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Accuracy and complexity are two crucial aspects of the applicability of a channel model for wideband multiple input multiple
output (MIMO) systems. For small number of antenna element pairs, correlation-based models have lower computational
complexity while the geometry-based stochastic models (GBSMs) can provide more accurate modeling of real radio propagation.
This paper investigates several potential simplifications of the GBSM to reduce the complexity with minimal impact on accuracy.
In addition, we develop a set of broadband metrics which enable a thorough investigation of the differences between the
GBSMs and the simplified models. The impact of various random variables which are employed by the original GBSM on the
system level simulation are also studied. Both simulation results and a measurement campaign show that complexity can be
reduced significantly with a negligible loss of accuracy in the proposed metrics. As an example, in the presented scenarios, the
computational time can be reduced by up to 57% while keeping the relative deviation of 5% outage capacity within 5%.
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1. Introduction

The pioneering work by Winters [1], Telatar [2], Foschini
and Gans [3] ignited enormous interest in multiple input
multiple output (MIMO) systems as they have the potential
to provide remarkable spectral efficiencies when the channel
exhibits rich scattering. Wideband wireless systems with
multiple antennas have been recognized as one of the most
promising candidates for next generation mobile systems
which are also known as IMT-Advanced systems. It is
well known that the propagation conditions have a crucial
impact on the design, simulation, and deployment of new
communication systems. Therefore, it is of great interest to
characterize and model the wideband MIMO channel to
enable accurate simulations of system performance. Prop-
agation characteristics have been investigated thoroughly
based on measured data from channel sounding in various

different scenarios [4-8]. An overview of the state-of-the-
art channel models is provided in [9]. These channel models
can be divided into two major categories: (a) the correlation
based models, for example, the Kronecker model [10] and
the Weichselberger model [11]; and (b) the parametric or
geometry-based stochastic models (GBSMs), for example,
the COST 259 directional channel model (DCM) [12],
the COST 273 channel model [13], the 3rd Generation
Partnership Project (3GPP) spatial channel model (SCM)
[14], and the WINNER channel model [15, 16], and so
forth. Because of their simplicity, the correlation-based
models are widely used for analyzing and designing space-
time transmission technologies. The GBSM is more complex
and less easy to use. One feature of a GBSM is that the
simulation is divided into a number of drops which can
be thought as channel segments with infinite time. Within
each drop, different random geometries are generated. This
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modeling methodology is adopted by the International
Telecommunication Union (ITU) for the evaluation of IMT-
Advanced systems [17].

In comparison with the broadly adopted traditional
tapped delay line (TDL) models in the GSM and IMT-2000
systems, there are two main challenges for the IMT-Advanced
channel model. Firstly, the TDL models in [18, 19] have an
invariant channel profile. (The “channel profile” stands for
the channel characteristics over a fading distance of tens of
wavelengths, in spatial, temporal, and frequency domains,
including the power delay profile (PDP), power angular spec-
trum (PAS), Doppler spectrum, and so forth.) However, even
for a single link, geometry-based MIMO channel models
need multiple channel profiles to accurately characterize the
extra degrees of freedom induced by employing multiple
antennas. As a result, far more random variables (RVs) have
to be embedded into the channel model than are required by
the TDL models. Secondly, because of the higher data rates
targeted with a system bandwidth of up to 100 MHz, many
more multipath components (MPCs) can be resolved, which
leads to an increase in the number of taps for wideband
MIMO channel models. Since the system level evaluation
of radio interface technologies (RITs) usually requires the
generation of multiple users dropped into a 19 hexagonal
cell network, these two challenges faced by GBSMs make
the evaluation a time consuming exercise. Hence, there
is an urgent need to simplify the geometry-based MIMO
channel models. As the correlation-based models have
greatly reduced computational complexity, several papers
have tried to bridge the gap between the correlated models
and GBSMs. The separability of spatial-temporal correlation
in the 3GPP SCM model is investigated in [20], which
proposed a correlation-based model to replace the geometry-
based model. A numerically efficient approximation of
spatial correlation models is proposed in [21], which shows
a good fit to the existing parametric models with a uniform
linear array (ULA) or uniform circular array (UCA) for an
angular spread (AS) smaller than 10°. A simplified approach
to apply the 3GPP SCM model was suggested in [22], which
was also proposed for the evaluation of the 3GPP long-term
evolution (LTE) systems. Correlation-based replacements
of the GBSM can substantially reduce the computational
complexity. However, in such simplified models the antenna
geometries and radiation patterns cannot be altered easily
by the user of the model. On the other hand, this feature is
automatically enabled by the geometry-based modeling for
the propagation parameters and antennas.

In this paper, we investigate five possible simplifications
to the GBSM model. These simplifications are much more
straightforward than those obtained by converting a GBSM
to its correlation-based counterpart. A series of metrics
are proposed to evaluate the impact of the simplification
on the channel model behavior. These metrics cover var-
ious different perspectives of the assessment of RITs with
MIMO applications, including spatial multiplexing, spatial
diversity, symbol error probability, and temporal behavior.
The proposed simplifications and metrics are validated with
a baseline model which is extracted from MIMO channel
measurements in both indoor and outdoor environments.

