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Precoding problem in multiple-input multiple-output (MIMO) ad hoc networks is addressed in this work. Firstly, we consider
the problem of maximizing the system mutual information under a power constraint. In this context, we give a brief overview of
the nonlinear optimization methods, and systematically we compare their performances. Then, we propose a fast and distributed
algorithm based on the quasi-Newton methods to give a lower bound of the system capacity of MIMO ad hoc networks. Our
proposed algorithm solves the maximization problem while diminishing the amount of information in the feedback links needed
in the cooperative optimization. Secondly, we propose a different problem formulation, which consists in minimizing the total
transmit power under a quality of signal constraint. This novel problem design is motivated since the packets are captured in
ad hoc networks based on their signal-to-interference-plus-noise ratio (SINR) values. We convert the proposed formulation into
semidefinite optimization problem, which can be solved numerically using interior point methods. Finally, an extensive set of
simulations validates the proposed algorithms.
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1. Introduction

Recently, MIMO ad hoc networks have attracted an increas-
ing interest. The use of multiple antennas at both wireless
link sides has shown a promising solution to boost up
the spectral efficiency of the point-to-point and cellular
communication systems [1, 2]. In ad hoc networks, where the
nodes operate without a central administration or underly-
ing infrastructure, the MIMO links play an important role
in overcoming some problems such as the lower system
throughput and the higher energy consumption. However,
a smart optimization signaling algorithm associated with
a sophisticated medium access control (MAC) scheme has
to be proposed in order to handle these benefits [3]. In
this work, we are interested in elaborating smart signaling
schemes for MIMO ad hoc networks.

Generally speaking, the transmission strategies with
MIMO techniques are addressed in three communication
systems: point-to-point MIMO communication, cellular
MIMO communication, and MIMO ad hoc networks or
more generally MIMO interference channel.

Point-to-point MIMO links are extensively studied in the
literature. The great potential of MIMO communications
in single link scenario is proven in [1]. The authors in

[4] address the joint design of transmit (linear precoding)
and receive (linear decoding) beamforming for multi carrier
MIMO channels. In [5], the authors show that the optimum
linear precoder/decoder diagonalizes the MIMO channel
into eigen subchannel.

Besides, extensive research is devoted to MIMO broad-
cast (MIMO BC) and to MIMO MAC systems. Recall that
in these systems, either the transmitter or the receiver is
common between the active wireless links. In [6] the authors
optimize the mean-square error (MSE) under a power
constraint. In [7], the joint optimal downlink beamforming
in multicell SDMA system is considered. The author in [8]
treats the same problem as before and provides a complete
solution by using the virtual uplink equivalence concept.

All the aforementioned works, in both point-to-point
and cellular communication systems, concern almost the
problem of capacity maximization and prove the fruitfulness
of using MIMO techniques. However, evidencing this poten-
tiality in the case of ad hoc networks is not a trivial problem.
In these networks, the optimization problem using MIMO
techniques needs a more careful study for three reasons.
Firstly, we are in fully interfering environment because
only one frequency is used. Secondly, the sensitivity of the
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performance of ad hoc networks depends on the overheads
introduced by the feedback link required for any cooperative
optimization. Thirdly, the cross layer design which is based
on the signal-to-noise ratio of the received packets must be
considered.

Mainly, our contributions in this paper are twofold:
firstly we propose a fast and efficient cooperative algorithm
for the conventional capacity maximization problem, and
secondly we devise a novel problem design based on the
optimization of the quality of the received signal rather than
the system capacity.

In MIMO ad hoc networks, the transmission scheme of
each user depends on that of other users since the inter-
ferences at each user depend on all the transmit covariance
matrices in the network. Thus, the first part of our work
which deals with the conventional problem of maximizing
the global capacity will be more complicated. The global
maximization came usually at the cost of frequently feedback
signaling which depends on the convergence rate of the pro-
posed algorithm. In literature and due to the nonconcavity
of this problem, only a suboptimum solution is found by
using some nonlinear programming methods. The Gradient
Projection (GP) algorithm proposed in [9] maximizes the
total system capacity subject to constant power constraint at
each node in the network. In their work, the authors present
centralized and distributed schemes to solve the problem.
Although the proposed algorithm converges, its convergence
rate slows down as it is approaching the solution. When
performing cooperative and distributed optimization, the
nodes may share some data along the convergence process.
The amount of information to be transmitted in the feedback
link will grow with the number of iterations. Thus, reducing
this number alleviates the overheads. In this context, Newton
method becomes an intuitive candidate for such a problem.
However, due to the complexity of computing the inverse
of the Hessian matrix, this solution will be excluded. As
an intermediate solution, we propose to use the Quasi-
Newton (QN) methods which approximate the inverse of
the Hessian matrix rather than computing the true one. To
summarize, these methods are motivated for two reasons:
(i) a provable and super linear convergence can be achieved;
(ii) the complexity of this algorithm is far from that of the
Newton method and comparable to the gradient one.

