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multiband multiaccess channel. Finally, all the results can be generalized in a straightforward fashion to broadcast channel due to
the Gaussian multiaccess-broadcast channel duality.

Copyright © 2009 Prasanna Chaporkar et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

A comprehensive treatment of multiaccess fading channels
can be found in [1, 2]. In these papers, Tse and Hanly
have characterized the so-called throughput capacity and
delay-limited capacity of the multiaccess block fading channel
with Gaussian noise assuming that perfect channel state
information (CSI) is causally available at the transmitters
and the receiver. The throughput capacity region quantifies
the achievable rate region with average power constraint
for ergodic fading. For the delay limited capacity, each user
must be given the required rate irrespective of its fading
state. The aim is to obtain a coding and power allocation
scheme to minimize the energy while guaranteeing the rate
in every slot. Here, slot refers to the time duration required
to transmit a block of symbols over which the fading state
remains unaltered. Thus, the slot duration is smaller than the
channel coherence time.

The notion of throughput capacity leads to schemes that
take advantage of the different channel qualities of the users
“multiuser diversity”. Specifically, it has been shown that in

the special case of single antenna transmission and reception
on a frequency nonselective channel, sum rate in the system
is maximized by letting only one user with the best channel
quality to transmit. Such schemes that take current channel
states into account while making scheduling decisions are
referred to as “Opportunistic Scheduling” and may result in
unfair rate allocation if the fading statistics are not sym-
metric. In wireless systems, the fading statistics are typically
not symmetric because of many reasons that include the so-
called “near-far” effect. To alleviate this limitation, several
opportunistic scheduling schemes with fairness constraints
have been designed [3, 4]. Different fairness objectives
will in general result in different throughput performance
of the system, along with changing other performance
parameters of a system [5]. Among them, Proportional
Fair Scheduling (PFS) is among the most well known and
has many desirable properties including provable fairness
guarantees and suitability for online implementation, that
is, without prior knowledge of channel statistics [6]. In spite
of these desirable features, PFS suffers from two limitations.
First, PFS does not provide the required rate to the users,
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but the rate allocation is done to maximize certain utility
function and the allocated rates depend on the channel
statistics of the users. Second, it does not guarantee delay as
the users are scheduled in random slots, depending on their
fading states and the resource allocation in the previous slots.

As discussed before, the notion of throughput capacity
is relevant for delay-tolerant data applications. On the
contrary, the notion of delay-limited capacity is relevant for
the applications that have the strictest delay requirement,
namely, the required rate should be given to each user
in each slot irrespective of the channel conditions. The
delay for such schemes is always one slot. Note that these
schemes cannot make use of channel or multiuser diversity
over time, but instead can benefit from near-far gain [7]
by simultaneous transmission of users. It has been shown
that simultaneous transmission (superposition coding in
downlink) and successive decoding minimize energy for
achieving the required rates [2]. In this signaling scheme, all
the users transmit simultaneously with a coordinated power
allocation, and the receiver decodes in the decreasing order
of the users’ channel states treating the undecoded signals as
noise. One of the attractive features of this coding strategy
is that given the ordered channel state sequence, the power
allocation for the optimal signaling can be obtained using
a greedy procedure. This has significant impact on practical
implementation.

Note that opportunistic scheduling exploits channel and
multiuser diversity to guarantee rates that maximize certain
utility and/or guarantee fairness, while simultaneous trans-
mission and successive decoding exploit superpositioning to
guarantee the required rate and the strict delay of one slot
in energy efficient fashion. Many applications cannot afford
to sustain indefinite delay variability in attaining the fair
rate (as in PFS) without suffering significant performance
penalty [8], but they also do not need the strict delay of one
slot (as in delay-limited schemes); that is, they have limited
delay tolerance. With limited delay tolerance in multiaccess
channel, it is possible to exploit both multiuser diversity and
the superpositioning gain.Our aim is to understand how delay
tolerance of the application can be exploited so as to improve the
energy efficiency (delay-energy tradeoff).

In literature, the delay-energy tradeoff is typically studied
assuming no multipath fading (AWGN channel) [9, 10] or
assuming noncausal CSI at transmitters and the receiver
[11–14]. In an AWGN channel, the problem of minimizing
energy with strict deadline requirements has been addressed
using filter theory [9] and network calculus [10]. In [11],
the authors have studied the delay-energy tradeoff for a
single user in fading channel with a strict deadline (say τ
slots), while in [12–14] the multiaccess fading channel is
considered. In all these works, optimal offline (noncausal
CSI available) algorithms that iteratively solve the underlying
optimization problem have been developed, and heuristic
algorithms for noncausal CSI have been proposed. Because
of the equivalence between the multiplexing in time and
frequency, the algorithms with noncausal CSI are more
relevant when τ orthogonal frequency bands are available
and the delay requirement is one slot, that is, in the case
of a delay limited multiband multiaccess system. In their

seminal work, Cheng and Verdú have obtained the capacity
region for the vector Gaussian multiaccess channel [15].
Here, authors have considered the scalar Gaussian channel
with ISI, which reduces to the case of independent parallel
memoryless Gaussian channels through the Karhunen-Loéve
expansion. No multipath fading was assumed. Fundamental
results for multiband fading channels were reported in [1, 2].
Perfect CSI at the transmitter and the receiver is assumed
in these works. The capacity achieving power allocation is
the multiuser waterfilling scheme. The exact characterization
of this scheme is considered difficult, and only iterative
algorithms and their convergence properties are known [16].
The problem of providing the desired throughput to each of
the users has been addressed in multiband multiaccess fading
channel with white Gaussian noise [17–19]. The approach
taken in these works is one to obtain an approximate
multiuser waterfilling solution efficiently.

