7¢"2)] = 0 for iy # i>.

Using the FSEs for APPs, AASs, and EASs, we calculate
the expectations either at the BS or at the MS. As an example,
we evaluate this expression at the MS with antennas m and n.
In this situation, we have

E[ G (@), M5 0)Gi (01,05

[( > g’mk"‘k’" (wr)et ;Mekyg’{w)
IS
* @M _gnoM M M
X( Z g’jr\t/;IkT,k; ((,()z)e ki ©; e k3 Q ) (]/C)d Vi j|)

ki\ky

)e(]/c)dw T‘PM]

(A.2)

where d¥, 2 (wrt; — wit))v + (wa¥ — wyall) and
g%f;kmk? (wy) and gnﬁ’fkln,k; (w,) are the FSCs of the APPs. Using
the definitions for ¥' and d}/ ,, we get
i aMm T\yM
exXp c m,n ‘Ili
_ e(j/c)sin(Qf”)z,’,”,’,,

Xe(j/c)[cosQM\ X Z+y£‘n’1n2 sin(@M —arctan(xm ﬂ/ym D)1

(A.3)

Then, we substitute (A.3) in the integral form of (A.2),
where the distributions of AAS and EAS are repre-
sented by fM(@M) 12 FMeke and fM(QM) =

o Fi M ik | respectively. After doing some manipula-

tions, we get

E[GM (0, 0 ) GY™ (@M, 0 wp) el 1" |

+o0
*
S Y {(9%kl,kz<wl>®gﬁfkl,kz (@)
ky,ky=—o0

M

® (?AA;/;Q ?E]Ylfcz ) )]kl efkiarctan(yy;, WX
/2 ) o M

% J e]sz e](z‘ ,/€) sin(Q )]k1

/2
ALy
x(cos (M) =2 250 . I )}dﬂf\d},
(A4)

where Ji(u) 2 (j7%/m)[gel“os¢ cos(kE)dE is the kth-order
Bessel function of the first kind, and ® denotes linear
convolution. The same calculation procedure is valid for the

BS side with dg)q 2 (wyab - wzag) and APPs on the BS side.
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B. THE RELATIONSHIP BETWEEN CCF AND
THE ENVELOPE PROCESS r(t; w)

For the envelope process r(t;w) in the presence of enough
number of multipath waves (where I is large enough), and
fori=1ori=2,wehave [11, pages 47-51]

Elr(ti;w1)r(ts w2)]

1

239D
=3 | R(t;, i3 wi, ;) | (1 + +/Dataw )8 (MM),

1+ \/Daraw
(B.1)

where &(-) represents the complete Elliptic integral of

the second kind [15] and Dayaw 2 |R(t1,t2;w1,w2)|2/
IR(t,-,t,-;wi,wi)\z. We approximate this equation using the
expansion of the hypergeometric function [11, page 51], and

obtain
Dt pw )
4 )

(B.2)

A
Elr(twy)r(tsw)] = " | R(t;, ti; wi, w;i) | (1 +

From the above, we get pasaw = Daraw = 0.5. Therefore,
using the expression of the CCFs in this dissertations, the
CB and the CT are given by solving one of the following
equations, respectively, for Aw and At:

Dope = 0.5,  Dago = 0.5. (B.3)
From (B.3) we observe that the CB and the CT are functions
of various parameters such as the APP of the employed
antenna at the MS, AAS of the propagation environment on
the MS side, and the speed of the MS.
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