In literature, the design of the signaling problem in
MIMO ad hoc networks is given usually by the minimization
of the total transmit power under a capacity constraint or by
the maximization of the capacity under a power constraint.
For completeness we propose in the second part of this
work a different and efficient problem formulation which
consists of minimizing the total power under the quality
of the received signal constraints. In cross-layer design for
wireless local area network (WLAN) networks the SINR is
the common parameter used for acquiring successfully the
packets in the network. Thus, we see that improving the
quality of the received signal is more beneficial than the direct
maximizing of the system capacity. In the fourth section we
clarify the motivation and the efficiency for our proposed
design in MIMO ad hoc networks.

The rest of this paper is organized as follows. In Section 2,
a review of the pertinent works on the precoding methods
in MIMO ad hoc networks is presented. In Section 3,
the capacity maximization problem is considered. In this
Section, the nonlinear optimization methods are overviewed,
and a cooperative and distributed optimization algorithm
based on the QN methods is proposed. In Section 4 a new
formulation of the signaling problem is proposed, and a
solution based on the semidefinite programming (SDP)
solver is devised. Finally, a general conclusion is drawn in
Section 5.

The notation in this paper will be as follows. The boldface
denotes matrices and vectors. For a matrix R: R*, RT, and
R denote the conjugate, the transpose, and the conjugate-
transpose, respectively. tr(R) is the trace. I stands for the
identity matrix. R > 0 represents a positive semidefinite
matrix.

2. Related Work

In the last two years, wireless mobile ad hoc researchers have
focused on the MIMO technique to boost up the network
spectral efficiency and to improve the achieved quality of
service. Interestingly, in this context two fields have received
particular emphasis: the first one deals with the cross layer
design issues where protocol design is tightly coupled with
a deeper understanding of the physical layer and channel
behavior [3, 10], and the second addresses the transmit
signaling strategies [9, 11, 12].

In [3] some tradeoffs concerning the achievement
of the conflicting goals of rate and reliability increases,
power savings, and latency reduction are thoroughly dis-
cussed. Particular emphasis is placed on the role of
the Channel State Information (CSI) at both transmitter
and receiver. Moreover, the authors indicate that a solid
understanding of channel estimation techniques and on
their accuracy and availability are key ingredients of the
cross layer design. Winters in [10] discusses the use of
smart antenna systems in ad hoc networks and suggests
that MAC and routing protocols have to be modified
in order to take advantages of the smartness of these
antennas.

The optimum signaling problem when employing mul-
tiple antenna elements has received less attention. Resolving
for optimum signaling for the noninterference and the fixed-
interference cases is done with the traditional and generalized
waterfilling procedures, respectively, in [1].

The gradient projection algorithm proposed in [9] max-
imizes the total system capacity subject to constant power
constraint at each node in the network. In their work, the
authors present centralized and distributed schemes to solve
the problem. Although the proposed algorithm outperforms
the iterative waterfilling algorithm (IWF), its convergence
rate slows down as it is approaching the solution. Recall that,
IWF treats the problem as a noncooperative game and aims
to reach the Nash equilibrium (NE) which does not provide
the best transmission strategy. The optimum signaling in
the case where the CSI is assumed only at the receiver, is
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considered in [13]. The authors demonstrate that putting
all power into a single transmitting antenna is optimum in
the case of strong interferences. Whereas, dividing the power
equally between independent streams from the different
antennas is optimum when weak interferences is expected. In
[14] the authors show that performing beamforming by all
users approaches the optimum signaling when the number
of users tends to infinity. More specially, putting the power
along the largest eigen value of the channel covariance matrix
is shown to be optimal in the sense of achieving system
capacity.

The authors in [11] treat the problem of spatial
beamforming in MIMO ad hoc networks where each
node is equipped with a receive/transmit beamformer pair.
They proposed an iterative minimum mean-square error
(IMMSE) beamforming algorithm where they enforced the
receive beamformer to be equal to the conjugate of the
transmit beamformer.

In [15] the authors studied the DSL (Digital Subscriber
Line) power control problem as a noncooperative Nash
game resulting from the distributed implementation of
the iterative waterfilling algorithm (IWFA). They proposed
a different problem formulation in order to analyze the
convergence behavior of IWFA.

In [16], sufficient conditions for convergence to the
equilibrium point are derived under totally asynchronous
update. In [17] the authors established the existence of
NE of the problem of individual rate maximization in
MIMO interference channel. They proved that the Nash
equilibrium is unique if the multiuser interference is
negligible. In [12] a non-cooperative algorithm is pro-
posed to solve the global problem. The authors perform
generalized waterfilling with respect to the transmitting
and receiving node covariance matrix. They suggested
minimizing an alternative objective function called TIF
(Total Interference Function) rather than solving the global
optimization problem directly. In [18] the authors provide
a unified framework for the non-cooperative maximization
of mutual information in the Gaussian interference channel.
A MIMO asynchronous waterfilling algorithm is provided
for systems with square nonsingular channel matrices. A
set of conditions is derived to guarantee the convergence
of the proposed algorithm and the uniqueness of the NE.
In [19] the same authors extend their work for arbitrary
channel matrices (rectangular matrices, rank deficient matri-
ces).

