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This paper considers the compound wiretap channel, which generalizes Wyner’s wiretap model to allow the channels to the
(legitimate) receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter
guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The
compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter
sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel,
lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the
semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy
degree of freedom (s.d.o. f .) are derived for the degraded case with one receiver. Schemes to achieve the s.d.o. f . for the case with
two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally,
the multi-antenna (i.e., MIMO) compound wiretap channel is studied. The secrecy capacity is established for the degraded case
and an achievable s.d.o. f . is given for the general case.
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1. Introduction

The compound channel models transmission over a channel
that may take a number of states and reliable communication
needs to be guaranteed regardless of which state occurs.
For example, this type of channel might arise in real-
time wireless communications when the transmitter has
no knowledge of the channel state, but zero performance
outage needs to be guaranteed subject to a stringent delay
constraint. In this paper, we are interested in the compound
channel with an eavesdropper that receives outputs via
a compound channel that may also take a number of
states. Now the transmitter not only needs to guarantee
reliable communication to the legitimate receiver, but also
needs to prevent the information from being known by the
eavesdropper. This is a generalization of Wyner’s wiretap
channel [1] to the case of multiple channel states.

We consider the situation in which the channel remains
in the same state during the entire transmission, and the
channel state is known at the corresponding receivers, but

not at the transmitter. However, we note that having the
channel state information at the receivers comes at no cost
to the communication rate, because the channel states can be
learned by the receivers at the beginning of transmission via
training symbols whose length is negligible compared to the
codeword length.

We can also interpret the compound wiretap channel
as the multicast channel with multiple eavesdroppers (see
Figure 1). In this case, the number of states to the receiver
now becomes the number of receivers with each state
corresponding to one receiver, and the number of states
to the eavesdropper becomes the number of eavesdroppers
with each state corresponding to one eavesdropper. The
transmitter wishes to transmit information to all receivers
and keep the information secret from all eavesdroppers. In
this paper, we adopt this interpretation. From this viewpoint,
the compound wiretap channel provides a general frame-
work that includes a number of models studied previously
as special cases. These models include the parallel wiretap
channel with two eavesdroppers studied in [2, 3], the fading
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Figure 1: Compound wiretap channel.

wiretap channels with multiple eavesdroppers studied in [4],
and the wiretap channel with multiple receivers studied in
[5].

In this paper, we first study the discrete memoryless
compound wiretap channel, for which we provide lower and
upper bounds on the secrecy capacity. The lower bound
indicates that the channel input scheme needs to balance
the rates for all receiver-eavesdropper pairs, and hence none
of them may achieve their best secrecy rate. We further
establish the secrecy capacity for the degraded channel and
the semideterministic channel with one receiver and multiple
eavesdroppers.

We further study the parallel Gaussian compound wire-
tap channel, in which the channels to each receiver and
to each eavesdropper are parallel Gaussian channels with
multiple Gaussian subchannels. Channels of this type arise,
for example, in wideband wireless communication systems
such as frequency division multiplexing (FDM) systems in
which transmission takes place over a number of frequency
bands, and the eavesdroppers can tune their receivers to
access some of these frequency bands. Understanding this
channel is also important for studying the compound time-
varying fading wiretap channels, as the parallel channel
serves as a general model for the fading channel.

We first consider the degraded parallel Gaussian com-
pound channel with one receiver and multiple eavesdrop-
pers, for which we obtain the secrecy capacity. To further
illustrate our results, we study the secrecy degree of freedom
(s.d.o. f .), which characterizes how the secrecy capacity scales
with log SNR. We show that the s.d.o. f . depends only on the
total number of subchannels that the receiver accesses and
the maximal number of subchannels that one eavesdropper
can access. It is somewhat interesting that the s.d.o. f . does
not depend on the total number of subchannels that all
eavesdroppers can access and does not depend on the
number of eavesdroppers either. We observe that there is a
connection between the s.d.o. f . and secure network coding
studied in [6]. However, the s.d.o. f . is defined for noisy

Gaussian channels while secure network coding addresses
deterministic networks.

We then study an example parallel Gaussian compound
wiretap channel with two receivers and two eavesdroppers.
For this channel, we propose three schemes. Scheme 1 is to
map source information directly to Gaussian channel inputs,
and this scheme is shown to be strictly suboptimal. Scheme 2
is to introduce a key random variable to randomize the
source information, and this scheme achieves the s.d.o. f .
Scheme 3 is to randomize the encoder by introducing a
random prefix channel, and this scheme is also shown to
achieve the s.d.o. f . This example channel demonstrates that
randomization of either source information or encoder is
necessary to achieve the s.d.o. f . for the parallel Gaussian
compound channels.

We finally study the multiinput multioutput (MIMO)
compound wiretap channel. We first provide the secrecy
capacity for the degraded MIMO compound wiretap chan-
nel. We then study the general MIMO compound wiretap
channel, for which we propose an input scheme and derive
an achievable s.d.o. f . (a lower bound on the s.d.o. f .)
based on this scheme. Comparing with the MIMO channel
without eavesdroppers, the achievable s.d.o. f . of the MIMO
compound wiretap channel is reduced by the maximal
dimension of the projection of wiretap channel matrices on
the vector space spanned by the eigenvectors corresponding
to nonzero eigenvalues of channel matrices to the receiver.

We further note that after our conference publication
[7] appeared with the results presented here, another upper
bound on the secrecy capacity of the compound wiretap
channel was derived in [8]. The secrecy capacity result for
the parallel Gaussian compound wiretap channel was also
extended to the nondegraded parallel Gaussian compound
wiretap channel with one receiver and multiple eavesdrop-
pers in [8]. We also refer the reader to [9] for a review of
recent studies on compound wiretap channels.