A computational complexity analysis is also presented. Since
the simplifications are made under the original structure of
the GBSM, the ability to select values for physically-based
geometric parameters is maintained. Hence, the users of the
simplified models can control the antenna configurations
and link geometries as they do with the GBSM, while
experiencing lower computational effort.
The main contributions of this paper are as follows:

(i) a range of broadband metrics are proposed and used
for evaluating the full system behavior of wideband
MIMO channel models;

(ii) a series of potential simplifications to the IMT-
Advanced channel model are developed. The sim-
plified models have fixed and fewer parameters that
result in a negligible loss of performance as verified
by a range of metrics;

(iii) measurements of an indoor channel with both line-
of-sight (LOS) and scattered components were taken
in China. The data was used to fit a WINNER style
model [17] as the baseline GBSM. The metrics were
then used to compare the simplified models with the
GBSM and with the measured data;

(iv) the metrics were also evaluated with an outdoor
non line-of-sight (NLOS) channel in the WINNER
model [16] to demonstrate the validity of proposed
simplifications.

The rest of the paper is organized as follows. A GBSM
baseline model is briefly described in Section 2. A series
of metrics for evaluating the performance of simplified
wideband channel models are presented in Section 3. The
proposed simplifications are described in Section 4. A com-
parative analysis of the simulation results and conclusions are
given in Sections 5 and 6, respectively.

2. Baseline Channel Model

Currently, the primary channel model [17] for IMT-
Advanced system evaluation is based on the WINNER
channel model. Hence, in this paper we take the WINNER
model as a baseline. Consider a single downlink of a
wideband MIMO system with an S-element BS array and a
U-element MS array. The channel impulse response (CIR) at
time ¢, delay 7 is modeled as

B0 = K H 0000+ | S B8 (e — 1)
D=\ k410 r K+12 " T= )
(1)

where K is the Rician K-factor on a linear scale, Ho(t) is
the channel coefficient matrix corresponding to the LOS ray,
N is the number of clusters, H,(t), n = 1,2,...,N, is the
nth NLOS channel coefficient component, and &(-) is the
Dirac delta function. Here, we assume that the clusters are
the zero-delay-spread-clusters (ZDSCs) defined in [15], that
is, a cluster is constituted by a number of rays, or propagation
paths, diffused in angle domains. The rays within the same
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cluster have the same propagation delay, and the power
dispersion of a cluster in angle domains is characterized
by cluster angular spread of departure (ASD) and cluster
angular spread of arrival (ASA). The elements of the U x S
matrix H, (t) = (hysn(t)) are given by

huso(t) = CES,S(ﬁbLos) - X(Dros) - emsu(@ros)

- exp [ jklIvl cos (¢ros — ¢v)¢] 2)

forn =0,

M
P,
husn(t) = ﬁn Z Cgs,s(¢nm) : X((Dmm Knm) ' CMS,u((an)
m=1

- exp [jklIVIl cos (@um — ¢y)1]
(3)

forn = 1,2,...,N. In (2) and (3), (-)T stands for matrix
transposition, P, is the power resulting from the nth cluster,
M is the number of rays in each cluster. The angles in (2)
and (3) are illustrated in Figure 1, where ¢;0os is the angle
of departure (AoD) for the LOS ray with respect to the BS
broadside, ¢ios is the angle of arrival (AoA) for the LOS ray
with respect to the MS broadside, ¢, is the AoD for the mth
ray of the nth cluster with respect to the BS broadside, while
@um 1s the AoA with respect to the MS broadside, the mean
AoD and mean AoA of the nth cluster is defined as ¢, =
(l/M)Zi\::1 ¢nm and @, = (I/M)ZI\,,ZI:1 @nm> respectively. ¢,
is the angle of the MS velocity vector v with respect to
the MS broadside. cgs($nm) = [Clis.s(Prm)s chs.o(Pnm)]" is
the complex antenna response of the sth element of the BS
array in the direction of ¢, with respect to the reference
phase center of the array, with ¢y () and ¢l () referring
to the vertical and horizontal polarization directions, respec-
tively. The vector cmsu(@um) is defined similarly. @, =
[OVY, OVH QHY QHHIT js the initial random phase vector
of the mth ray of the nth cluster. The superscripts used in
®h* denote that the ray originates in the p1 direction and
arrives in the p, direction. ®ios = [D)Js, DIBL T is the
initial random phase vector for the LOS ray. The polarization
matrices X(®ros) and X(®m, Kum) are given by

X(®10) = (eXP (jPios) 0 )>’

0 exp(jPids

exp (jO)

Ko €xp (FDYVH
X(@y ) = " VEnm €xp (jO,1n1)
vV Knm GXp (](Dnm )

exp (jOyn)
(4)

where «,,, is the inverse of the XPR for the nth cluster
and mth ray. The XPR in decibels, is independent for
each cluster and ray, and follows the Gaussian distribution
N (uxpr, oxpr)- The constant k is the wave number 277/A with
A denoting the carrier wavelength in meters.

For each drop, the parameters required by (2) and (3)
can be broken down into three sets: the LOS parameters
{K, ¢r0s> p1ros, Pros}, the cluster parameters {(Py, Ty, $n»

¢,) : n = 1,2,...,N}, and the ray parameters
L Dum> Prm> PComs Knm) = 1 = 1,2,...,Nym = 1,2,...,M}.
According to the modeling methodology behind the WIN-
NER channel model, for a specific scenario, the root-
mean-square (RMS) delay spread (DS) trms, azimuth ASD
¢rms, azimuth ASA g@ryvs, standard deviation of sha-
dow fading (SF) orgp, and the Rician K-factor Kgp for
the LOS case are correlated log-normal RVs. Hence,
the 5-dimensional random vector L = [log,,(Trums),
log,,(érms)> 108, (@rums)s 0c,ap> Kag]  ~ N (g, Z1), where
py = [pps> Pasps piasas 0, pix,as] is the mean vector and X
is the covariance matrix. The standard deviations of the
normal RVs in L are denoted by oy, and the cross-correlation
coefficients between the normal RVs in L are denoted by pxy,
where X and Y are placeholders for DS, ASD, ASA, SF, and K.
The detailed definitions of yx, ox, and pxy are summarized
in Table 1, where E(-) is the expectation operator, Var(X)
stands for the variance of RV X, and Corr(X, Y) denotes the
cross-correlation coefficient of two RVs X and Y. The five
parameters in L are called large-scale parameters (LSPs) [16]
since they are invariant in a channel segment, or drop, which
covers a fading distance of the order of tens of wavelengths.