In practice, CSI is only available causally. In spite of this
obvious limitation, the case with noncausal CSI has been
studied in literature because of the following two reasons.
First, the optimum schemes with noncausal CSI (offline
schemes) provide a benchmark for all the other schemes that
guarantee the required delay. Also, the structural properties
of the optimal offline schemes facilitate valuable insights
for designing near-optimal online schemes (schemes with
causal CSI). Second, in the fixed delay case, analytically
it is difficult, if not impossible, to design optimal online
schemes barring the trivial cases in which future fading states
can be accurately predicted. This can be seen as follows.
Since the required delay τ is finite, any fading realization is
possible with positive probability. Thus, for any given online
scheme, one can play the role of an adversary and orchestrate
future fading states so as to make the scheme suboptimal
compared to an optimal offline scheme. In view of these
reasons, instead of a fixed delay constraint, an average
delay constraint is considered while designing optimal online
schemes [20, 21]. From the quality of service point of
view, guaranteeing the fixed delay is more desirable than
guaranteeing the average delay for the real-time applications.
But, if the delay variance is small, then the higher system
layers can employ mechanisms like playback buffer to cope
up with the delay variability. In [20, 21], a single user fading
channel is considered, and the minimization of average delay
for the given average power constraint has been addressed
using the framework of Markov Decision Processes (MDP).
Again, only the structural properties of the optimal online
scheme have been derived except in certain special cases. The
exact online scheme has to be obtained by solving Bellman’s
equations, which is computationally expensive. The results in
[20, 21] for a single user case are extended to the multiaccess
channel by Neely [22]. Here, the author has considered the
mean system delay, that is, the average delay over all the
users. We note that guaranteeing the mean system delay does
not guarantee the required delay performance to individual
users. In fact, such schemes tend to favor users with a better
channel by providing smaller delays to these at the expense
of the users with a worse channel and still maintaining the
desired mean system delay. Our aim is to quantify the delay-
energy tradeoff while guaranteeing the average delay of each



EURASIP Journal on Wireless Communications and Networking 3

of the users. In queueing theory literature, frameworks for
designing scheduling schemes that minimize a certain utility
(energy in our case) while guaranteeing bounded mean delay
can be found in [23–26]. These frameworks guarantee the
bounded delay but do not guarantee the desired delay to each
of the users as we do.

From the previous discussion, it should be clear that the
closed form expressions for the minimum energy required
for guaranteeing the desired delay are not available for
both online and offline schemes. Thus, the energy-delay
tradeoff has to be quantified using numerical evaluations
for specific scenarios of interest. Our aim is to obtain
closed form expressions to quantify the delay-energy tradeoff
for an average delay constraint in multiband multiaccess
fading channels with causal CSI at the transmitters and the
receiver. We consider a multiband system as it can model
many practical systems including OFDM systems, channels
with frequency selective fading, and ISI channels. The
analysis targets specifically systems, where a large number
of users must be supported with rate and delay guaran-
tees. A motivating real world example could be a sensor
network where sensing delays must be limited, data rates
may be pre-allocated, and energy consumption should be
minimal.

In our analysis, we allow for a general fading distribution
and also consider random arrivals of data from the higher
layers into the physical layer buffer to model real-time
applications in which the symbols are generated in realtime.
For analytical tractability, we use the following approach. We
design a parametrized scheduling policy called Opportunistic
Superpositioning (OSP) that exploits multiuser diversity by
scheduling a set of users with high channel gains only, and
among these users it uses simultaneous transmission and
successive decoding to exploit superpositioning gain. One
of the main challenges in designing such schemes is the
quantification of performance. The quantification allows for
the optimal and guaranteed control. We explicitly quantify
the average per user delay in the general case, and the total
energy requirement in the large system limit for the proposed
policy. Thus, given the delay requirement, we can efficiently
choose the appropriate parameter values so as to minimize
the energy while guaranteeing the required delay. Using
numerical computations, we show that allowing a little delay
can yield significant energy savings. We also compare the
performance of the proposed policy with PFS and the delay-
limited schemes.

The paper is arranged as follows. In Section 2, we present
our system model. In Section 3, we describe the OSP policy,
and in Section 4 obtain analytical guarantees. In Section 5,
we discuss extensions of OSP to multiband multiaccess
channel and to provide delay differentiation. In Section 6, we
compare the performance of OSP with PFS and delay-limited
schemes using numerical computations. Finally, in Section 7,
we conclude.

2. SystemModel

Consider the following system for the purpose of motivation.
A sensor network is operating in an area, with a fusion

center located in the center. Each sensor is stationary, but
the propagation environment has enough inherent variation,
that the channels between sensors and the fusion center
can be considered slowly randomly varying over time. Each
sensor must be polled within a reasonable time from making
a measurement, which consists of a random number of bits.
On the average, all sensors provide equally valuable data, and
should receive an equal fraction of available system rate.

With the previous motivation in mind, we consider a
multiaccess system with K users that are placed at random in
a cell. Time is slotted. Each user i requires a certain fraction
of the total rate provided in a system; that is, the required
average rate of each user is R = Γ/K , where Γ then denotes
the total average spectral efficiency of the system required
to support the user rates. Alternatively, Ri(t) = (Γ/K)νi(t)
denotes the arrivals for user i in slot t, where νi(t) is a random
variable (r.v.). We assume that all the moments for νi(t)
are finite and E[νi(t)] = 1 for every i. Note that random
variables with finite support have all the moments finite. A
sensor measurement usually has limited resolution due to
measurement noise. In networks, the arrival rate is typically
limited by the link capacities which may be large but finite.
Moreover, we assume that the arrivals are independent and
identically distributed (i.i.d.) across both slots and users.
The arrivals are queued into an infinite buffer before served.
Without loss of generality, let the system start in slot 1.
Hence, users’ buffers are empty at the beginning of slot 1.