The rest of the paper is organized as follows. In Section 2,
we introduce the model of the compound wiretap channel. In
Section 3, we present our results on the discrete memoryless
compound wiretap channel. In Sections 4 and 5, we provide
the results on the secrecy capacity and the s.d.o. f . for two
cases of the parallel Gaussian compound wiretap channel. In
Section 6, we provide our results on the MIMO compound
wiretap channel. In the last section, we give concluding
remarks.

2. Channel Model

We consider the following compound wiretap channel
model.

Definition 1. The compound wiretap channel consists of
one finite channel input alphabet X, J finite channel
output alphabets Y1, . . . ,YJ ,K finite channel output alpha-
bets Z1, . . . ,ZK , and a set of the transition probability
distributions for one channel use

PYjZk|X
(
yj , zk | x

)
for j = 1, . . . , J , k = 1, . . . ,K , (1)



EURASIP Journal on Wireless Communications and Networking 3

where x ∈ X is the channel input from the transmitter,
yj ∈ Y j is the channel output at receiver j, and zk ∈ Zk

is the channel output at eavesdropper k. The channel is
memoryless across channel uses.

As the correlation between Yj and Zk does not affect the
secrecy capacity (similar to [10, Lemma 1]), without loss of
optimality, we assume a transition probability of the form
PYj |XPZk|X as shown in Figure 1.

Definition 2. A (2nR,n) code for the compound wiretap
channel consists of the following:

(i) a message set: W = {1, 2, . . . , 2nR} with the message
W uniformly distributed over W ;

(ii) an encoder f : W → Xn mapping each message w ∈
W to a codeword xn ∈Xn;

(iii) J decoders gj : Yn
j → W ( j) for j = 1, . . . , J , each

mapping received sequence ynj to a message ŵ( j) ∈W
for j = 1, . . . , J .

The average block error probability for receiver j for j =
1, . . . , J is defined as

Pe, j = 1
2nR

2nR∑

w=1

Pr
{
ŵ( j) /=w

}
. (2)

The secrecy level of the message W at eavesdropper k for k =
1, . . . ,K is defined by the following equivocation rate:

1
n
H
(
W | Zn

k

)
. (3)

A rate-equivocation pair (R,Re) is achievable if there
exists a sequence of (2nR,n) codes with the average error
probabilities

P(n)
e, j −→ 0 for j = 1, . . . , J (4)

as n goes to infinity and with the equivocation rate satisfying

Re ≤ lim
n→∞

1
n
H
(
W | Zn

k

)
for k = 1, . . . ,K. (5)

In this paper, we are interested in the case of perfect
secrecy, that is, R = Re. A secrecy rate R is achievable if
the rate-equivocation pair (R,R) is achievable. The secrecy
capacity is defined to be the maximal achievable secrecy rate.

3. Discrete Memoryless Compound
Wiretap Channels

In the following, we provide lower and upper bounds on the
secrecy capacity of the compound wiretap channel.

Theorem 1. The following secrecy rate is achievable for the
compound wiretap channel:

R = max

[
min

j
I
(
U ;Yj

)
−max

k
I(U ;Zk)

]

= max min
j,k

[
I
(
U ;Yj

)
− I(U ;Zk)

]
,

(6)

where U is an auxiliary random variable, and the maximum is
taken over all distributions PUX that satisfy the Markov chain
relationships:

U −→ X −→
(
Yj ,Zk

)
for j = 1, . . . , J , k = 1, . . . ,K. (7)

Proof. See Appendix A.

Theorem 1 can be interpreted as a worst case result that
is, the worst receiver and the best eavesdropper dominate the
secrecy rate.

Theorem 2. An upper bound on the secrecy capacity of the
compound wiretap channel is given by

R = min
j,k

max
PUXPYj PZk |X

[
I
(
U ;Yj

)
− I(U ;Zk)

]
, (8)

where U is an auxiliary random variable whose joint distribu-
tion with X ,Yj , and Zk factors was shown in (8).

Proof. It can be seen that the quantity

max
PUXPYj Zk |X

[
I
(
U ;Yj

)
− I(U ;Zk)

]
(9)

in (8) is the secrecy capacity of the wiretap channel with the
transition probability distribution PYjZk|X [11, Corollary 2].
But the secrecy capacity of the compound wiretap channel
is less than the secrecy capacity of any receiver-eavesdropper
pair.

We note that it may not be possible to achieve the upper
bound given in Theorem 2 in general. This is because the
input scheme needs to balance the rates that can be achieved
for all receiver-eavesdropper pairs, and consequently, none
of them can achieve its best rate. This can also be seen from
the achievable rate in (6). The input distribution PUX that
maximizes the minimum of the secrecy rates of all receiver-
eavesdropper pairs may not be optimal for any single pair.

We now give an example channel in which the lower
bound given in Theorem 1 can be shown to be the secrecy
capacity. We say that the compound wiretap channel is
degraded if the transition probability satisfies the Markov
chain relationships:

X −→ Yj −→ Zk (10)

for all j = 1, . . . , J and k = 1, . . . ,K . For the degraded
compound wiretap channel, we have the following capacity
theorem.

Theorem 3. The secrecy capacity of the degraded compound
wiretap channel is given by

C = max
PX

[
min

j
I
(
X ;Yj

)
−max

k
I(X ;Zk)

]

= max
PX

min
j,k

[
I
(
X ;Yj

)
− I(X ;Zk)

]
.

(11)
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Figure 2: Semideterministic compound wiretap channel.

Proof. The achievability follows from Theorem 1 by setting
U = X . The converse follows because for each ( j, k) and an
input distribution PX , an upper bound

Re ≤ I
(
X ;Yj

)
− I(X ;Zk) (12)

can be derived as given in [1].

We next provide the secrecy capacity for the semide-
terministic compound wiretap channel, which has one
receiver (J = 1) and K eavesdroppers. The channel from the
transmitter to the receiver is a deterministic channel; that
is, the transition probability distribution PY |X takes on the
values 0 or 1 only, where the output at the receiver is denoted
by Y (see Figure 2).