In this paper, we consider a scenario of ad hoc network
where the nodes aim to increase the system capacity rather
than the individual capacity. To this end, they have to
exchange some information along the procedure of con-
vergence [9]. Considering this scenario, our contribution
can be summarized by two points. First we propose a fast
and distributed method to decide the best transmission
strategy (which outperforms the Nash equilibrium). We then
propose a new problem design more suitable for ad hoc
network. This new approach consists in optimizing a quality
of service constraint rather than optimizing directly the
capacity.

3. Capacity Maximization Problem

We consider an ad hoc network formed by N links, each
of which employs M antenna-elements. The links in the
network are assumed to be unicast predefined links [9].
The nodes perform independent decoding with single user
detection. We assume also that the CSI is available at both
the transmitter and the receiver. This can be done by a
smart channel tracking algorithm associated with enhanced
MAC design [20]. We assume a frequency nonselective fading
MIMO channel between the nodes. Let H; ; (M X M complex
matrix) denote the channel from node i to node j, and let
also n; (M x 1) be the noise vector seen by the node j. In this
section, the channel matrix and the noise vector are assumed
to be iid complex Gaussian variables with zero mean and
unit variance. For such a receiver the interfering signals are
unknown. Thus we model them as Gaussian distributed
and it has been shown that many interferences whiten this
distribution [1, 13].

The received signal can be seen as the multiplication of
the normalized weighted transmitted signal x by the-Signal
to-Noise Ratio (SNR) of this signal, namely p, and also
multiplied by the correspondent channel. By focusing our
attention on the node i, the baseband signal received by this
node is given by

N
yi = JpHuxi+ > JyiHix; +n;, (1)

j=Li#i

where y is the Interference-to-Noise Ratio (INR). Under the
assumption that the channel and the noise are independent
and that E(n;nf’) = I, the covariance matrix of interference
plus noise is given by R; = I + zﬁ'\f:l,j#i ¥i,iHi jQHL, where
Q = E(xjx? ) represents the transmit covariance matrix.
Finally the total system capacity can be written as

C= ici = i10g2 (det(I +p,‘H,‘,,‘Q,‘HgRi_1)), (2)

i=1 i=1

where the expectation is taken over all the random channel
matrices. The global optimization problem is, then:

maximize C

_ (3)
i=1---N.

subjectto Q; € 4
where 4 is the set of positive semidefinite (PSD) matrices
having unit trace.

Due to the nonconcavity of this problem, only a subopti-
mum solution can be found through nonlinear optimization
methods. A brief overview of these methods will be given in
the following.

3.1. Mathematical Review. Let f be a multivariable function
defined on the convex set E. Without loss of generality, all the
iterative descent (ascent) methods are defined as an update of
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the solution at each iteration. A generic algorithm is given by
the following equation:

Xk1 = Xk + xSk gk (4)

where the vector Sigi represents the step or the search
direction, and ay is the step size. Hereafter we will define the
matrix Sk and the vector gg.

3.1.1. Determination of the Step. Almost all the methods
define g as the gradient of f. The difference is only in the
definition of the matrix Sg.

The method of steepest the descent (referred later as the
gradient method) defines Sy as the identity matrix. The idea
behind this method is that the function f is approximated
locally by a linear function. This method is one of the
widely used methods for minimizing a function of several
variables. It is extremely motivated since it is very simple to
be implemented, and only the first partial derivatives of f
are required. However, the convergence rate of this method
is very slow and is tightly depending on the initial point. This
slowness can be interpreted by the fact that two consecutive
search direction vectors are orthogonal. That is, g,fgkﬂ = 0.
More careful examination on the convergence of this method
can be found in [21].

The Newton method can achieve a superlinear conver-
gence by defining Sk as the inverse of the Hessian matrix of
f. Let F denote the inverted matrix. Herein, the function
f is approximated locally by a quadratic function, and
this approximate function is minimized exactly. Therefore,
this method can eliminate efficiently the “jamming” or
“zigzagging” phenomenon encountered by the gradient
method. The order of convergence of this method is two if the
initial point is closed to the solution. Although the Newton
method is very attractive in terms of convergence properties,
it requires a complex evaluation and inversion of the Hessian
matrix at each iteration.

The CG method and the QN methods can be regarded
as being somewhat intermediate between the method of the
steepest descent and Newton method.

The CG method is motivated to accelerate slow con-
vergence of the steepest descent method while avoiding the
evaluation and inversion of the Hessian matrix as required
by the Newton method. This method is used in the context
of MIMO BC [22], in order to maximize the global capacity
under global power constraint.

The QN methods use an approximation of the inverse
of the Hessian matrix rather than the true inverse that is
required in the Newton method. This approximated matrix
can be build up on the base of information gathered along
the convergence way. These methods offer the most simple,
sophisticated, and fast algorithms for solving the uncon-
strained problems. The constraint is fulfilled separately by
performing a projection onto the constraint space. In our
work we focus on these methods, and we investigate par-
ticularly the DFP (Davidon-Fletcher-Powell) and the SSQN
(Self Scaling Quasi Newton) methods. For completeness, we
implement also the CGP (Congugate Gradient Projection)
method.