We primarily discuss the uplink communication (mul-
tiaccess channel), but since the results consider total system
energy expenditure, which can be interpreted as a total power
constraint, the results can be generalized in a straightforward
fashion to the downlink case (broadcast channel) using
the Gaussian multiaccess-broadcast duality [27] in the hard
fairness context [7].

Now, we describe the model for the multiaccess channel,
described by the input (X) output (Y) relation

Y(t) =
K∑

i=1

√
di(t)X(t) + N(t). (1)

Each user i experiences the channel di(t) in slot t. The
channel di(t) arises as the product of two effects assumed
independent, namely, path loss (denoted by si) and short-term
fading (denoted by fi(t)), that is, di(t) = si fi(t). The path loss
is a function of the distance between the transmitter-receiver
pair. Typically, the distance between transmitter and receiver
changes very slowly with respect to the signal bandwidth.
Hence, we assume that the path loss is constant from slot
to slot. On the contrary, fi(t) depends on the scattering
environment around the user and changes in time depending
on the channel Doppler bandwidth. We assume that fi(t)
changes from slot to slot and is i.i.d. across both users and
slots. This is referred to as the block fading model [28]. Let
ER
i (t) (Ei(t), resp.) denote the received (transmitted, resp.)

energy from user i in slot t. Then, ER
i (t) = di(t)Ei(t). Note

that the channel is given in terms of energy attenuation. Let−→
d (t) = [d1(t) . . . dK (t)]. Note that the fading for users is
not symmetric. The distribution of pathloss for a randomly
placed user is denoted by Ψ(·), that is, P{S ≤ x} = Ψ(x)
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where S is a generic r.v. indicating the pathloss of a randomly
placed user. Note that Ψ(·) depends on the distribution of
the users’ placement and the path loss function. Also, letΦ(·)
denote the short-term fading distribution, that is, P{ fi(t) ≤
x} = Φ(x) for every user i and slot t. Let N0 = E[|N(t)|2]
denote the noise power spectral density.

Definition 2.1 (scheduling policy). A scheduling policy Δ is
an algorithm that in each slot t determines the rate vector
−→ρ Δ

(t) = [ρΔ1 (t) . . . ρΔK (t)] and serves each user i with rate
ρΔi (t).

We assume that the perfect CSI is available at the trans-
mitters and the receiver in every slot t. Thus, a scheduling

policy may adapt −→ρ Δ
(t) to the channel state.

Now, we discuss the energy allocation for each user in
order to achieve the desired rates −→ρ . Fix an energy allocation

given by a vector
−→
E = [E1 · · · EK ], where Ei denotes the

energy of the ith user. The capacity region of the Gaussian

multiaccess channel with the time invariant fading
−→
d for the

energy allocation
−→
E is the set of rate vectors −→ρ that satisfy

[29]

∑

i∈S
ρi ≤ log

(
1 +

∑
i∈S diEi
N0

)
, (2)

for every S ⊆ {1, . . . ,K}. The rates are achieved with the
standard random Gaussian codebook with variance Ei for
user i. The signaling is as follows. All the users transmit
simultaneously and the receiver decodes successively in the
decreasing order of the channel states di. From this result, it
is straightforward to see that a given rate vector −→ρ is feasible

with energy allocation
−→
E in Gaussian multiaccess channel

with fading
−→
d if and only if (iff) there exists a permutation

π1, . . . ,πK of {1, . . . ,K} such that for every i

Eπi ≥
N0

dπi
exp

⎛
⎝
∑

k<i

ρπk

⎞
⎠[exp

(
ρπi

)− 1
]
. (3)

Note that there may exist many energy allocations that can
realize the rate vector −→ρ . Since we aim to obtain energy
efficient strategies, we seek an optimal energy allocation that
minimizes the sum energy while achieving the desired rates.
Such energy allocation can be explicitly obtained as follows
[1]. Let −→π denote the permutation such that dπ1 ≤ dπ2 ≤
· · · ≤ dπK . Then, the optimal energy allocation is given by

Eπi =
N0

dπi
exp

⎛
⎝
∑

k<i

ρπk

⎞
⎠[exp

(
ρπi

)− 1
]
, (4)

for every i ∈ {1, . . . ,K}. Note that for the optimal signaling,
the successive decoding order depends only on channel
gains, but not on rates. For convenience, from now on, we
consider users to be indexed according to the ordering. We
assume that once a scheduling policy Δ determines the rate
allocation, the corresponding power allocation is done as per
(4).

We consider three performance measures, namely, sta-
bility, energy efficiency, and delay. Next, we formally define
these.

Definition 2.2 (busy period). A busy period for user i is the set
of consecutive slots in which its queue length is greater than
zero.

Definition 2.3 (stability). Let Bu,i denote the length of the
uth busy period of user i. The system is said to be strongly
stable if for every user i,

lim sup
U→∞

1
U

U∑

u=1

Bu,i <∞. (5)

Strong stability, as defined here, guarantees that each user has
a bounded average per-packet delay.

Definition 2.4 (energy efficiency). We define the energy
efficiency in slot t as

(
Eb(t)
N0

)

sys

def=
∑K

i=1 Ei(t)
N0Γ

. (6)

Then, the energy efficiency is defined as

(
Eb
N0

)

sys

def= lim sup
T→∞

1
T

T∑

t=1

(
Eb(t)
N0

)

sys
. (7)

The energy efficiency measures the average transmitted
energy the system uses per each transmitted bit.

Definition 2.5 (user delay). Delay for the uth arrival of user i
(denoted byDu,i) is the number of slots between its departure
and arrival. The delay for user i is then defined as the limiting
average of per-arrival delays

Di
def= lim sup

U→∞

1
U

U∑

u=1

Du,i. (8)

We augment the notation to denote the dependence of
various quantities on the scheduling policy Δ by using Δ as a
superscript, for example, DΔ

i will indicate the delay for user i
under policy Δ.