Theorem 4. The secrecy capacity of the semideterministic
compound wiretap channel with J = 1 is given by

Cs = max
PX

min
k

H(Y | Zk). (13)

Proof. To prove the achievability, we apply (6) and obtain the
following achievable rate:

R = max min
k

[I(U ;Y)− I(U ;Zk)], (14)

where the maximum is taken over all distributions PUX that
satisfy the Markov chain relationship:

U −→ X −→ (Y ,Zk) for k = 1, . . . ,K. (15)

We further let U = Y . It is clear that this choice satisfies
the previous Markov chain condition, and results in an
achievable rate

R = max min
k

H(Y | Zk). (16)

The converse is relegated to Appendix B.

We note that the achievable scheme involves choosing an
auxiliary random variable U = Y . This indicates that a prefix
channel from U to the actual channel input X at the encoder
is necessary to achieve the secrecy capacity.
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Figure 3: Parallel compound wiretap channel with one receiver and
K eavesdroppers.

4. Parallel Gaussian CompoundWiretap
Channels: J = 1

In this section, we focus on the case in which J = 1 andK > 1,
that is, one receiver and K eavesdroppers (see Figure 3). We
further assume that the channel from the transmitter to the
receiver is the parallel Gaussian channel with N independent
subchannels, and the outputs of the subchannels at the
receiver for one channel use are given by

Ya = Xa + Wa for a = 1, . . . ,N , (17)

where W1, . . . ,Wa are independent Gaussian random vari-
ables with variances w2

1, . . . ,w2
a, and these noise variables

are independent and identically distributed (i.i.d.) across
channel uses. We note that for this model, Y1, . . . ,YN indicate
the outputs at the receiver from the N subchannels, and do
not indicate the outputs corresponding to different receivers.
The channel input is subject to the average power constraint
P, that is,

1
n

n∑

i=1

N∑

a=1

[
X2
ai

] ≤ P, (18)

where i is the symbol time index. We assume that each
eavesdropper can access some subchannels. On letting
Ak ⊆ {1, . . . ,N} include all indices of the subchannels that
eavesdropper k can access, the outputs at eavesdropper k are
given by

Zka = Xa + Vka for a ∈Ak, (19)

where Vka for a ∈ Ak are independent Gaussian random
variables with variances v2

ka. We further assume that v2
ka ≥ w2

a

for all a ∈Ak, and hence the channel is degraded.
For the degraded parallel Gaussian compound wiretap

channel, we have the following secrecy capacity.

Corollary 1. The secrecy capacity of the degraded parallel
Gaussian compound wiretap channel is given by

C= max∑N
a=1 Pa≤P

min
k

⎡
⎣

N∑

a=1

1
2

log

(
1 +

Pa
w2
a

)
−
∑

a∈Ak

1
2

log

(
1 +

Pa
v2
ka

)⎤
⎦.

(20)
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Proof. The achievability follows from Theorem 3 by choosing
X = X1, . . . ,XN with independent components and each
Xa ∈ N (0,Pa). The converse follows from [12, Theorem 2]
by setting R0 = 0 for each eavesdropper.

We note that the parallel Gaussian compound wiretap
channel is a more general model than the model in [3] in
that the number of eavesdroppers is arbitrary, each eaves-
dropper may access an arbitrary number of subchannels,
and the transmitter is allowed to allocate power among the
subchannels to achieve better secrecy rate. We also note that
the parallel Gaussian compound wiretap channel reduces to
the Gaussian/fading wiretap channel with multiple eaves-
droppers studied in [4] if there is only one subchannel.

We further note that after our conference publication
[7] appeared with the results presented here, the secrecy
capacity of the general (i.e., not necessarily degraded) parallel
Gaussian compound wiretap channel with one receiver and
multiple eavesdroppers has been obtained in [8]. We refer the
reader to [8] for further details.

To gain further insight into the secrecy capacity, we
consider the rate at which the secrecy capacity scales with
logSNR. In particular, we define the secrecy degree of
freedom (s.d.o.f.) as

s.d.o. f . = lim
SNR→∞

C(SNR)
(1/2) log SNR

, (21)

where without loss of generality, we choose w2
1 as the

reference noise level and define SNR = P/(Nw2
1). We refer

to a lower bound on the s.d.o. f . as an achievable s.d.o. f .

Corollary 2. Assume that the maximal number of subchannels
that one eavesdropper can access is L. The secrecy degree of
freedom of the degraded parallel Gaussian compound wiretap
channel with one receiver is given by

s.d.o. f . = N − L. (22)

Proof. The achievability follows by applying Corollary 1 and
choosing Pa = P/N for a = 1, . . . ,N . The converse follows by
considering only eavesdropper k that accesses L subchannels,
that is, |Ak| = L, and evaluating the first-order SNR
expansion of the secrecy capacity.

Remark 1. The s.d.o. f . depends only on the maximal
number of subchannels that one eavesdropper can access and
does not depend on the total number of subchannels that
all eavesdroppers access. This is because the eavesdroppers
do not cooperate with each other. This implies that, even if
every subchannel is accessed by some eavesdropper, positive
s.d.o. f . is still possible if none of the eavesdroppers accesses
a full set of the subchannels. This can also be seen from the
examples given in [7].

Remark 2. The s.d.o. f . does not depend on the number of
eavesdroppers.

We note that the s.d.o. f . in Corollary 2 is similar to the
secure rate given in [6, Theorem 2] for multicast networks

Transmitter

Receiver 1

Receiver 2

Eavesdropper 1

Eavesdropper 2

X1

X21

X22

Y1

Y21

Y22

Z1

Z2

Figure 4: Parallel Gaussian compound wiretap channel example.

based on network coding. However, we note that Corollary 2
is applicable for noisy Gaussian channels while the secure
rate given in [6, Theorem 2] is derived for deterministic
networks.