3.1.2. Determination of the Step Size. Exact lines search is the
evident and more accurate method in this context. With this
method o, can be computed as

o = argmin(x + ag’) (5)

where g’ = Sg.
In practice, the exact line search may be hard to find.
Inexact line search methods are more appropriate and easier
to be implemented [23]. One of these methods, called back
tracking line search, depends on two constants a, b with 0 <
a<0,5and 0 < b < 1, and it consists of iteratively increment

the variable ¢ until fulfilling the following condition:
/T 7.

f(Xps1) — f(xx) = atg' " g's t=0b"t. (6)
3.2. Quasi-Newton Method for MIMO Ad Hoc Networks. We
propose a fast and efficient algorithm based on the quasi
Newton method to solve the global optimization problem
(3). Our work is based on the gradient projection method
proposed in [9] and detailed in [21]. As we have seen in
the mathematical review section, the descent direction in
the latter method is based essentially on the gradient of
the total capacity C. This gradient is calculated with respect
to the transmit signaling matrix Q; of the user i. In our
proposed algorithm, we deflect this gradient direction in
order to achieve the most possible linear convergence rate.
The deflection is done by approximating the inverse of the
Hessian matrix by using the DFP and the SSQN methods.
Along the convergence way, the gradient is calculated, and
the inverse of the Hessian is updated accordingly. Note that
we retain the projection method from [9] to fulfill the
constant power constraint in the problem (3). An extensive
set of simulations shows that the performance of the QN
methods is close to that of the GP method while the
convergence rate of the QN methods is much better.

The detailed procedure is illustrated in Algorithm 1. Note
that for convenience we use the symbols vec and mat to
convert the matrices into vectors and to concatenate the
vectors into matrices, respectively.

The proposed algorithm is similar to the IWF algorithm
(based on the Nash equilibrium) where each user tries to
maximize the capacity. However, the difference is that our
algorithm tries to maximize the system capacity rather than
the individual capacity as done by the IWF algorithm.

According to our algorithm, the suboptimum is reached
by a cooperative and distributed way which is the most suit-
able solution for ad hoc networks. More precisely, each user
updates independently his covariance matrix with respect to
the other updated and notupdated covariance matrices for
other users. That is, when calculating the matrix Q;(k + 1)
at the kth iteration, the user i broadcasts the calculated
matrix to other users, so by that they can proceed the
calculation of their own matrices Qj/jx(k + 1) successively.
Clearly, the amount of information to be sent in the feedback
link in order to reach the local optimum is straightforward
depending on the rate convergence. Such a case in real ad hoc
network may generate unsupportable overheads. Explicitly,
the network will be saturated by the feedback information.
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Distributed optimization (at the user i)
Initialization
Qi(0), F;(0);
k = 0;
g(0) = Vo,C(Qi(0), ..
Main
While max [abs(Q;(k) — Qi(k —1))] > €
d = Fi(k) - vec(gi(k));
Q' = Qi(k) + mat(d);
Q" = projection(Q’) onto S;
find oy;
pilk) = aeds
Qi(k+1) = Qi(k) + (Q" = Qi(k));
broadcastingof Qi(k +1);
gi(k+1) = VqC(Qi(k+1),...,Qi(k+1);
Qi+1 (k)) cee QN(k))>
q = vec(gi(k + 1) + gi(k))s
find (Fi(k+1));
k=k+1;
end

>Qi(0)>- .. 7QN(O))

ALGoriTHM 1: Capacity maximization algorithm.

Thus, we can see the utility to optimize the global capacity
while keeping limited the amount of information to be
transmitted in the feedback link. The direct solution of
this problem is to minimize the number of iterations. Our
proposed algorithm by using the quasi-Newton methods
represents the most appropriate solution in this context. As
we will see, it represents a tradeoff between the capacity
maximization, the convergence rate, and the complexity.

Nevertheless, the proposed algorithm contains three
embedded functions that need to be shown in explicit
mathematical forms: (1) find ax, (2) projection (Q’), and
(3) find (Fi(k + 1)). In the following, we examine these three
functions in details.

3.2.1. Projection(Q'). From the subject function of (3), we
know that the space of feasible solutions can be defined
by the set S of PSD matrices having unit trace. Then, the
problem is how to project the matrix Q" onto S. For the sake
of simplicity, we first introduce the concept of Hermitian
vector. Assume now that b = vec(A) where A is a Hermitian
matrix, then b is called a Hermitian vector. From this
definition we have the following property:

Vm,n S [1,M] b(m—l)M+n = bEkn—l)Mer‘ (7)

For notation simplicity, we will refer to b(u—1)r+n by bn.

In the following, we give a theorem in order to demon-
strate that Q' is a Hermitian matrix, and therefore the
projection problem can be reduced to how to project a
Hermitian matrix onto the set S.