3. Opportunistic Superpositioning (Δ∗)

The scheduling policy Δ∗ is parametrized by a variable κ.
To specify this dependence, we denote the OSP scheduling
policy as Δ∗(κ). The scheduling decisions are taken as follows
in every slot t.

(i) Select all users i such that fi(t) > κ.

(ii) Allocate rate ρi(t) to each of the chosen users i so that
everything in its buffer is served, ρi(t) = 0 for others.

Note that Δ∗(κ) (OSP) selects users based on fi(t) and
not on di(t). This is for the reasons of fairness as fi(t) has
the same distribution for every user, while the distribution
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of di(t) depends on the distance of user i from the base
station and is biased towards stronger channels the closer
the user is to the base station. Moreover, since the pathloss is
constant for each user, it suffices to determine rate allocation
in each slot depending only on short-term fading which is
time varying, and thus, unlike pathloss, provides diversity
which can be exploited.

We refer to κ as opportunism threshold as it dictates how
opportunistic OSP is in exploiting the channel diversity.
The opportunism threshold plays a key role in determining
delay and energy consumption in the system. We intuitively
explain how. Note that appropriate choice of κ allows for
eliminating users that are in deep fade in a given slot.
Typically, a few users with a very bad channel dominate the
total energy consumption in the system for the delay-limited
schemes. Thus, even a small value of the opportunism
threshold should significantly improve energy efficiency of
the system. Specifically, we can expect the energy con-
sumption to decrease monotonically with an increase in κ.
But, note that as κ increases, each user is scheduled less
frequently. Thus, for satisfying the rate requirements, the
rate given to the scheduled users increases monotonically
with κ. And providing the higher rate requires higher energy.
In fact, for fixed noise power spectral density, the required
energy increases exponentially with an increase in the rate.
Summarizing, the opportunism threshold in OSP allows us
to save energy by eliminating the users in deep fade but
requires higher energy to serve scheduled users. Thus, it is
not clear if the opportunism threshold should improve the
system performance. It, however, turns out that the energy
consumption of OSP decreases monotonically as a function
of κ. In other words, the energy savings caused by eliminating
the worst users is more than the increase in the energy
consumption to provide the higher rates to the scheduled
users.

As discussed above, the users are scheduled less fre-
quently by OSP when κ is large. So, clearly, the delay increases
monotonically with an increase in κ. Thus, the opportunism
threshold provides a way to achieve delay-energy tradeoff.
Now, the main challenge is to quantify the delay and energy
of OSP as a function of κ, so as to choose the optimal
κ that guarantees the required delay while minimizing the
energy.

4. Analytical Guarantees

In this section, we obtain analytical guarantees for Δ∗(κ).
In Theorem 4.1, we show that Δ∗(κ) is strongly stable
and has a finite average busy time. This results leads to
Corollary 4.2, where we quantify the user delay under the
proposed scheduler Δ∗(κ). In Theorem 4.5, we quantify
the asymptotic energy efficiency of Δ∗(κ). In Theorem 4.6
we show that the asymptotic energy efficiency of Δ∗(κ)
decreases monotonically with κ. In Section 4.1, we provide
a demonstration of the results using important special cases
and provide connections to recent results in the literature.
Therein we provide Corollary 4.8, where we show that as
delay grows without bound, the energy required to stabilize
the system becomes equal to the minimum energy required

to provide the desired rates to each of the users in long
term. Finally in Section 4.2, we discuss the implications of
the analytical results.

First, let γ
def= P{ fi > κ}.

Theorem 4.1 (strong stability). For every κ such that γ > 0,
Δ∗(κ) is strongly stable w.p.1.

Proof. Fix any user i. Since { fi(t)}t≥1 is a sequence of i.i.d.
random variables, the user is scheduled is each slot w.p.γ
under Δ∗(κ). Moreover, each time the user is scheduled,
Δ∗(κ) serves everything in its buffer. Also, since the arrivals
are i.i.d. in slots, clearly, the busy periods are geometrically
distributed i.i.d. random variables with mean 1/γ. Thus, by
the Strong Law of Large Numbers (SLLNs) for γ > 0

lim sup
U→∞

1
U

U∑

u=1

Bu,i = lim
U→∞

1
U

U∑

u=1

Bu,i = 1
γ

w.p.1. (9)

Now, the result follows from Definition 2.3 as γ > 0.

Corollary 4.2 (user delay). The delay for any user i under
Δ∗(κ) is

DΔ∗(κ)
i = 1

γ
w.p.1. (10)

Proof. Because the arrival and transmission of each packet
are mutually independent, and these are independent from
the arrivals and transmissions of other packets, we can,
without loss of generality, consider the delay of each packet
separately. Conditioned on the arrival time, the waiting time
follows the same geometric distribution as the busy time,
and the SLLN proof of Theorem 4.1 applies to user delay
directly.

Note 1. Users’ delays do not depend on the distribution of
their arrival processes given that the mean is finite. Moreover,
the delays for the users are not correlated. Thus, for a given
κ, users may have different distributions for their respective
arrival processes and yet receive the same delay as long as
these processes are independent. Furthermore, user’s delay
guarantee is independent of the number of users in the
system.