We also refer the reader to [7] for some example channels
for which simple schemes were constructed to achieve the
s.d.o. f .

5. Parallel Gaussian Compound
Wiretap Channels: J > 1

In this section, we study the parallel Gaussian compound
wiretap channel, in which J > 1 and K > 1. We address
optimal schemes that achieve the best secrecy rate scaling
with SNR. For the sake of clarity of exposition on this issue,
we study the simplest example when J = 2 and K = 2 to
illustrate the key factors that affect optimal schemes.

Example 1. Consider the parallel Gaussian compound wire-
tap channel with J = 2 and K = 2 (see Figure 4). The channel
output at receiver 1 is given by

Y1 = X1 + W1, (23)

where W1 is a zero-mean Gaussian random variable with
variance w2

1. The channel outputs at receiver 2 are given by

Y21 = X21 + W21, Y22 = X22 + W22, (24)

where W21 and W22 are zero-mean independent Gaussian
random variables with variances w2

21 and w2
22.

The outputs at the two eavesdroppers are given by

Z1 = X21 + V1,

Z2 = X22 + V2,
(25)

where V1 and V2 are zero-mean independent Gaussian
random variables with variances v2

1 and v2
2, respectively.

The channel input includes three components X1, X21,
and X22, and they are subject to an average power constraint
P, that is,

1
n

n∑

i=1

E
[
X2

1i + X2
21i + X2

22i

] ≤ P. (26)

For this channel, we study the s.d.o. f ., for which we
choose w2

1 as the reference noise level and define SNR =
P/w2

1.
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An achievable rate follows from (6) and is given by

R = max
PUX

min{I(U ;Y1)− I(U ;Z1), I(U ;Y1)− I(U ;Z2),

I(U ;Y21,Y22)− I(U ;Z1), I(U ;Y21,Y22)

−I(U ;Z2)}.
(27)

In the following, we study three schemes, two of which
are based on (27). It can be seen that a prefix channel U → X
is necessary to achieve the optimal s.d.o. f . For computational
convenience, in the following we assume w2

1 = w2
21 = w2

22 =
v2

1 = v2
2 = 1. This assumption does not affect the s.d.o. f .,

which we compute for each scheme.

Scheme 1. Choose U = X = (X1,X21,X22) and X1 ∼
N (0,P1),X21 ∼ N (0,P21), and X22 ∼ N (0,P22) in
(27). Based on these distributions, Scheme 1 achieves the
following secrecy rate:

R = max
P1+P21+P22≤P

min{I(X1;Y1)− I(X21;Z1),

I(X1;Y1)− I(X22;Z2),

I(X21;Y21) + I(X22;Y22)− I(X21;Z1),

I(X21;Y21) + I(X22;Y22)−I(X22;Z2)}

= max
P1+P21+P22≤P

min
{

1
2

log(1 + P1)− 1
2

log(1 + P21),

1
2

log(1 + P1)− 1
2

log(1 + P22),

1
2

log(1 + P22),
1
2

log(1 + P21)
}
.

(28)

It can be seen that the optimal power allocation (P∗1 ,P∗21,P∗22)
should result in four equal terms in the minimum in (28).
Hence we obtain the following condition:

1
2

log
(
1 + P∗1

) = log
(
1 + P∗21

) = log
(
1 + P∗22

)
. (29)

Combining the preceding equation and the power constraint
P∗1 + P∗21 + P∗22 = P, we obtain

P∗1 = P − 2
√

4 + P + 4,

P∗21 = P∗22 =
√

4 + P − 2.
(30)

Substituting the optimal power allocation into (28), we
obtain

R = 1
2

log
(√

4 + P − 1
) .= 1

4
log SNR, (31)

where (a =̇ b) denotes that limP→∞(a/b) = 1.
Therefore, Scheme 1 achieves

s.d.o. f . = 1
2
. (32)

Transmitter
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Eavesdropper 1
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W

W
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M

M

Y1
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Y22

Z1

Z2

Figure 5: Illustration of Scheme 2.

Scheme 2. We choose a Gaussian input and allocate the
source power equally for X1,X21, and X22. Each subchannel
can hence support the following rate:

R = 1
2

log
(

1 +
P

3

)
. (33)

Recall that the source messageW is uniformly distributed
over the set {0, . . . , 2nR − 1}. We generate a key random
variable M that is independent of W and is also uniformly
distributed over the set {0, . . . , 2nR − 1}. We transmit W
over the channel X1 → Y1 and transmit W ⊕ M and M
over the channels X21 → Y21 and X22 → Y22, respectively
(see Figure 5). It is clear that receiver 1 decodes W , and
receiver 2 decodes W ⊕M and M, and hence decodes W . For
eavesdroppers 1 and 2, each obtains either W⊕M or M, both
of which are independent of W . Hence eavesdroppers 1 and
2 do not get any information about W , and perfect secrecy is
achieved. It is clear that this scheme achieves

s.d.o. f . = 1. (34)

This is clearly the largest achievable s.d.o. f ., because the
maximal degree of freedom achievable for receiver 1 is 1.

We note that Scheme 2 introduces randomness into
the information source to achieve secrecy. Interestingly,
Scheme 2 can be interpreted as turning the channel into a
state dependent wiretap channel as studied in [13]. The key
random variable M in Scheme 2 now corresponds to the
channel state, which is known to the transmitter only. As
shown in [13], the state variable helps improving the secrecy
rate.