The realization of the Rician-K factor together with
realizations of the other LSPs, that is, the realization of
the Gaussian random vector L, are drawn to follow the
distribution N (g, X1). The LOS ray angles, ¢ros and ¢ros,
are geometrically determined by the relative positions of BS
and MS, and by the broadside orientations of both BS and
MS array. The cluster parameters, {7,,}, {P,}, and {(¢n, ¢,)}
are sequentially generated according to the exponential
delay distributions, exponential/uniform power delay profile
(PDP), and wrapped Gaussian power angular spectrum
(PAS), respectively. The shape of delay distributions, PDP
and PAS, can be determined by realizations of the LSPs, that
is, Trms, Prums, and @rwvs, which are generated together with
K as mentioned above. The ray parameters {(¢um, Qum) :
n=12,...,Nym = 1,2,...,M} are obtained by adding
predefined offset angles to ¢, or ¢, to follow Laplacian PASs
with given per cluster angular spread. The elements in the
initial phases ®ros and ®,,, are independent and identically
distributed uniform in (-7, ). A detailed procedure of the
generation of these parameters can be found in [16]. Within
a drop, all these parameters are invariant. Thus, a single drop
cannot reflect the propagation characteristics for a given
scenario and multiple-drop simulation is needed even for
link-level performance evaluation.

3. Evaluation Metrics for Wideband
MIMO Channels

To evaluate the impact of various potential simplifications
to the channel model, proper metrics for wideband MIMO
channels are needed. Usually, spatial-temporal correlations
are used as two simple but fundamental metrics for MIMO
channel models. However, this paper aims to go further
and develops a thorough approach to studying the full
system behavior, through a more complex set of metrics.
This set includes mutual information, diversity gain, error
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TaBLE 1: Definitions of first- and second-order statistics of LSPs.

pips = E[log,,(trus)]
pasp = E[log,o(drums)]
pasa = E[log,(¢rus)]
pias = E[Kgp]

Grz)s = Var[logm(TRMS)]
UKSD = Var(log,,(¢rms)]
O'E\SA = Var[logm((PRMS)]
0 a5 = Var[Kgs]

0% = Var|o¢ gs]

pasp,ps = Corr[log,,(drus),log;, (Trms)]
pasaps = Corr[log,,(¢rus),log,,(Trms)
paspst = Corr[log, o (Prums) 0t ]

pasast = Corr[log,(¢rums)s 0¢,ds]
paspasa = Corr[log,,(¢drms),10g,,(¢rms)]
pos,se = Corr[log,,(Trvs), 0¢,ds]

PASDK = Corr[10g10(¢RMS)>KdB]

pasax = Corr[log,,(¢rwms), Kas]

posk = Corr[log,,(7rus), Kas]

psex = Corr[og as, Kap]

nth cluster mth ray

v
MS broadsid_e_?f?é: ______ ®
—‘_,_——”’—‘ MS direction ~ MS array
® Lo\ - T@f(;s of travel
‘ BS broadside

BS array

FI1GURE 1: Definition of angles in WINNER channel model.

rate, and temporal behavior. Recall that, in the baseline
model, a scenario is characterized by multiple drops with
different realizations of LSPs. For either link- or system-level
simulation, the overall performance of all drops is concerned.
Based on this fact, these metrics are designed for evaluating
the average behavior over multiple drops. With such metrics,
we can try to examine whether the proposed simplified
model has equivalent behavior in the scenario level. The
proposed metrics are described in what follows.

3.1. Spatial Multiplexing Metric. Outage capacity is a widely
adopted metric to evaluate the spatial multiplexing ability of
an MIMO channel, because it is the main benefit provided
by this MIMO mode. The outage capacity, or the cumulative
distribution function (CDF) of the channel capacity, when
the channel is unknown to the transmitter is preferred to the
ergodic capacity which can be derived from the CDE. This is
because the ergodic capacity is often insensitive to the exact
channel characteristics, whereas the capacity distribution is
more easily affected. Hence, the outage capacity provides
a more rigorous test. The capacity of a time-invariant
frequency-selective fading MIMO channel is given by [23]

C= %JBlogz det [IU + %H(f)H(f)T]df’ (5)

where (-)" stands for conjugate transpose, B is the band-
width, p denotes the signal-to-noise ratio (SNR) and H(f)
is the normalized frequency domain channel matrix with
unitary average channel power gain, that is,

E(IH()IE) = US. (6)

Note that H(f) is the transform of the composite impulse
response with the delays, so the capacity obtained from (5) is
the broadband capacity. In (5), we have assumed equal power
allocation and no water filling is done both in the frequency
and space domains. Given an SNR p, the 100q% outage
capacity C, is defined as the spatial multiplexing metric, that
is, Pr[C < Cy] = q.