Theorem 1. The inverse of the Hessian matrix has the
conjugacy property when interchanging the index of the column

and the line simultaneously. That is F has the following
property:

Fonmn = Fopye Y, m',n € [1,M]. (8)
Proof. The demonstration will be conducted recursively.
Assume that this theorem is true for Fj(k) = A and
demonstrate it for F;(k + 1) = B. Now we have A,y =
A - Note that F;(0) can be initialized appropriately, in
order to verify the current theorem.

Mainly, the updating formula for the inverse of the
Hessian considered in the previous section is based on three
matrices: A, T = pp”, and R = Aqq”A. Now, if we prove
that the last two matrices have the conjugacy property, then
so for B.

First we demonstrate that if b = vec(g;(k)), then ¢ =
Ab is a Hermitian vector. Herein, we have to demonstrate
that ¢,y = ¢, for all m,n € [1, M]. Starting from the left
side, we know that ¢,,, = A,,,b where A,,, is the (m —
1)M + n line of the matrix A. It follows directly that c,,, =
Z%I’:l Zyzl Amn,m’n’bm’n’ Z%’:] zﬁ/’lzl A;Tm,n’m’b:/m’ =
¢, where we used the fact that A has the conjugacy property
as assumed before, and b is a Hermitian vector. This latter
property can be induced directly from the analytical form of
the gradient matrix given in [9, 22].

From Algorithm 1, we have that p = axA - vec(g), then
p is a Hermitian vector (as shown above). That is, py, =

p;tkm' Thus, Tmn,m’n’ = (pPH)mn,m’n’ = Pmnpjn’n’ = p:mpn’m' =
(Pﬂmp;k’m’)* = ((PPH)nm,n’m’)* = T;’:m,n’m’-

From [24], we recognize that A is a positive semidefinite
matrix. Then we have A = A, and R can be written as uu!
where u = Aq, which has exactly the same form as T, and
therefore the demonstration will be the same.

Therefore, by summing the three components of B, we
have

Vm,n,m,n € [1,M]. 9)
O

— *
an,m'n' = Bnm,n’ m

Consequently, d = F - vec(g) is a Hermitian vector (same
demonstration as ¢), and finally Q" is a Hermitian matrix.

As mentioned before, the problem now is how to project
the Hermitian matrix Q" onto the set S. By using the
Frobenius norm as the matrix distance criterion, it was
shown that adjusting the eigenvalues appropriately and
keeping the same eigenvectors solves for the projection
problem. To be clearer, let Q" = VAV be the eigenvalue
decomposition of Q'. Therefore, to satisfy the constant power
constraint we need to find g such that tr(A —uI)" = 1.
Once y is found. Q”can be constructed as follows: Q" =
V(A — ul)VH.

3.2.2. Find ak. In order to determine ay, we adopt the back
tracking line search due to its simplicity in implementation.
Herein, we do not suggest that this method is very accurate
compared to the exact line search method. However, we
believe that the value of ax will affect all the compared
algorithms, similarly. According to this method, we choose
fixed values of a € [0,0.1], b € [0,1], and ¢, € [0,1] and



C(k+1) = C( ,Q,',l(k‘f’ 1),Q,(k + 1), )
C(k) = C(~-~>Qi—l(k+ 1)’Ql(k)>)>

N
while Ci1y — Ciy < at;tr(gfi(k)(Q” - Qi(k)))

t = bt;
end;
o =1

ALGORITHM 2: Back tracking line search.

we find t according to the incremental procedure presented
in Algorithm 2.

3.2.3. Find (Fi(k + 1)). In this work, we investigate the DFP
and the SSQN Quasi-Newton methods. According to these
methods, the inverse of the Hessian matrix can be computed
iteratively according to (10):

FPP(k+ 1) = Fi(k) +v1 —v2,

(10)
ES™N(k +1) = (Fi(k) - vz)i—l +v1,
2

In which, ¢; = pf(k)q > 0 when a is chosen appro-
priately, c; = q"Fi(k)q, v1 = pi(k)p(k)/ci, and v2 =
Fi(k)qq"'Fi(k)/c.

3.3. Simulation Results. An extensive set of simulations is
carried out in order to compare the performance of the
four aforementioned algorithms: GP, CGP, and our proposed
algorithms, namely, DFP and SSQN.

For fairness in our comparison, we plot in each figure
(1) the achievable per-user capacity, which stands for the
local optimum in our problem and (2) the convergence rate
represented by the number of iterations to reach this local
optimum. Moreover and for the sake of comparison fairness,
we use the same common parameter used in [9] such as the
symmetric case where the SNR and the INR values are the
same for all users. We note that our results are averaged on
high number of randomly generated channel matrices. For
more simplicity, we use fixed number of antenna elements at
each node (M = 2).