As remarked in Section 4, Scheme 2 for the noisy
Gaussian channel is similar to the scheme designed for
deterministic wiretap network models in [6]. More recently,
deterministic network models have been proposed and
studied (see, e.g., [14]) to obtain sufficiently accurate
performance for Gaussian networks. It is hence interesting
to apply this approach to study the secrecy capacity or
s.d.o. f . for the Gaussian or other noisy wiretap networks.
The key step is to come up with deterministic models that
approximate the performance (e.g., in terms of s.d.o. f .) of
noisy wiretap networks, and whose secrecy capacity can be
determined easily.

Scheme 2 also suggests that Scheme 1 is strictly subopti-
mal. It is then natural to ask if we can modify Scheme 1 by



EURASIP Journal on Wireless Communications and Networking 7

defining the auxiliary random variable U in (27) properly to
achieve the optimal s.d.o. f . We hence propose the following
Scheme 3.

Scheme 3. Choose U = (X1,X21 + X22) and X1 ∼
N (0,P/3),X21 ∼ N (0,P/3), and X22 ∼ N (0,P/3) in (27).
It is clear that the above choice of U satisfies the Markov
chain relationship U → X → (YZ) and is hence valid. The
achievable secret rate under this scheme is given by

R = min{I(X1;Y1)− I(X21 + X22;Z1),

I(X1;Y1)− I(X21 + X22;Z2),

I(X21 + X22;Y21,Y22)− I(X21 + X22;Z1),

I(X21 + X22;Y21,Y22)− I(X21 + X22;Z2)}.

(35)

Based on the joint distribution of U and X , we obtain

I(X1;Y1)
.= 1

2
log SNR,

I(X21 + X22;Z1)
.= I(X21 + X22;Z2)

.= 0 · log SNR,

I(X21 + X22;Y21,Y22)
.= 1

2
log SNR,

I(X21 + X22;Y21,Y22)
.= 1

2
log SNR.

(36)

Hence R=̇(1/2) log SNR, and Scheme 3 achieves

s.d.o. f . = 1. (37)

Compared to Scheme 1 and Scheme 3 introduces extra
randomness in the encoder by introducing a prefix channel
U → X , and hence achieves the optimal s.d.o. f . We also
note that for Gaussian wiretap channels, including the single-
input single-output channel studied in [15] and the multi-
input multi-output channel studied in [16–18], the prefix
channel is not necessary to achieve the secrecy capacity, that
is, U = X . However, the prefix channel is necessary to achieve
the optimal s.d.o. f . for the parallel Gaussian compound
wiretap channel.

From Schemes 2 and 3, we also observe that introducing
randomness either into the information source or into the
encoder strictly improves the s.d.o. f . and hence improves the
secrecy rate.

6. MIMOCompoundWiretap Channels

In this section, we consider the MIMO compound wiretap
channel in which the transmitter, the receivers, and the
eavesdroppers are equipped with multiple antennas. We let
Nt denote the number of antennas of the transmitter, Nr

denote the number of antennas of the receivers, and Ne

denote the number of antennas of the eavesdroppers. We
assume that all receivers have the same number of antennas
and all eavesdroppers have the same number of antennas, but
our analysis below is also applicable without this assumption.

The channel input-output relationship at one time instant is
given by

Y j = HjX + W j for j = 1, . . . , J ,

Zk = GkX + Vk for k = 1, . . . ,K ,
(38)

where Hj for j = 1, . . . , J and Gk for k = 1, . . . ,K are
fixed matrices, and W1, . . . ,WJ and V 1, . . . ,VK are i.i.d.
Gaussian random vectors with identity covariance matrices.
We assume that the channel input is subject to an average
power constraint:

1
n

n∑

i=1

E
[
XT

i Xi

]
≤ P, (39)

where i is the symbol time (i.e., channel use) index.
In the following, we first study the degraded MIMO

compound wiretap channel, and then study the general
MIMO compound wiretap channel. We use the following
notation associated with matrices. We use A � 0 to indicate
that A is a positive semidefinite matrix, A 
 0 to indicate
that A is a positive definite matrix, and A � B to indicate
that A − B is a positive semidefinite matrix. The symbols �
and ≺ indicate the oppositive meanings to those of � and 
,
respectively.

6.1. Degraded MIMO Compound Wiretap Channels. As in
[19], we define the MIMO compound wiretap channel to be
degraded if for each ( j, k) pair, there exists a matrix Djk such
that DjkHj = Gk and DjkD

T
jk � I . It is easy to check that

for each ( j, k) pair, the channel satisfies the Markov chain
relationship X → Y j → Zk.

Theorem 5. The secrecy capacity of the degraded MIMO
compound wiretap channel is given by

C = max
Q:Q�0, Tr(Q)≤P

min
j,k

1
2

log

∣∣∣I + HjQH
T
j

∣∣∣
∣∣∣I + GkQG

T
k

∣∣∣
. (40)

Proof. We only need to show that the secrecy capacity is given
by

min
j,k

1
2

log

∣∣∣I + HjQH
T
j

∣∣∣
∣∣∣I + GkQG

T
k

∣∣∣
, (41)

if the input is subject to the covariance matrix constraint

1
n

n∑

i=1

KXi
� Q, (42)

whereKXi
denotes the covariance matrix ofXi at symbol time

i. Theorem 5 then follows by maximizing (41) over all Q that
satisfy the power constraint, that is, Tr(Q) ≤ P.

The achievability follows from Theorem 3 by choosing
X ∼ N (0,Q). The proof of the converse is relegated to
Appendix C.
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6.2. General MIMO Compound Wiretap Channels. In this
subsection, we study the general MIMO compound wiretap
channel defined in (38), where we do not make the the
degradedness assumption.

Based on Theorem 1 by choosing U = X ∼ N (0,Q), it is
easy to see that the following secrecy rate is achievable.

Lemma 1. For the general MIMO compound wiretap channel,
an achievable secrecy rate is given by

R = max
Q:Q�0,Tr(Q)≤P

min
j,k

1
2

log

∣∣∣I + HjQH
T
j

∣∣∣
∣∣∣I + GkQG

T
k

∣∣∣
. (43)

In general, the maximization problem in (43) is difficult
to solve. To gain some insight, we study the s.d.o. f . defined
as in (21), but with SNR = P/Nt .