Let Fκ(·) denote the fading distribution of user i who
is randomly placed in a cell given that fi(t) > κ, that is,
Fκ(x) = P{si fi(t) ≤ x | fi(t) > κ}, where si is an r.v. denoting
the path loss of a randomly placed user i. Note that Fκ(·)
does not depend on time as the short-term fading is i.i.d.
across the slots. Now, let Aκ

K (x, t) denote the set of users that
are chosen for service under Δ∗(κ) in slot t such that their
channel gains are less than or equal to x, that is, Aκ

K (x, t) =
{i ∈ {1, . . . ,K} : fi(t) > κ and di(t) ≤ x}. Clearly, Aκ

K (∞, t)
denotes the set of all the users chosen by Δ∗(κ) in slot t. Let
|Aκ

K (x, t)| denote the cardinality of Aκ
K (x, t).

Next, we obtain the energy efficiency of Δ∗(κ) in
the asymptotic case when K → ∞, where the system
exhibits a self-averaging behavior, and the required energy to
support the traffic demand converges to a deterministic limit.
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Intuitively, this is due to the random processes of the asymp-
totically large system behaving deterministically according to
their limiting probabilistic behavior, the distributions. Before
we proceed, however, we first state two results that we use to
prove the required. The first lemma shows how the sum rate
of a set of users chosen by Δ∗(κ), having a channel state not
larger than x, converges asymptotically to a limit. The second
lemma shows how the rate of any arbitrary user selected by
Δ∗(κ) asymptotically vanishes.

Lemma 4.3. For every t,

lim
K→∞

sup
x

∣∣∣∣∣∣

∑

k∈Aκ
K (x,t)

ρΔ
∗(κ)

k (t)− ΓFκ(x)

∣∣∣∣∣∣
= 0 w.p.1. (11)

Proof. The proof is presented in Appendix A.

Lemma 4.4. For every t and x,

lim
K→∞

sup
i∈Aκ

K (x,t)
ρΔ

∗(κ)
i (t) = 0 w.p.1. (12)

Proof. The proof is presented in Appendix B.

Theorem 4.5 (energy efficiency). Asymptotically, that is, as
K → ∞, the (Eb/N0)sys under policy Δ

∗(κ) is given by

(
Eb
N0

)Δ∗(κ)

sys
= EFκ

[
eΓFκ(x)

x

]

=
∫∞

0

1
x

exp
(
ΓFκ(x)

)
dFκ(x) w.p.1.

(13)

Proof. Fix arbitrary slot t. We show that under Δ∗(κ),
(Eb(t)/N0)Δ

∗(κ)
sys is the same in every slot t as K → ∞. So,

for convenience, we drop t in the notation.
Now, from (4) and Definition 2.4, it follows that

(
Eb
N0

)Δ∗(κ)

sys
=

∑

i∈Aκ
K (∞)

1
Γdi

e
∑

k∈Aκ
K (di) ρ

Δ∗(κ)
k

(
eρ

Δ∗(κ)
i − 1

)
. (14)

Since exp(·) is a continuous function, Lemma 4.3 implies
that there exists a sequence of nonnegative r.v.’s {εK}K≥1

independent of di such that limK→∞εK = 0 w.p.1, and

e−εK eΓFκ(di) ≤ e
∑

k∈A(di)
ρΔ
∗(κ)

k ≤ eεK eΓFκ(di). (15)

Thus from (14) and (15),

e−εK

Γ

∑

i∈Aκ
K (∞)

1
di
eΓFκ(di)

(
eρ

Δ∗(κ)
i − 1

)
≤
(
Eb
N0

)Δ∗(κ)

sys

≤ eεK

Γ

∑

i∈Aκ
K (∞)

1
di
eΓFκ(di)

(
eρ

Δ∗(κ)
i − 1

)
.

(16)

Now, by Lemma 4.4, we conclude for a large enough K that

the cost of providing user i with rate ρΔ
∗(κ)

i approaches
(
eρ

Δ∗(κ)
i − 1

)
≈ ρΔ

∗(κ)
i = Γνi

K
. (17)

Note that the approximation becomes tighter for larger K .
Thus,

e−εK

Γ

∑

i∈Aκ
K (∞)

eΓFκ(di)

di

(
Γνi
K

)
≤
(
Eb
N0

)Δ∗(κ)

sys

≤ eεK

Γ

∞∑

u=1

∑

i∈Aκ
K (∞)

eΓFκ(di)

di

(
Γνi
K

)
.

(18)

Let us consider the following term in (18):

lim
K→∞

eεK
∑

i∈Aκ
K (∞)

eΓFκ(di)

di

νi
K

= lim
K→∞

eεK lim
K→∞

∣∣Aκ
K (∞)

∣∣

K

× lim
|Aκ

K (∞)|→∞
1∣∣Aκ

K (∞)
∣∣

∑

i∈Aκ
K (∞)

eΓFκ(di)

di
νi

= γE

[
eΓFκ(di)

di

]
E[νi] w.p.1.

(19)

Similarly,

lim
K→∞

e−εK
∑

i∈Aκ
K (∞)

eΓFκ(di)

di

νi
K
= γE

[
eΓFκ(di)

di

]
E[νi] w.p.1.

(20)

The first expectation in (19) and (20) is with respect
to the distribution Fκ(·), while the second is with respect
to the distribution of the arrival process. The relations
(19) and (20) hold because the channel gains di’s of the
chosen users can be viewed as i.i.d. variables drawn from
the distribution Fκ(·). This can be seen as follows. Since fk’s
are i.i.d. irrespective of the distance between the user and
receiver, the scheduling decision can be viewed as scheduling
each user w.p.γ independently. Since the users are placed at
random, sk is a deterministic function of distance, and fk
and sk are independent, we conclude that dk’s for the chosen
users are i.i.d. and each dk is distributed as Fκ(·). Thus,
{eΓFκ(di)/di}i=1,...,|Aκ

K (∞)| is an i.i.d. sequence. Thus, from (19)
and (20), we have

lim
K→∞

eεK
∑

i∈Aκ
K (∞)

eΓFκ(di)

di

νi
K

= lim
K→∞

e−εK
∑

i∈Aκ
K (∞)

eΓFκ(di)

di

νi
K

=
∫∞

0

1
x

exp
(
ΓFκ(x)

)
dFκ(x) w.p.1.