3.2. Spatial Diversity Metric. When the channel is known to
the transmitter, spatial diversity is related to the dominant
eigenmodes of the channel matrix. Hence, we choose the
marginal CDF of each ordered eigenvalue of the chan-
nel correlation matrix as the spatial diversity metric. Let
A (f), n = 1,2,...,U, be the eigenvalues of H(f)H(f)T
in descending order, that is,

An(f) ZA(f) = - = Au(f). (7)

Note that, (7) implies that A(,)(f) = 0 for r < n < U, where
r = rank[H(f)H(f)T]. Forn = 1,2,...,r, the r empirical
distribution functions obtained from {A(;)(f) f €
[-B/2,B/2]} are used as the spatial diversity metric. Note
that this approach is quite unusual. The eigenvalues are being
considered as random variables over frequency rather than
over different channel realizations for the same frequency.
For example, considering the maximum eigenvalue, a range
of values is obtained from measurements or simulations over
frequency and not over different channel realizations. This
reflects the focus of the paper on broadband metrics.

3.3. Symbol Error Probability. The exact symbol error prob-
ability (SER) of singular value decomposition (SVD)-based
MIMO receivers using uncoded transmission is derived in
[24] for flat-fading channels. We generalize the result to
the frequency selectivity case. If only the first m principal
eigen modes are activated for the SVD-based transmission
and the uncoded BPSK scheme is adopted, the symbol error
probability for a given SNR level p is given by

~ N e Priy(f)
SER@)—I‘WJMF{E“C(‘ s ) (4
(8)

where erfc(x) is the complementary error function. For a
fixed SER value, let the required SNR be p, for the baseline
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model and p; for the simplified model. The SNR shift, Ap =
[p1 — pol, is defined as the SER metric.

3.4. Temporal Behavior of MIMO Capacity. The capacity of
the time-variant MIMO channel is a stochastic process. The
temporal behavior of the MIMO channel model can be
partially reflected by the level crossing rate (LCR) across
a capacity level Cr (denoted as LCR(Cr)) and the average
fading duration (ADF) of the capacity process below Cr
[25]. Let uc be the mean capacity, and o¢ be the capacity
variance. Defining the standardized capacity values as C =
(C — uc)/oc, we focus on the LCR(&T) which is the LCR of
the normalized capacity, 6, across GT. Results are shown for
LCR(Cr) normalized by the maximum Doppler frequency
fp, versus the outage probability given by Pout(Cr) = Pr[C <
Cr] [25].

4. Potential Simplifications

4.1. Clipping Clusters with Lower Power. In [26], the compu-
tational complexity of channel model simulation was divided
into three different categories: (a) complexity of channel
coefficient generation, (b) number of required parameters,
and (c) the complexity of simulation. Both (a) and (c)
are proportional to the number of delay taps. Hence, the
computational complexity can be reduced if the number of
delay taps can be reduced. However, the impact of reducing
the number of delay taps needs to be investigated. The
clipping is based on the fact that the average power of
some clusters is relatively low with respect to the maximum
cluster power. Consider a scenario with N clusters, where
the average cluster power of the nth cluster is P, in decibels.
Denote the cluster indexing set as 4 = {1,2,...,N}. For a
given cluster power threshold, Py, in decibels, the cluster is
clipped if its power is below this threshold when the power
of the dominant cluster is chosen as a reference. The reduced
number of clusters is an RV

N
Nuppea = 2. 1(Po < max Py — Py, ), (9)

n=1

where I(A) is the indicator function of event A, namely,

event A is true,

l)
I(A) = { (10)

0, otherwise.

As mentioned in [26], the computational time for simulation
is dominated by the convolution operation, and the time
required by such an operation is proportional to the number
of delay taps (or the number of clusters). Consequently, if we
normalize the computational time after clipping by the time
required before clipping, the normalized computational time
(NCT) can be defined as the ratio of the average number of
remaining clusters to the number of original clusters, that is,

1
NCT(Pw) =1 - NE(Nclipped)- (11)

0 5 10 15 20 25 30 35 40
Clipping threshold (dB)

—+— Indoor LOS
—e— Qutdoor NLOS

(a) NCT versus clipping threshold

MRE of DS
=
b

0 5 10 15 20 25 30 35 40
Clipping threshold (dB)

—+— Indoor LOS
—e— Qutdoor NLOS

(b) MRE of DS versus clipping threshold

FiGure 2: The impact of clipping threshold on the efficiency and the
accuracy (averaged over 10*-drop runs).

When the clipping threshold Py, = 0dB, only the cluster
with maximum power remains. Thus the minimum NCT
is obtained, that is, NCT(0) = 1/N. When Py, — oo,
no cluster will be clipped and NCT converges to one. The
NCT indicates the benefit gained by clipping the low-power
clusters. Figure 2(a) shows the relationship of NCT versus the
clipping threshold for the model parameterized in Table 3.
The NCT is averaged over 10* simulation runs. It shows
that the average computational complexity can be reduced by
more than 40% when a 25dB clipping threshold is adopted
for the “Indoor LOS” case, while a 15% improvement can
be expected for the “Outdoor NLOS” case if Py, = 15dB.
The NLOS case requires a higher clipping threshold with
respect to the LOS case to archive the same NCT reduction.
As for the LOS case, the power of LOS ray is stronger than the
NLOS rays such that most clusters were clipped out for a low
threshold. For the NLOS case, the power difference among
clusters is not so large as for the LOS case. So, even with a
lower threshold, clusters are more likely to be clipped.