We design the following beamforming scheme. Let r =
Rank(

∑J
j=1 H

T
j Hj) and {u1, . . . ,ur} be the eigenvectors of∑J

j=1 H
T
j Hj that correspond to nonzero eigenvalues. These

vectors are directions along which at least one receiver
may receive input signals. In fact, if we let {uj1, . . . ,ujrj}
be the eigenvectors of HT

j Hj that correspond to nonzero
eigenvalues, then the vectors in the set {(uj1, . . . ,ujrj ) : j =
1, . . . , J} span the same vector space as {u1, . . . ,ur}.

We let {ur+1, . . . ,uNt
} be the eigenvectors of

∑J
j=1 H

T
j Hj

that correspond to zero eigenvalues. We further let

U = [u1 · · ·ur
]
, U⊥ =

[
ur+1 · · ·uNt

]
. (44)

Then we have

J∑

j=1

HT
j Hj = [U U⊥]

⎡
⎣Λr

0Nt−r

⎤
⎦
⎡
⎣ UT

(U⊥)T

⎤
⎦, (45)

where Λr denotes the diagonal matrix with the eigenvalues of∑J
j=1 H

T
j Hj as the diagonal components, and 0Nt−r denotes

the all-zero matrix of dimension (Nt − r)× (Nt − r).
We now let L be a subset of {1, 2, . . . , r} and assume L =

{l1, . . . , l|L|}, where |L| indicates the number of components
in the set L. We then let Lc denote the complement of
L with respect to the set {1, 2, . . . , r} and assume Lc =
{l′1, . . . , l′r−|L|}. Let

UL =
[
ul1 · · ·ul|L|

]
, ULc =

[
ul′1 · · ·ul′r−|L|

]
. (46)

If we choose the beamforming directions to be column
vectors in UL and allocate power equally for these directions,
then the input covariance matrix is given by

QL = P

|L| [UL ULc U⊥]

⎡
⎢⎢⎢⎣

I|L|

0

0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

UT
L

UT
Lc

(U⊥)T

⎤
⎥⎥⎥⎦ (47)

and we obtain
∣∣∣I + HjQLH

T
j

∣∣∣ =
∣∣∣∣I +

P

|L|
(
HjUL

)T(
HjUL

)∣∣∣∣,

∣∣∣I + GkQLG
T
k

∣∣∣ =
∣∣∣∣I +

P

|L| (GkUL)T(GkUL)
∣∣∣∣.

(48)

Hence we have

lim
SNR→∞

(1/2) log
(∣∣∣I + HjQH

T
j

∣∣∣/
∣∣∣I + GkQG

T
k

∣∣∣
)

(1/2) log SNR

= Rank
(
HjUL

)
− Rank(GkUL).

(49)

Therefore, we have the following theorem.

Theorem 6. An achievable secrecy degree of freedom of the
MIMO compound wiretap channel is given by

s.d.o. f . ≥ max
L

min
j,k

{
Rank
(
HjUL

)
− Rank(GkUL)

}
.

(50)

We note that each set L corresponds to one set of
directions for which the transmitter allocates power, and hence
corresponds to one power allocation strategy. The optimal
achievable s.d.o. f . can be obtained by searching over all
power allocation strategies. We note that Rank(HjUL) and
Rank(GkUL) in (50) can be interpreted as the dimensions of
the projections of Hj and Gk, respectively, onto the vector space
spanned by the column vectors of UL. Hence the achievable
s.d.o. f . is determined by the geometry of the channel matrices
to the receivers and eavesdroppers.

For the special case J = 1, that is, there is only one
receiver, the channel matrix to the receiver is H , and r
becomes the rank of HTH and hence the rank of H . We
should always choose L = {1, . . . , r}, and the resulting
s.d.o. f . is given in the following corollary to Theorem 6.

Corollary 3. For the MIMO compound wiretap channel with
J = 1, an achievable secrecy degree of freedom is given by

s.d.o. f . ≥ min
k
{Rank(H)− Rank(GkU)}, (51)

where U is the matrix whose columns are the eigenvectors of
HTH corresponding to nonzero eigenvalues.

We refer the reader to [7] for an example of MIMO
compound wiretap channel for which particular signaling
scheme transforms the channel into an equivalent parallel
Gaussian compound wiretap channel, and a simple scheme
can hence be constructed to achieve the s.d.o. f . for the
channel.

7. Discussion and Conclusions

In this paper, we have studied the compound wiretap
channel, which provides a general framework for examining
multicast communication with multiple eavesdroppers. We
have obtained lower and upper bounds on the secrecy
capacity for the general compound wiretap channel and
have established the secrecy capacity for the degraded and
semideterministic channel. We have further obtained the
secrecy capacity for the degraded parallel Gaussian and
degraded MIMO compound wiretap channels. The secrecy
rate/capacity in general has a worst-case interpretation.
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We have also introduced the notion of the secrecy degree
of freedom, which captures the most important factors that
affect the scaling behavior of the secrecy capacity at high
SNR. For the parallel Gaussian compound channel, we have
demonstrated that the s.d.o. f . depends only on the maximal
number of subchannels that one eavesdropper can access
and does not depend on the number of eavesdroppers. We
have also shown that randomizing either source information
or the encoder strictly improves the s.d.o. f . for an example
case when J > 1 and K > 1. For the MIMO compound
wiretap channel, we have shown that the achievable s.d.o. f .
is determined by the geometries of the matrices describing
the channels to the receivers and eavesdroppers. We have also
noted that it has been shown via a few example channels in
[7] that there are simple schemes to achieve the s.d.o. f . in
many cases.