As a first result, we show in Figure 1, the performance
with respect to the number of users. From the per-user
capacity point of view, we notice that the four compared
algorithms achieve almost the same performances. However,
the DFP and SSQN algorithms perform much better than
the others in term of convergence rate. In this figure, we set
the SNR at 0dB and the INR at 0 dB. We examine the case
of two, three, four, and five users. In the results, we exclude
the scarce cases where the algorithms do not converge. To
interpret the results, we focus firstly on the GP algorithm
curves. We can see that our results concerning this algorithm
match very well with the results given in [9] in terms of
capacity and number of iterations. Recall that the number
of iterations of the GP method is less than 30 almost the time
when the symmetric configuration is adopted (as suggested
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FIGURE 1: Per-user capacity and convergence rate versus number of
users for M = 2, SNR = 0dB, and INR = 0dB.
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FIGURE 2: Per-user capacity and convergence rate versus
interference-to-noise ratio for M = 2, N = 4, SNR = 0dB.

by the authors). However the DFP and the SSQN achieve a
superlinear convergence rate by reaching the local optimum
in no more than 7 iterations, alleviating by that the amount
of feedback information fourfold.

In the Figure 2, the performances versus the INR values
for fixed SNR value are depicted. As shown in this figure,
the convergence rate of the DFP and the SSQN methods
is the best among the others. Basically, we observe that
the convergence rate is independent from the interference
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level. Both the DFP and the SSQN reach the local optimum
with less than 6 iterations. However, the GP and the CGP
algorithms converge more quickly when low interference
level is presented. Whereas, they show a poor convergence
rate when the interferences become strong. By comparing
the proposed method and the old methods, we can obtain
an improvement on the convergence rate up to 400%.

From the per-user capacity perspective, the simulations
show that a small gap is presented between the proposed
method and the old method. This gap is negligible in low and
moderate interference environment. Whereas, when strong
interferences are presented, a small degradation on the DFP
and the SSQN can be noticed. However, this degradation
comes at the cost of the significant gain in the convergence
rate.

Generally speaking, the performances of DFP and SSQN
are much better than that of GP and CGP. In low interference
environment, the proposed algorithms enjoy a provable and
fast convergence. However, in strong interference environ-
ments where the old algorithms show a poorer convergence
rate, a slight sacrifice on the capacity leads to higher
convergence rate, which is an appropriate solution for
MIMO ad hoc networks.

4. Novel Optimized Signaling Scheme

In the previous section, we dealt with the conventional
problem of capacity maximization under a power constraint.

In this section we attack the signaling problem from a
different angle. We propose a different and efficient problem
formulation which consists in minimizing the total power
under Quality of Signal (QS) constraints. To the best of our
knowledge, this formulation is not addressed before in the
context of precoding in MIMO ad hoc networks.

This novel problem design is motivated, since in WLAN
networks the successful reception of the packets is based
on their SINR values. Thus, maintaining a minimum SINR
threshold would be more efficient in boosting up the system
throughput. Our proposition does not deal directly with the
SINR of each stream. Instead, it deals with another entity
which is related to the SINR by an increasing function.

Explicitly, our proposition consists in minimizing the
total power while maintaining the quality of the received
signal above a certain predefined threshold. This quality of
signal is interpreted as the ratio of the power of the total
desired signal received across the antenna array over the
power of the interuser interference signals received by the
same antenna array.

4.1. System Model. For notation simplicity, we introduce
a slight modification on the system model given in the
previous section. We use the operator /() to denote explicitly
that the destination of the source i is I(i). The channel
matrix denoted by H and the noise vector are assumed to
be iid complex Gaussian variables. For each node let G
represent the transmit precoder in which the transmit power

is embedded. By focusing our attention on the node I(7), the
baseband signal received by this node is given by

N
vioy = HiiGxi+ >, Hi,jGjx; + ny, (11)
[N —] 1wl ——
o j=1j#il(i) f
desired signal . _  noise
inter ferences

where x; represents the normalized information to be sent
(E(xf’x;) = 1). The first term in (11) represents the desired
signal intended to node I(i) while the second regroups the
total interference signal received by node I(i), and the third
is the additive white Gaussian noise. Under the assumption
that the channels and the noise are independent and that
E(nn'?) = I, the covariance matrix of the received signal after
the decoding by a matrix Dy can be written as

N
H
>, HipQH; +1,
j=1j#il(i)

E(rl(i)rf({i)) = Hl(i),iQiHﬂIi),,‘ +

(12)

and the covariance matrix of interference plus noise is given

by

N
R =1+ > Hie,QHf, (13)
j=1,j # i,l(i)

where Q = GG represents the transmit covariance matrix
and H = DH represents the equivalent channel seen by the
transmitter.

4.2. Problem Formulation. In literature, the research issues
concern the problem of capacity maximization. In ad hoc
networks, the optimization problem needs a more careful
study. In fact, as suggested in [3, 10], the quality of the
received signal measured by the signal-to-interference-plus-
noise ratio is the criterion adopted for connectivity in cross
layer design (also by the IEEE standardization comity), and
it is commonly used by the WLAN devices manufacturers.
As follows, a packet is successfully received if this criterion
is above a prespecified threshold. Moreover, maximizing
the overall system capacity may not lead always to the
high throughput obtained under a quality of signal (QS)
constraint due to critical links that fall below the packet
capture threshold.