To keep the total power of the remaining clusters unitary,
the loss of the power of the clipped clusters needs to be
compensated. For a given threshold, Py, the indexing set J
can be separated into two disjoint sets, dg = {n : P, <
maxkey P — Pm} and its complement £, = £\ Lo. If cluster n
is clipped subject to a certain threshold, its power, P,, can be
combined with the power of the closest neighboring cluster
m which is given by

m=argmin|t, — 1,|, Vn€ do. (12)
ked,
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A direct consequence of clipping clusters is the bias in the
RMS delay spread which is inversely proportional to the
coherent bandwidth, a critical parameter. For a given drop,
denotes the RMS delay spread before and after clipping with
a threshold Py, as Trvms and Trms, respectively. The mean
relative error (MRE) of the RMS delay spread versus the
clipping threshold is defined by

(13)

TRMS — T
s (Pu) :E<M)

TRMS

which is plotted in Figure 2(b). It shows, as expected, that as
the threshold becomes larger, the relative error eps becomes
smaller. The MRE of DS is more sensitive to the clipping
threshold in the NLOS case. Particularly, eps is around 5%
when the clipping threshold Py, = 15dB for the outdoor
NLOS case or Py, = 25 dB for the indoor LOS case.

4.2. Fixed RMS Delay Spread. In order to estimate a given
performance metric via Monte Carlo simulation, the number
of random samples required to achieve a given level of
confidence depends on the number of RVs involved in the
simulation. As mentioned above, random realizations of five
LSPs need to be drawn from their own distributions. The
angular spread at both ends of the link, that is, ASD and
ASA, will have a crucial impact on the spatial correlation
properties of the MIMO channel. Hence, we propose fixing
the RMS DS at its mean value to reduce the number of
RVs. Although this will change the per drop behavior of
the channel model, mainly in the delay domain, the average
behavior will only be slightly affected as shown in Section 5.

4.3. Fixed XPR. In addition to fixing the RMS DS as a
constant, we can also fix the XPR. The behavior of MIMO
systems with cross-polarized antennas was investigated in
[27] with the 3GPP/3GPP2 SCM model. These results
showed that the change in mean capacity as the XPR varies
is negligible for a +45° cross-polarized 2 X 2 system. Hence,
we propose fixing the XPR at its mean value and investigate
the impact of this simplification on the metrics given in
Section 3.

4.4. Uncorrelated LSPs. The LSPs, DS, ASD, ASA, SE, and
Rician-K factor, are correlated in the baseline channel model.
However, as shown in Table 3, the parameters extracted
from field measurements show that some LSPs are weakly
correlated or even uncorrelated, for example, Rician-K factor
versus ASA or ASD, ASD versus ASA, DS versus ASA,
and so forth. Some similar weak correlation properties are
also reported in the literature [16, 17]. We remove the
correlations between the LSPs and investigate the impact of
this simplification.

5. Results and Discussions

5.1. Channel Measurements and Parameter Extraction

5.1.1. Measurement System. To extract the parameters
required by the baseline model, wideband channel data were

(a) TX array

(b) RX array

Ficure 3: Configurations of the antenna arrays used in the
measurements.

TaBLE 2: General sounder parameters.

Item Setting
Center frequency 5.25GHz
Chip rate 100 MHz
Sampling rate 200 MHz
TX power at antenna input 26 dBm
PN code length 511
Temporal snapshot rate 21.7Hz
Number of elements of TX array 50
Number of elements of RX array 8

collected using the Elektrobit Propsound CS [28] MIMO
channel sounder, which uses pseudorandom binary signals
(PRBS) and time-division multiplexed (TDM) switching.
The transmitted power was 26 dBm and the length of the
PRBS was 511 symbols. The transmitter (TX) was equipped
with a dual-polarized omnidirectional array (ODA) with a
maximum of 50 elements. The receiver (RX) employed a
vertically polarized 8-element uniform circular array (UCA).
Figures 3(a) and 3(b) show, respectively, the configurations
of the TX and RX antenna arrays. Schematic plots of both
antenna arrays are given in Figure 4. The spacing between the
neighboring elements in both the ODA and the UCA is halfa
wavelength. All 8 x 50 subchannels are sounded by activating
each TX-RX element pair consecutively within a time period
which is referred to as a measurement cycle. A temporal
snapshot refers to the impulse response measured within
a measurement cycle. The temporal snapshot rate is also
the cycle rate. The measurement settings are summarized in
Table 2.

5.1.2. Measurement Environment. Stationary measurements
were conducted in the corridor of a teaching building on
the campus of Beijing University of Posts and Telecommu-
nications (BUPT), China as the indoor scenario [29]. The
dimension of a single floor is 120 X 45 x 6 m?. The TX array
and RX array were located about 1.5m and 2.5m above
the floor level, respectively. All 8 X 50 elements on both
TX and RX arrays are enabled during the measurements.
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FIGURE 4: Schematic plots of the antenna arrays used in the
measurements.

Figure 5 illustrates the layout of indoor measurements in the
corridor. The RX was fixed as the base station and is marked
with the arrow denoting the reference direction. The TX
was measured at the 32 locations marked as “TX Position.”
At each spot, 100 temporal snapshots of raw data were
recorded. In this environment, the walls along the corridor
and between the rooms are made of bricks with plastic poster
boards on the surface. The floor has a marble surface and the
doors of the rooms are wooden. The entrance doors are made
of glass with aluminum frames.

5.1.3. Method of Noise Cut. Receiver noise was superimposed
on the measured CIRs. Hence, before either estimating
channel parameters or determining capacity in (5), we need
to choose an appropriate dynamic range of the measured
CIRs to perform the noise cut. Following [30], the per
subchannel dynamic noise cut method is applied in this
paper. Given a temporal snapshot, the noise floor Pgoor
was calculated for each subchannel. As a rule of thumb, a
6 dB noise margin Ay added to the estimated noise floor
can guarantee the noise is better cut. The per subchannel
dynamic range of a measured CIR is defined as

DR = min {Ppeak - (Pﬂoor + Anoise)) DRmax}) (14)

where Py, is the peak value of PDP for the given subchannel
and DRpy.x = 25dB is the predefined maximum dynamic
range.