We finally note that the capacity of the general compound
wiretap channel is still not known. Several interesting special
cases are worth addressing, including the Gaussian parallel
compound wiretap channel with multiple receivers and
multiple eavesdroppers and the general MIMO compound
wiretap channel. Understanding the s.d.o. f . of these scenar-
ios may be a useful first step. The techniques for studying the
compound broadcast channel without secrecy constraints
[20] may be useful here. In particular, designing a zero-
forcing transmission scheme over multiple time slots for the
MIMO compound wiretap channel as in [20] may be useful
in studying the s.d.o. f . However, we remark that one cannot
expect the eavesdropper to look only at subspaces. As a more
general model, the MIMO compound broadcast channel is
also interesting to study. Some recent studies [21] and [22]
have provided useful techniques for further study of this
topic.

Appendices

A. Proof of Theorem 1

The idea of the proof is to show there exists a codebook that
consists of a number of subcodebooks (similar to [1]). Each
receiver can successfully decode over the entire codebook,
but all eavesdroppers can successfully decode only within
each subcodebook. Hence the transmitter maps messages
to different subcodebooks to confuse the eavesdroppers and
achieve perfect secrecy.

For a given joint distribution PXPY1 ...YJZ1 ...ZK |X , it is
sufficient to show the following rate is achievable:

R = min
j

I
(
X ;Yj

)
−max

k
I(X ;Zk). (A.1)

Then the rate given in (6) is achievable by prefixing a discrete
memoryless channel from U to X with the transition distri-
bution PX|U to the transmitter (similar to [11, Lemma 4]).

We first prove a useful lemma that simplifies the proof
later on.

LemmaA.1. If I(X ;Z1) < I(X ;Z2), then there exists a random
variable Z̃ such that I(X ;Z1, Z̃) = I(X ;Z2) and Z̃ satisfies the
Markov chain X → (Z1,Z2) → Z̃.

Proof. Let U be a binary random variable with distribution
Pr{U = 1} = p and Pr{U = 2} = 1 − p, and U
is independent of all other random variables in the model
under consideration. Let Z̃ = (ZU ,U). Clearly, Z̃ satisfies the
Markov chain condition given in the lemma. Let

f
(
p
) = I
(
X ;Z1, Z̃

)
= I(X ;Z1,ZU ,U)

= I(X ;Z1,ZU | U)

= pI(X ;Z1) +
(
1− p
)
I(X ;Z1,Z2).

(A.2)

It is clear that

f (1) = I(X ;Z1) < I(X ;Z2),

f (0) = I(X ;Z1Z2) ≥ I(X ;Z2).
(A.3)

Since f (p) is a continuous function for 0 ≤ p ≤ 1, there
must exist p∗ such that f (p∗) = I(X ;Z2). Therefore, Z̃ =
(ZU ,U) with U having distribution Pr{U = 1} = p∗ satisfies
I(X ;Z1, Z̃) = I(X ;Z2).

Based on the previous lemma, it is sufficient to consider
enhanced eavesdroppers, each with outputs Z′k = (Zk, Z̃k)
such that I(X ;Z′k) = maxk I(X ;Zk). It is clear that if perfect
secrecy can be achieved for the enhanced eavesdroppers, it
must be achieved for the original eavesdroppers.

We now consider the following codebook:

C =
{
xnab, a = 1, . . . , 2nR; b = 1, . . . , 2nmaxkI(X ;Zk)

}
, (A.4)

where R is given in (A.1). We assume all codewords are
strongly typical, that is, xnab ∈ Tn

ε (PX), where Tn
ε (PX) denotes

the strongly jointly ε-typical set (see Section 1.2, [23]) based
on the distribution PX .

We define the following probabilities of error when the
codeword xnab is transmitted:

λjab = error probability for receiver j

in determining (a, b),

ηkb|a = error probability for eavesdropper k

in determining b given a.

(A.5)

Let pab be the probability with which codeword xnab
is transmitted. We further define the following average
probabilities of error:

λj =
∑

ab

pabλjab,

ηk =
∑

ab

pabλkb|a.
(A.6)

The following lemma guarantees existence of a certain
codebook, which will be used for encoding.

Lemma A.2. For any 0 < ε < 1, there exists a codebook as
described in (A.4), such that, for sufficiently large n,

λj < ε for j = 1, . . . , J ,

ηk < ε for k = 1, . . . ,K.
(A.7)



10 EURASIP Journal on Wireless Communications and Networking

Proof. We prove the lemma by a random coding technique.
We define the following sum of error probabilities:

pe =
∑

j

λ j +
∑

k

ηk =
∑

jab

pabλjab +
∑

kab

ηkb|a. (A.8)

We show that the average of pe over a random codebook
ensemble is small for sufficiently large codeword length n.
Then, there must exist at least one codebook such that pe is
small for sufficiently large n.

For a given distribution PX , we generate codewords xnab,
each uniformly drawn from the set Tn

ε (PX). Index xnab via a =
1, . . . , 2nR and b = 1, . . . , 2nmaxkI(X ;Zk).

Suppose that the codeword xnab is transmitted and define
the following decoding strategies at the receivers and the
eavesdroppers.

(1) Receiver j declares that the index pair of xnab is (â, b̂)
if there is a unique index pair such that (xn

â,b̂
, ynj ) ∈

Tn
ε (PXYj ).

(2) Eavesdropper k, given the index a, declares that the

index of xnab is b̂ if there is a unique index such
that (xn

a,b̂
, z′nk ) ∈ Tn

ε (PXZ′k ), where Z′k denotes the

enhanced output.

We can compute EC[pe] by following the standard
techniques as in [24, Chapter 14], where EC indicates an
average over the random codebook ensemble. We can show
that

EC
[
pe
]
< ε, (A.9)

for sufficiently large codeword length n, based on the sizes of
indices a and b.