(21)

Thus the required follows from Definition 2.4.

Note 2. The energy efficiency does not depend on the
distribution of the users’ arrival processes but depends only
on the mean as long as the processes are independent and
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have all the moments finite. Next we will show that the
energy efficiency behaves monotonically with respect to the
opportunism threshold and provide a result for the rate of
energy decrease with the threshold.

Theorem4.6 (monotonicity of energy efficiency). Asymptot-
ically, that is, as K → ∞, for every κ′ < κ,

(
Eb
N0

)Δ∗(κ)

sys
≤
(
Eb
N0

)Δ∗(κ′)

sys
w.p.1. (22)

Moreover, the decrease in energy efficiency is O(1/κ). Specifi-
cally,

(
Eb
N0

)Δ∗(κ)

sys
≤ 1

κ
EΨ

[
eΓΨ(S)

S

]
≤ eΓEΨ[1/S]

κ
w.p.1. (23)

First, we provide the intuition behind the result and then
provide the proof.

Intuition. Note the following property of the log(·) function.
Let {ai}i≥1 denote any sequence of nonnegative real numbers
and let Z be any constant. Then,

∞∑

i=1

log

⎛
⎜⎝1 +

ai
Z +

∑

u<i
au

⎞
⎟⎠ = log

(
1 +

∑∞
i=1 ai
Z

)
. (24)

Thus, under simultaneous transmission and successive
decoding, we obtain

∑

i∈Aκ(∞)

ρi(t) = log

(
1 +

∑
i∈Aκ(∞) E

R
i (t)

N0

)
, (25)

where ρi(t) denotes the rate requirement of user i in slot t
andAκ(∞) denotes the number of scheduled users scheduled
under Δ∗(κ).

Thus, from (25) we conclude that if the sum rate to be
provided is the same, then the required sum received energy
at the receiver remains the same and is independent of the
individual rates. Now, note that the sum rate to be provided
in every slot under Δ∗(κ) is asymptotically, that is, as K →
∞, equal to Γ for every κ. This can be seen as follows:

lim
K→∞

∑

i∈Aκ(∞)

ρi(t)

= lim
K→∞

∑

i∈Aκ(∞)

Γ

K
νi(t)

= Γ lim
K→∞

|Aκ(∞)|
K

lim
|Aκ(∞)|→∞

1
|Aκ(∞)|

∑

i∈Aκ(∞)

νi(t)

= Γ w.p.1.

(26)

Alternatively, one can apply Lemma 4.3 with x → ∞. The
converse of this result is naturally, that in the case of finite K
the required rate served by the system is a random variable.
From the above it follows that asymptotically the required

sum received energy under Δ∗(κ) is the same in every slot
independent of κ. Now, the required sum transmit energy
depends on the channel states. Since κ increases, only the
users with a larger channel gains are selected, we intuitively
expect the sum transmit energy required to achieve the given
sum received energy to decrease monotonically. Now, we
prove Theorem 4.6. First, we state a lemma that we use to
prove the theorem.

Lemma 4.7. Let A denote an ordered countable set of users,
where the ordering is as per fading, that is, di ≤ dj whenever

i < j. Let −→ρ and −→ρ ′ denote two different rate requirement
vectors satisfying

k∑

i=1

ρi ≥
k∑

i=1

ρ′i for every k. (27)

Moreover, let
−→
E and

−→
E
′
denote the energy allocation as per (4)

to realize −→ρ and −→ρ ′, respectively. Then,∑i∈A Ei ≥
∑

i∈A E′i .

Proof. The proof is presented in Appendix C.

Now, we prove Theorem 4.6.

Proof. Let us consider two identical copies of a sample path;
that is, arrivals and fading for each of the users are the same
in every slot. On the first sample path, the users are served as
per Δ∗(κ), and on the second they are served as per Δ∗(κ′),
where κ < κ′. Note that Aκ′

K (x, t) ⊆ Aκ
K (x, t) for every K , x

and t, as fi(t) > κ′ implies fi(t) > κ.
Now, fix t and K and define A = Aκ

K (∞, t). More-
over, let −→ρ (t) = {ρΔ∗(κ)

i (t) : i ∈ A} and −→ρ ′(t) =
{ρΔ∗(κ′)

i (t)1{i∈Aκ′
K (∞,t)} : i ∈ A}. Now, we show that for

every i ∈ A, it holds that
∑

k<i ρk ≥
∑

k<i ρ
′
k. By Lemma 4.3,∑

k<i ρk → ΓFκ(di) and
∑

k<i ρ
′
k → ΓFκ′(di) w.p.1 as K → ∞.

Moreover, for a randomly placed user i, {di ≤ x | fi > κ} ⊇
{di ≤ x | fi > κ′} for every x whenever κ ≤ κ′. Thus, by
the monotonicity of the probability measure, Fκ′(x) ≤ Fκ(x)
for every x. Thus, as K → ∞,

∑
k<i ρk ≥

∑
k<i ρk′ on any

nontrivial sample path. Thus, monotonicity property follows
from Lemma 4.7 as t is arbitrary.

Now, we show the first inequality in (23). The inequality
follows by observing that the fading of every chosen user i
satisfies di ≥ κsi. We consider energy allocation with these
worse fading states (κsi) for every chosen user. Now, observe
that with this modified fading process, the randomness
remains only in the pathloss si. Hence, the required follows
using exactly the same arguments as that in Theorem 4.5.
We, however, would like to mention that the inequality does
not follow from the expressions stated in the statement of

Theorem 4.5 as there the users are ordered as per
−→
d which

may be different than that as per the pathloss considered
here. Now, the second inequality in (23) follows by observing
that Ψ(x) ≤ 1 for every x in the first inequality in (23).