In this section, we focus on the optimality of the
transmission strategy in the sense of minimizing the total
transmit power under a QS constraint at each user. The
global optimization problem is given in (14). Since the
system capacity is an increasing function of the QS values
of each user, boosting up these values can achieve a desired
capacity. This fact will be examined later by simulation. On
the other hand, the SINR of each stream is related to the QS
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by an increasing function. If we set a bigger QS threshold,
then we obtain a better SINR values:
N
minimize Ztr(Q,-)

i=1

. tl‘(Hl(i),iQin({i))i) o
subject to N i .
tr(I + o1l Hl(i)’ijHl(i)’j)

However, to be more concise about this formulation,
some points have to be recalled and clarified.

(i) We perform this study under the assumption that the
decoder is independent.

(ii) In this work, we focus only on the precoder design,
and we aim to alleviate the interuser interferences as
this factor is the major limit in ad hoc networks.

(iii) The intrauser interference (the mutual interference
between streams) is not addressed in our formula-
tion. An optimal decoder can reduce this kind of
interferences.

(iv) The signal quality is measured as the ratio between
the power of the total desired signal to the power of
the total interuser-interferences-plus-noise power.

(v) This transmission strategy can be seen as a step
in an iterative joint precoder/decoder design for
MIMO ad hoc networks. Although we do not address
the decoder design in this work, we believe that
a receiving scheme optimizing the SINR for each
stream would be complementary to our transmit
scheme.

(vi) The improvement due to utilizing the designed
precoder represents the minimum gain that can be
obtained (i.e., in the case where the decoder is not
optimized). If we use an optimized decoder in parallel
with the designed precoder, the gain will be boosted

up.

This problem is not convex, and the solution cannot be
obtained directly. In the next section we show that, by using
matrix theory and semidefinite programming, we can solve
this problem efficiently.

4.3. Semidefinite Optimization. Semidefinite programming
(SDP) or semidefinite optimization (SDO) deals with convex
optimization problems over symmetric positive semidefinite
matrices [23]. Although this latter constraint is nonlinear,
but convex, so by using such interior point methods we can
still solve these problems with polynomial complexity and
practical efficiency. A general formulation of a semidefinite
optimization problem can be written as

minimize tr(AX)
subject to  tr(B;X) =b; i=1---N. (15)
X>0

Note that X >
semidefinite.

From practical point of view, many problems can be
casted into the form of convex optimization. The utility to
convert a problem into convex one is that even if an analytical
form of the solution may not exist, the problem can still
be solved efficiently using numerical methods. Convex opti-
mization can be solved iteratively using recently developed
high-efficient interior point methods by converting the
constrained problem into a sequence of unconstrained ones,
which can be solved with Newton methods. Some program
packages are developed to solve such kind of optimization
problem, that is, SeDuMi [25]. This tool is encouraged for
our problem since it can handle efficiently complex number
manipulation.

0 denotes that the matrix X is positive

4.4. Global Algorithm. The primal problem (14) turns out
to be non-convex. However, by using some matrix manip-
ulation tools we can convert it to a general SDP problem.
Assuming that F;; = Hlf(ﬂ), Hi(),j and knowing that tr(XY) =
tr(YX), the constraint in (14) can be written as:

U‘(Fi,iQ,') > (Si |:M +

N
Z ’[I‘(Fi,ij>:|. (16)

j=1j#il()
Then, the problem (14) can be written as

N
minimize Ztr(Qi)
i=1

(17)
N

subject to Ztr(F,ﬁij) >6M i=1---N
=1

where F; = Fi;, F;;;) = 0and F;,j#i,,(i) = —0;F;;.
By concatenating the matrices F;; and Q; in diagonal
matrices problem (17) can be written as:

minimize tr(Q)
subject to tr(Z;Q)=&M i=1---N. (18)
Q=0

where Z; = diag(F;, - - - F;y) and Q = diag(Q; - - - Qn).
The operator X = diag(Y; - - - Yy) returns a square matrix
X where the matrices Y; represent its diagonal elements.
From [14] we know that the transmit signaling matrices
Q; are positive semidefinite. It follows that all eigenvalues of
these matrices are nonnegative. On the other hand, we can
show easily that the characteristic polynomial of the matrix
Q is the multiplication of the characteristic polynomial of all
its components Q;. Therefore, the positive semidefiniteness
constraint is conserved. In fact, in problem (18) we show
explicitly the positive semedefitness constraint of the matrix
Q, in order to be coherent with the general SDP form. The
former of (18) is now convex due to the SDP formulation.
The object function is linear, and the constraints are linear
matrix inequalities. Thus, they are convex. The convexity
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Centralized optimization
Build : F;; & Z;Vi,je [1---N]
Z; :Zi/(M(Si);Vie [1 . N]

V= [---vec(Zi),vec(Ziy) - - - ]
A= [7IN>VT];

b = ones(N, 1);

¢ = [zeros(N, 1); vec(Innm)];
K.I=N;

K.s = NM;

x = sedumi(A, b, ¢, K, pars);

Q = mat(x(N +1:end));

extract Q;Vie [1---N]

G; = Cholesky(Q;); Vie [1---N]

AvrLcorIiTHM 3: SDP solver.

ensures that the global optimum exists, and it can be found
in polynomial time. Once the matrix Q is obtained, Q; can
be extracted and factorized using Cholesky factorization to
obtain the transmit gain matrices G;.