5.1.4. Parameters for the Baseline Model. For each temporal
snapshot, the multipath channel is described by the superpo-
sition of L rays. The rays are characterized by the parameter

Lecture hall

Class room E“

\

0> Tx position

Class room .
T Rx position

Class room T

FIGURE 5: Layout of the indoor measurements in the corridor.

set P = {(10, ¢g,9e,(pg,93,Ve,Xe) : ¢ = 1,2,...,L}. Here,
¢, Pe, Oes @e, Op, and v, denote the excess delay, the azimuth
of departure, the elevation of departure, the azimuth of
arrival, the elevation of arrival, and the Doppler shift of the
¢th ray. The polarization matrix reads X, = (a,p,p,)2x2-
The complex entry agp,, represents the weight for the
¢th ray that originates in the p;, direction and arrives in
the p, direction. Under the assumption of far-field and
planar wave propagation, the Space-Alternating Generalized
Expectation maximization (SAGE) algorithm [31, 32] is
utilized to estimate the parameter set  from each temporal
snapshot of the measured CIRs. The first- and second-order
statistics of these parameters in & correspond to the LSPs
described in Section 2, and are summarized in Table 3. The
estimated maximum Doppler shift fp is 1 Hz for the indoor
measurements.

For reasons of space a full description of the parameter
extraction methodology cannot be given here. However, the
references [16, 31, 32] contain the necessary details. The
basic approach can be summarized as below. The measured
data is taken and the SAGE algorithm [31, 32] is used
to obtain samples of the 7 parameters in # from each
temporal snapshot. Following the WINNER methodology
[16], these samples are then used to find the parameters
in the columns entitled “Indoor” in Table 3. Finally, these
tabulated parameters are sufficient to define the terms in
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TABLE 3: Parameters for the baseline channel model.

Parameter Unit Indoor? Outdoor® Parameter Unit Indoor? Outdoor®
Ups 10g [S] -7.70 -7.12 PASD,DS 0.17 0.20
Ops 10 0.18 0.12 PASA,DS 0.01 0.40
UasD 1.60 1.19 PASA,SF —0.02 —0.40
OASD 1 o 0.18 0.21 PASD,SF —-0.18 0.00
gy,
UASA 1.62 1.55 PDS,SF —0.18 —-0.70
OASA 0.22 0.20 PASD,ASA 0.07 0.10
OSF 3.0 4.0 PASD,K — —0.09 N/A
Uk dB 4.7 N/A PASAK -0.07 N/A
0K 0.9 N/A PDS,K -0.32 N/A
rr — 3.6 1.0 PSEK 0.57 N/A
UXPR dB 3.7 8.0 Cluster ASD . 5 10
OXPR 9.6 3.0 Cluster ASA 11 22
N — 15 16 M — 20 20

aParameters for the indoor case are obtained from the measurements described in Section 5.1.
bThe NLOS case of the “Urban macrocell (C2)” scenario in the WINNER channel model [16].

the channel coefficients given in (2) and (3) by the steps
described in [16].

Besides the indoor LOS case, an outdoor NLOS case
is also selected as shown in Table 3. The parameters in
the columns entitled “Outdoor” are the same as those for
the NLOS case of the “Urban macrocell (C2)” scenario in
the WINNER channel model [16]. The definition of each
parameter can be found in Section 2.

5.2. Simulation Assumptions. 'To investigate the impact of the
proposed simplifications on channel behavior, we constrain
the antenna configuration and bandwidth to match the
measurement campaign. We select 9 elements from the
50-element MS array and 7 elements from the 8-element
BS array to form a 9 x 7 downlink MIMO channel. This
approach is both manageable from a complexity point of
view and is in agreement with the measurement configu-
ration described previously. The selected BS array is a 7-
element vertical polarized uniform circular array, that is, the
7+1 UCA without the central element. The MS antenna array
is a 9-element dual-polarized uniform circular array which
can be thought as the center ring of the 2 x 9 ODA (with
odd elements from no. 19 to no. 35 in Figure 4(a)). For both
antenna arrays, the element spacing is half a wavelength. The
field patterns of real antennas are embedded into the baseline
and simplified models to regenerate equivalent sets of MIMO
channel matrix realizations. The embedding of field patterns
is archived by substitution of the array patterns obtained
in an anechoic chamber as cgs; and cys, into (2) and (3).
The channel coefficients are generated following [33] and
by replacing the scenario specific parameters in [33] with
those in Table 3. For the indoor case, all other parameters
of the model are set to match those obtained in the
measurement campaign. This includes reference directions
for both antenna arrays. The assumptions are summarized
in Table 4. The channel is sampled at a frequency four times

the maximum Doppler frequency. The results are obtained
by averaging over 1000 simulation runs(or drops) [14].
(The number of drops is chosen to be manageable from
a complexity point of view and also to ensure satisfactory
convergence of the metric.) The fading distance of 50
wavelengths is assumed for each drop.

For brevity, we designate the simplified models as “SM-”
suffixed with a letter. SM-A refers to the full model where the
clusters are clipped out with a 25 dB threshold for the indoor
LOS case or a 15dB threshold for the outdoor NLOS case.
SM-B takes the full model and fixes RMS DS as a constant.
SM-C fixes XPR at its mean value and SM-D removes
the cross-correlations between LSPs. SM-E applies all the
simplifications in SM-A, B, C, and D simultaneously. The
designators are listed in Table 5. In the following simulation
results, the measured results are given as a reference for
Indoor scenario only.