4.1. Example Channels. In Theorems 4.1 to 4.6, we have not
assumed anything about the distribution of fi. Now, let us
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consider an important special case where fi has infinite sup-
port. This assumption holds for many distributions used to
model multipath effects, for example, Rayleigh, Rician, and
Nakagami fadings. Note that as γ → 0 (equivalently, as delay
goes to ∞), opportunism threshold κ → ∞. Thus, from
Theorem 4.6,

lim
Delay→∞

(
Eb
N0

)Δ∗(κ)

sys
= 0 w.p.1. (28)

The relation (28) holds for any Φ(·) with unbounded
support. Though the minimal value is 0 in all the cases, the
delay-energy tradeoff, that is, how quickly energy approaches
the minimum when the delay is increased, depends strongly
on the distribution. It can be easily seen that if the tail of
the distribution is heavy, then the delay increases at a smaller
rate as κ increases significantly with the increase in the delay.
On the contrary, if the tail is lighter, the energy decreases at
a slower rate with the increase in the delay. We explain this
by considering a special class of distributions parametrized
by α. Fix α > 1 and define Φ(x) = 0 for x < 1 and
Φ(x) = 1 − x(1−α) otherwise. Note that α determines how
fast the tail of the distribution diminishes, for example, as
α increases the tail diminishes faster. For this distribution,
clearly, delay D = 1/γ = κ(α−1). Thus, when the energy is
within O(1/κ) of the minimum, which is zero as Φ(·) has
unbounded support, the delay is O(κ(α−1)). If we pick α ∈
(1, 3/2), then the delay is ω(

√
κ), that is, the delay increases

at rate strictly smaller than
√
κ. Constrast this with the delay-

energy tradeoff obtained in [22]. In [22], Neely considers a
model in which the fast fading is modelled as a Markov Chain
(MC) with finite state space. In these settings, Neely shows
that the delay is at least of the order of

√
V when the energy is

in the order 1/V neighborhood of minimum energy required
for the stability. Note that the result holds for any transition
probability matrix, and hence the steady-state distribution of
the MC is used to model the fast fading. But, we have shown
that the result of [22] does not hold when the fast fading
distribution has unbounded support.

In the following result, we show that Δ∗(κ) becomes
energy optimal as the delay goes to infinity. From the
above discussion it should be clear that Δ∗(κ) becomes
energy optimal as the delay goes to infinity when Φ(·)
has unbounded support. Hence, we only focus on the case
where Φ(·) is supported on a compact set. Let B denote the
supremum of the support.

Corollary 4.8 (energy optimality). Let the short-term fading
distribution Φ(·) be supported on the interval [0,B]. As the
number of users goes to infinity, for every policy Δ,

(
Eb
N0

)Δ

sys
≥ 1

B
EΨ

[
eΓΨ(S)

S

]
w.p.1. (29)

Moreover,

lim
Delay→∞

(
Eb
N0

)Δ∗(κ)

sys
≤ 1

B
EΨ

[
eΓΨ(S)

S

]
w.p.1. (30)

Thus, Δ∗(κ) becomes asymptotically energy optimal as delay
goes to∞.

Proof. The relation (29) follows by observing that for user
i, di(t) ≤ Bsi for every t. Thus, the minimum sum energy
required to support rates Γ/K for each user when fading
is Bsi in every slot provides a lower bound on the sum
energy required to support the same rates with fading process−→
d (t). Now, as shown in [1], optimal energy allocation in the
multiaccess channel is given by (4). Now, the relation (29)
follows using the arguments similar to those in Theorem 4.5,
where fading process is now given by di(t) = Bsi for every i.
Now, the relation (30) follows by taking the limit κ → B in
(23), implying delay → ∞, thus yielding (30).

4.2. Discussion on Analytical Results. Corollary 4.2 states that
if the delay of D ≥ 1 has to be provided, then the policy
Δ∗(κ) can achieve it with any κ satisfying P{ fi > κ} ≥ 1/D.
Now, Theorem 4.6 states that choosing the largest κ such
that P{ fi > κ} = 1/D minimizes the system energy while
providing the required delay when the number of users is
large. Moreover, Theorem 4.5 quantifies the energy efficiency
of the system for the given value κ. Note that Corollary 4.2
and Theorems 4.5 and 4.6 together quantify the delay-energy
tradeoff in the multiaccess channel. Finally, Corollary 4.8
proves the energy optimality of Δ∗(κ) as the delay goes
to ∞. Moreover, Theorem 4.6 shows that the decrease in
energy efficiency with κ is at least linear. Thus, given any
value of energy E greater than the minimum energy required
to guarantee the rates to each of the users, there exists κ
such that Δ∗(κ) provides the desired rate to each user while
maintaining the required sum energy below E.