At the global optimum the constraints are active, that
is, the inequality becomes equality. Thus, problem (18) is a
straightforward form of (15). This can be proved by con-
tradiction. Assume that the global optimum is reached and
the constraints are still inactive. Therefore, by minimizing
the total power (cost function) we can decrease the QS for
all users until all the constraints become active, and this fact
contradicts with the optimality of our solution.

A general approach to solve for problem (18) using
SeDuMi [25] tool is proposed in Algorithm 3.

According to our proposition, a centralized optimization
algorithm is performed. More precisely, the global CSI (for
all user) must be available at a central processing unit which
can calculate and feedback the transmit covariance matrices
for each user. Although the centralization is not allowed in
ad hoc networks, our global algorithm can be considered as
a benchmark for other propositions in this field of research.

4.5. Numerical Results. In this section, we conduct an
extensive set of simulations to access the performance of
our proposed algorithm. These simulations were carried
out using SeDuMi Matlab-based toolbox as shown in
Algorithm 3. Basically, the metric used is the power efficiency
[12]. This metric consists of the ratio between two power
entities. The first one is the total power used to maintain
the requested QS set, in the case without interferences.
The second stands for the total power provided by our
solver when interferences are taken into account. In fact,
the latter power value stands for the optimum solution in
our problem. As it can be perceived, the power efficiency
metric will be always less than one. A closed to one power
efficiency is obtained when powerful signaling schemes are
used. We simulate different random networks with different
number of nodes. Moreover, in each simulated network, the
results are averaged on sufficiently high number of channel
realizations. We adopt fixed antenna array size (M = 4) and
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QS thresholds (8; = 0.1,foralli) in our simulations, unless
stated otherwise.

Noting that since our problem design is not addressed
before in MIMO ad hoc networks, we do not compare our
results to other results in literature. More explicitly, we can-
not compare a power-minimizing problem under capacity
constraints with another power-minimizing problem under
QS constraints. As stated before, our algorithm stands as a
benchmark for other proposition in the same context.

Figure 3 shows the power efficiency performance with
respect to the number of nodes. As it can be seen, the
performance of the proposed algorithm depends tightly on
the number of transmitters in the network. If the number
of users is limited, the interuser interference level is limited,
and the power efficiency is near to one. When the number of
users increases, the interferences inundate the network, and
the power efficiency will be reduced.

From capacity point of view, we depict in the same figure
the ratio of the system capacity on the total transmit power.
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Herein, the capacity is expressed by bit/s/Hz and the power
is normalized with respect to the variance of the noise.

Recall that in our problem modeling we are not interested
to maximize the total capacity by itself, directly. Nevertheless,
by enforcing a certain set of QS thresholds we can fulfil
some capacity requirements. In Figure 4, we depict the
system capacity with respect to the QS threshold (). As it
can be noticed, a higher capacity can be obtained when a
higher threshold is imposed. However, imposing a high QS
threshold will increase the total transmit power.

5. Conclusion

In this work, the optimum transmission strategies in MIMO
ad hoc network are considered. We first deal with the capacity
optimization problem. In this context, a fast, cooperative,
and distributed algorithm is proposed in order to give an
optimum solution without inundating the system by the
feedback information. Our proposition is based on the
quasi-Newton methods for solving nonlinear optimization
problems. Compared to other algorithms in this context, our
algorithm presents the better convergence rate and enjoys a
provable and satisfactory convergence quality.

Then, we devise a novel problem formulation based on
the received signal quality constraints rather than capacity
constraints. This novel formulation is more beneficial for
WLAN networks. To solve our problem, we converted it into
SDP formulation, and we proposed a centralized algorithm
to calculate the precoders using Sedumi toolbox. Finally,
we evaluate our proposition through an extensive set of
simulation. In the future we aim to develop a distributed
version of the latter algorithm.

Appendix

The relation between the QS (quality of the received signal
across the received antenna array) and the SINR (of each
stream) is derived in this section. Assume that the power of
the received signal is composed by two entities: the power
of the desired signal (denoted by d), the power of the total
interuser interference plus noise (denoted by n). Let d; be
the power of the stream i and d_; the power of all the
streams except the stream i. Obviously, d = d; + d_;. Now
we can derive the relationship between the QS (denoted by ¢
hereafter) and the SINR for the stream i:

SINR; = L,
(d-i+n)
(A.1)
d
c=—.
n
Then,
1
SINR; = (A.2)

(d/di)(1-1/c) -1

It follows that the SINR is an increasing function of c.c
represents the QS reached by optimizing the precoder. If
we set a bigger QS threshold, then we obtain a better SINR

values. However we cannot control the SINR repartition
between the streams (this is represented by the ratio d/d;).
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