Hence there exists one codebook such that for sufficiently
large codebook size n

pe =
∑

j

λ j +
∑

k

ηk < ε. (A.10)

This leads to the conclusion that for sufficiently large
codebook size n,

λj < ε, ηk < ε (A.11)

for j = 1, . . . , J and k = 1, . . . ,K .
Based on the codebook that satisfies the property given

in Lemma A.2, we define the encoding as follows. We map
each message w to a codeword xnwb with b chosen uniformly
over the set {1, . . . , 2nmaxkI(X ;Zk)}. Based on Lemma A.2, it is
clear that each receiver can decode the message W with small
probability of error. For each enhanced eavesdropper, we
follow steps similar to those in [10] to obtain the following
equivocation rate:

1
n
H
(
W | Z ′n

k

)
≥ R− ε1, (A.12)

where ε1 → 0 as n → ∞. This concludes the proof.

B. Proof of the Converse for Theorem 4

We follow steps that are similar to those given in [25] except
for the step of single letter characterization. We include the
proof here for the sake of completeness.

We consider a code with length n and average error
probability Pe. The probability distribution we consider is

PWPXn|W
n∏

i=1

⎡
⎣

K∏

k=1

PYi|XiPZki|Xi

⎤
⎦, (B.1)

where PYi|Xi is a deterministic distribution, and thus takes
values of only 0 or 1.

By Fano’s inequality [24, Section 2.11], we have

H(W | Yn) ≤ nRPe + 1 := nδ, (B.2)

where δ → 0 if Pe → 0.
For each eavesdropper k, since we achieve perfect secrecy,

we obtain the following bound:

nR = nRe ≤ H
(
W | Zn

k

)

= I
(
W ;Yn | Zn

k

)
+ H
(
W | Yn,Zn

k

)

(a)≤ H
(
Yn | Zn

k

)
−H
(
Yn |W ,Zn

k

)
+ nδ

≤ H
(
Yn | Zn

k

)
+ nδ

(b)≤
n∑

i=1

H
(
Yi | Zki

)
+ nδ,

(B.3)

where (a) follows from Fano’s inequality, and (b) follows
from the chain rule and because conditioning does not
increase entropy.

We now introduce a random variable Q that is inde-
pendent of all other random variables in this model, and
is uniformly distributed over {1, 2, . . . ,n}. Define X = XQ,
Y = YQ, and Zk = ZkQ. It is clear that these random variables
satisfy the Markov chain conditionQ → X → (Y ,Zk). Using
these definitions, (B.3) becomes

R ≤ H
(
YQ | ZkQ,Q

)
+ δ

≤ H
(
YQ | ZkQ

)
+ δ

= H(Y | Zk) + δ.

(B.4)

The bound given in (B.4) is applicable for k = 1, . . . ,K ,
and hence we obtain

R ≤ min
k

H(Y | Zk) + δ (B.5)

which completes the proof.

C. Proof of the Converse for Theorem 5

We first prove the following lemma, which gives two useful
properties.
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Lemma C.1. Consider matrices D,H ,G, and X of dimensions
conformal with the following operations. If DH = G and
DDT � I , then f (X) = log(|I + HXHT |/|I + GXGT |) is a
concave function of X � 0. Furthermore, f (X) ≤ f (X + Δ) if
X � 0, and Δ � 0.

Proof.

f (X) = log

∣∣I + HXHT
∣∣

|I + HXHTDTD|

= log

∣∣I + HXHT
∣∣

∣∣∣
(

(DTD)−1 − I
)

+ I + HXHT
∣∣∣|DTD|

.

(C.1)

By [26, Lemma II.3], the preceding function is concave in I +
HXHT and is hence concave in X .

To show the second property, we recall the following
property given in [27, page 3942]. If A � 0,Δ � 0 and B 
 0,
then

|B|
|A + B| ≤

|B + Δ|
|A + B + Δ| . (C.2)

Applying the above property to (C.1), we obtain

f (X) ≤ log

∣∣I + H(X + Δ)HT
∣∣

∣∣∣
(

(DTD)−1 − I
)

+ I + H(X + Δ)HT
∣∣∣|DTD|

= log

∣∣I + H(X + Δ)HT
∣∣

|I + G(X + Δ)GT | = f (X + Δ).

(C.3)

To prove the converse, we first have the following bound
for any ( j, k) pair by referring to [15, Section III]:

R = Re ≤ 1
n

n∑

i=1

I
(
Xi;Yj,i | Zk,i

)

≤ 1
n

n∑

i=1

[
h
(
Y j,i | Zk,i

)
− h
(
Y j,i | Xi,Zk,i

)]

= 1
n

n∑

i=1

[
h
(
Y j,i | Zk,i

)
− h
(
W j,i | Vk,i

)]
.

(C.4)

It is easy to see that the second term is independent of the
distribution of Xi. The first term is maximized by Gaussian
Xi if the covariance matrix of Xi is fixed to be KXi

. This is
because h(Y j,i | Zk,i) is maximized by jointly Gaussian Y j,i

and Zk,i for a fixed covariance matrix QY j,iZk,i
. Therefore, we

have the following bound:

Re ≤ 1
n

n∑

i=1

1
2

log

∣∣∣I + HKxiH
T
∣∣∣

∣∣∣I + GKxiG
T
∣∣∣

(a)≤ 1
2

log

∣∣∣I + H
(

(1/n)
∑n

i=1 Kxi

)
HT
∣∣∣

∣∣∣I + G
(

(1/n)
∑n

i=1 Kxi

)
GT
∣∣∣

(b)≤ 1
2

log

∣∣I + HQHT
∣∣

|I + GQGT | ,

(C.5)

where (a) follows from the degradedness assumption and
the concavity property given in Lemma C.1, and (b) follows
because (1/n)

∑n
i=1 KXi

� Q and from the monotonicity
property given in Lemma C.1.
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