5.3. Simulation Results and Discussion

5.3.1. Ordered Eigenvalue Distributions. The marginal CDFs
of the first five principal eigenvalues for the baseline and
simplified models are as shown in Figure 6. It can be seen that
the proposed simplifications have a very minor impact on
the distribution of the first principal eigenvalue. Removing
the cross-correlations between LSPs has made little change
to the distribution of ordered eigenvalues. Similarly, fixing
the RMS DS leads to a negligible effect on the eigenvalues.
As predicted, the impact on the spatial correlations is not
significant and hence there is little impact on the eigenvalues.
Figure 6(a) also tells us that the distortion of different
ordered eigenvalues differs when SM-C or SM-E is applied.
For example, with SM-C, A(z) is underestimated while A4
and A (s are overestimated with respect to the baseline model.
Figure 6(b) shows that for outdoor NLOS case, the ordered
eigenvalue distribution is less sensitive to all simplifications.
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FiGure 6: CDFs of the first five principal eigenvalues for baseline
and simplified cases.

Note that in the measurement-based indoor baseline model,
the nonprincipal eigenvalues deviate from the measured
results. The relative deviation of the eigenvalue becomes
larger for smaller eigenvalues.

5.3.2. Outage Capacity. Broadband capacity are obtained by
integrating the narrowband capacity over the entire band-
width as in (5). The CDFs of MIMO capacity for the baseline
and simplified models are depicted in Figure 7. There are
three different SNR levels which represent the marginal,
medium, and high SNR cases. We see that the baseline and
simplified models always underestimate the MIMO capacity

TaBLE 4: Assumptions of channel reconstruction.

Parameter Description
Carrier frequency  5.25GHz
Bandwidth 100 MHz

7-element UCA, vertical polarized
9-element UCA, +45° dual polarized

BS antenna array

MS antenna array

MS velocity 1.5km/h (indoor) and 120 km/h (outdoor)
Sample density 2 samples per half wavelength

No. of drops 1000

No. of time samples 200

per drop

Dela}l sampling 5ms

density

No. of frequency bins 1024

with respect to the measured result. This underestimation
comes from several aspects such as measurement errors
and possibly the lack of elevation spread in the models,
which was theoretically analyzed in [34]. For the indoor LOS
case, the variations in MIMO capacity due to the proposed
simplifications increase as the SNR increases. With SM-E,
the relative deviation of the capacity for an outage of 5%
at high SNR (p = 20dB) is 4.23%. Since the use of SM-E
will lead to the maximum deviation in outage capacity, the
relative deviation of the capacity for outages of 5% due to the
application of any proposed simplified model will not exceed
5% in the high SNR regime. For the outdoor NLOS case, the
relative deviation is always less than 5%.

As shown in Figure 7(a), there is a deviation of the
baseline model from the measurements in the high SNR
case. This deviation is mainly caused by the deviation of
nonprincipal eigenvalues. For a given frequency f, denote
the measured and model generated U X S channel matrix as
H(f)and H'(f), respectively. Let A(,) and A, be the ordered
eigenvalues of H(f)H(f)" and H'(f)H'(f)", respectively,
where A1) > Ap) = +++ 2 Ay and Ay > Ay = - 2
A{vy- Assume the eigenvalues can be divided into two sets:
the well fitted principal eigenvalues in £1 = {(A),A(,) :
n = 1,2,...,r"} with negligible relative deviation; and small
eigenvalues in £, = {()L(n),lgn)) n=r+1,r +2,...,U}
with large deviations. When the SNR p — o, the capacity
deviation tends to

CC T (/9
€c = Jim, 2. 18 S

" A/\(n) ) v ( AA(H) )
= log,| 1+ + log,| 1+ ,
2, log, ( An) 2. log, A

n=r'+1

(15)

where Ad(,) = /\En) — A(n)- The first term in (15) approximates
to zero as the relative deviation Ad(,)/A¢y is very small. For
the eigenvalues in «£,, the nonnegligible relative deviation
AL(y/A(ny causes the capacity deviation. In Figure 6(a), we
can take ' = 4. For the probability of 0.5, we have
As) = —4.0dB = 0.40 and A5y = —5.6dB = 0.28. Thus,
AMs)/Asy = —0.43, and 10g2(1+A/\(n)//\(n)) = —0.81 bit/s/Hz.
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For n = 6 and n = 7, larger deviations of eigenvalues
can be expected, which finally lead to the gap between
the measurements and the baseline model as shown in
Figure 7(a).

5.3.3. Symbol Error Probability. For the indoor case, consider
the baseline model extracted from the measurements con-
ducted in the LOS environment. The gain of the last three
MIMO eigenmodes is limited due to the presence of the
LOS ray. Consequently, we consider the SVD transmission
over the first four principal eigenmodes. The symbol error
rates for the baseline and simplified models are shown in
Figure 8(a). In the low SNR regime, all simplified models
perform almost identically to the baseline model. However,

0
10,
10—1 L
~
Sa)
w
1072 L
1073 : : : : :
-10 =5 0 5 10 15 20
SNR (dB)
--- Measured —— SM-C
—o— Baseline —— SM-D
SM-A —— SM-E
—&— SM-B
(a) Indoor LOS case
100
107!
~
5]
w

1072 ¢

102 : : : : :
—10 -5 0 5 10 15 20
SNR (dB)
—o— Baseline —— SM-C
SM-A —e— SM-D
—&— SM-B —+— SM-E

(b) Outdoor NLOS case

FIGURE 8: SVD symbol error probabilities for baseline and simpli-
fied cases.

TABLE 5: Designators for simplified models.

Designator Simplification

SM-A Clip out clusters with a 25 dB (for indoor LOS
case) or 15 dB (for outdoor NLOS case) threshold.

SM-B Fix the RMS DS as the mean value yps in Table 3.

SM-C Fix the XPR as the mean value yxpr in Table 3.

SM-D Remove cross-correlations between all LSPs.

SM-E All simplifications in SM-A, SM-B, SM-C, and

SM-D.

in the high SNR regime, there is an approximate shift of 1 dB
in SNR for an SER of 107% due to both SM-A and SM-C
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FIGURE 9: Level crossing rates of standardized MIMO capacity for baseline and simplified cases when p = 20 dB.

TaBLE 6: Comparisons between the baseline model and SM-E model.

Item Indoor LOS Outdoor NLOS
Baseline SM-E Baseline SM-E
No. of parameters 14 20 12
Complexity No. of RVs 4 5 3
NCT per drop 100% 57% 100% 85%
Relative deviation of Csg, <5% 0 <5%
Accuracy SNR shift for SER of 10~ <1dB 0 <0.5dB
LCR for outage below 10% Approximately equal

for the indoor LOS case. Again, the performance variation
due to both SM-B and SM-D is negligible. It is worth
noting that the performance of SM-E is nearly the same as
the baseline model across the whole SNR range. Although
conventional wisdom says that large delays will result in
higher error rates due to frequency-selective fading. However
according to (8), the frequency-selective channel is effectively
decomposed into a series of flat-fading channels, hence the
SER result here does not show any sensitivity to the delay
randomness. The symbol error rates for the outdoor case are
plotted in Figure 8(b) which shows negligible deviations of
all simplified models from the baseline model.

5.3.4. LCR for the Standardized MIMO Capacity. The nor-
malized LCR of standardized MIMO capacity at 20 dB SNR
is given in Figure 9 which shows that all simplified models
cross-capacity thresholds for outage levels below 10% at
nearly same rate. It means that all simplified models exhibit a
similar temporal behavior for MIMO capacity as the baseline
model for both indoor- and outdoor cases.

5.3.5. Comparisons. We compare the baseline model and the
simplified model, SM-E, from an accuracy and complexity
point of view in Table 6. The complexity of a channel model

is two fold: (a) the time for generating channel coefficients;
and (b) the time for convolution of the transmitted signal
and the channel [26]. Since the real computational time
depends on many factors such as the implementation of
the model and the computational power of the simulation
platform, we employ some indirect metrics and evaluate the
complexity. The number of parameters used is related to
the time of coefficient generation and is referred to as the
number of parameters required to describe a model. For
the baseline model, it equals the number of items listed in
Table 3, that is, 26 for the indoor LOS scenario and 20 for the
outdoor NLOS scenario. For SM-E, the following parameters
are not required: ops, oxpr, and 10 (for LOS) or 6 (for
NLOS) cross-correlation coefficients. Hence, only 14 or 12
parameters are required to describe the SM-E model. The
number of RVs is another value of interest, since the metrics
of interest in simulation (e.g., bit error rate) require less time
to converge when the number of RVs in the model is reduced.
For the baseline model, there are 6 (for LOS) or 5 (for NLOS)
RVs, that is, 5 (for LOS) or 4 (for NLOS) random LSPs and
the random XPR. With SM-E, both DS and XPR are fixed as
constants and only 4 or 3 RVs remain. Recall that the NCT
measure can reflect the convolution reduction. The NCT is
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obtained by approximating (11) through simulation. The
results show that the SM-E is an acceptable tradeoff between
accuracy and complexity with respect to the baseline model.

6. Conclusion

In this paper, we have studied the simplification of the
GBSM by several approaches. The double-directional chan-
nel model developed under the IST-WINNER project is
employed as the baseline model. The parameters for the
indoor LOS baseline model are extracted by applying the
SAGE algorithm to the data obtained from channel measure-
ments. Four metrics are proposed to evaluate the impact of
the simplifications on the behavior of the channel models.
These include the MIMO capacity, eigenvalue distributions,
symbol error rate of SVD-transmission, and level crossing
rate of the MIMO capacity. Five different simplified models
are developed based on the baseline model with the following
modifications:

(i) SM-A: clipping clusters with a 25dB (for indoor
LOS case) or 15dB (for outdoor NLOS case) power
threshold,

(ii) SM-B: fixing the RMS DS at its mean value,
(iii) SM-C: fixing the XPR at its mean value,

(iv) SM-D: removing cross-correlations between LSPs,
(v) SM-E: all the above modifications.

The simulation results show that all these five simplified
models have a minor impact on all proposed metrics.
Compared to the baseline model, the SM-E can provide
much better computational efficiency with a negligible loss
of accuracy. Besides the two scenarios presented in this paper,
we have repeated the simulations for all other scenarios in
the WINNER model. All these simulation results support our
conclusion. However, for reasons of space we cannot present
those results in this paper. This means that fixed parameters
and fewer random parameters can be used to give similar
results. We have shown that simplification is possible and
perhaps further simplifications might follow to make the
models even more appealing. The simplified models have
been far more rigorously tested. Instead of only looking at
spatial and temporal correlations, we have looked at full
system behavior in terms of many metrics. Furthermore,
since the simplifications keep the original structure of the
GBSM, the antenna geometries and radiation patterns can
still be changed by the users as these parameters remain
part of the simplified model. We also find that the baseline
model underestimates the outage capacity with respect to the
measurements. This might be due to measurement errors,
modeling errors of nonprincipal eigenvalues or possibly the
neglect of angular spread in elevation. Hence, simplifications
of three-dimensional GBSMs will be considered in future
work.
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