Caution has to be exercised while interpreting
Corollary 4.8 as the limits are taken in two parameters,
namely, the number of users K → ∞ and the user delay
→ ∞ (equivalently, κ → B or γ → 0). Thus, the resulting
limiting value depends on the relative rates at which these
two parameters approach their respective limiting values.
In Corollary 4.8, we first let K → ∞ and subsequently, let
γ → 0. In other words, K and γ approach their respective
limiting values, whileKγ is∞. This can be clearly seen in (30)
as we still see the superpositioning gain apparent in the term
eΓΨ(S) as the optimal scheduling can take advantage of the
variations in the pathloss values of different users. But, if we
let K → ∞ and γ → 0, while ensuring Kγ → 1, then exactly
one user will be scheduled under Δ∗(κ) for sufficiently large
K . As a result, the superpositioning gain disappears. Thus,
a question arises whether the energy optimality of Δ∗(κ)
depends upon the relative rate at which K and γ approach
their respective limits. Before answering this question, let
us look at the lower bound (29). Note that this bound is
tight if we split each of the K users in K different users
(logical group) with the same pathloss, but i.i.d. short-term
fading, and let these K users in a single logical group
collectively desire the rate Γ/K , then let K → ∞. Note that
as K → ∞, in each of the logical groups there exists a user
with short-term fading B and scheduling such users from
each of the logical groups at the rate Γ/K simultaneously
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minimizes the sum energy required to achieve the desired
rates. Thus, in this setting, the actual number of users,
accounting for each user as K different users, goes to ∞ at
rate K2 and not at K . This shows that the tight lower bound
also depends on the rate at which K → ∞. Thus, for a fair
comparison, the users in a logical group should scale at the
rate γK . With these scaling laws the optimality of Δ∗(κ)
should hold. Indeed, it can be shown that in a special case
Kγ = 1, while K → ∞ and γ → 0, the lower and upper
bounds both equal (eΓ − 1/ΓB)E[1/S] w.p.1. Note that this
value corresponds to scheduling a single user with the best
short-term fading value, which equals B as K → ∞, in every
slot.

5. Generalizations

Now, we discuss two important generalizations. First, we
consider the system with multiple nonoverlapping bands.
The required rate can be split over these bands. In
Section 5.1, we discuss how the results in Section 4 can be
generalized to this case. Second, we consider a case when the
users need different delays. This is the case, when various
types of applications are supported on a multiaccess channel,
or when the multiaccess channel serves as an intermediate
hop on the multiple hops traveled by the application in the
network. In Section 5.2, we discuss how OSP can support
this.

5.1. Multiband Multiaccess Channel. We consider multiac-
cess channel with M bands. We assume that the fading
on these bands is statistically independent. Let f mi denote
the short-term fading for user i on mth subband. Now, it
is not immediately clear how the required rate should be
split on the various bands in order to minimize the sum
energy. But, fortunately, it has been shown that to minimize
the sum energy required to realize a given rate vector on
the multiband multiaccess channel, the total rate for a user

should be supported on its best channel [7]. Let f ∗i (t)
def=

max{ f 1
i (t) . . . , f Mi }. Thus, Δ∗(κ) has to be defined in terms

f ∗i (t) instead of fi(t); that is, Δ∗(κ) selects all the users with
f ∗i (t) > κ and provides the required rate on the best channel
for every user. Now, Theorem 4.1 and Corollary 4.2 hold

with γ
def= P{ f ∗i > κ}. In Theorem 4.5, the energy efficiency

becomes

(
Eb
N0

)Δ∗(κ)

sys
=
∫∞

0

1
x

exp
(
Γ

M
F
∗
κ (x)

)
dF

∗
κ (x) w.p.1, (31)

where F
∗
κ (·) denote the fading distribution of user i who

is placed uniformly at random in a cell given that f ∗i (t) >
κ. The additional factor of 1/M appears because only 1/M
fraction of scheduled user transmit on a given band. Finally,
Theorem 4.6 and Corollary 4.8 hold with fi replaced by f ∗i .

5.2. Delay Differentiation. The users are divided into L
classes based on their delay requirements. Let ξ1, . . . , ξL
represent the fraction of users that want delays D1, . . . ,DL,
respectively. Let κl be the largest real number that satisfies
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Figure 1: Total transmitted energy (Eb/N0)sys as a function of delay.

P{ fi > κl} = 1/Dl for every l ≤ L. Now, OSP can use
κl instead of κ for users of class l. Clearly, Theorem 4.1

and Corollary 4.2 hold with γl
def= P{ fi > κl} for every l.

Moreover, energy efficiency of each class l can be computed
along the similar lines as the proof of Theorem 4.5. Now,
the energy efficiency for the system is the weighted sum (with
respect to ξl’s) of the energy efficiency of each class. Finally,
Theorem 4.6 and Corollary 4.8 can be shown to hold for
each class individually. Since, the system energy efficiency
is the convex combination of the energy efficiencies of the
classes, Theorem 4.6 and Corollary 4.8 follow for the whole
system.

6. Numerical Examples

We consider an example system where users are placed
uniformly at random in a cell except for a forbidden region
with radius δ = 0.01 around the access point. The path loss
exponent is two (α = 2). All users experience short-term
fading with exponential energy distribution with mean one
on each of the ten (M = 10) independently fading bands.
The explicit mathematical formulations for the channel
models can be found in Appendix D. The path loss model is
normalized to unity at cell edge, so that the results should be
normalized with a corresponding factor. This, however, has
no effect on the relative numerical results, nor on the delay-
energy tradeoff we report.

Figure 1 demonstrates the delay energy tradeoff exhibited
by OSP. For an increase in average delay from one to three
slots, an energy saving of over 3 dB is gained. Thus, even
the small delay tolerance of the application can be exploited
to obtain significant improvement in the energy efficiency
of the system. In terms of the sensor network application
provided for motivation in Section 2, this would mean the
halving of the transmitted energy by buffering of a few
of the most recent samples. Moreover, the energy required
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Figure 2: Comparison between PFS (dashed) and OSP (solid line).

to support the given rate decreases monotonically as delay
increases, which verifies Theorem 4.6. Note that the gain
exhibits very similar behavior across various spectral efficien-
cies. This implies that one can use a uniform threshold over a
wide range of system configurations having different spectral
efficiences, while maintaining a close to optimal efficiency.

Figure 2 provides a comparison between OSP and PFS.
The mathematical expressions for computing the energy
efficiency (Eb/N0) of PFS can be found in [7, Theorem 1]
and are given in Appendix E for completeness. In the delay-
limited case with the strict delay constraint of a single slot
(i.e., κ = 0), OSP can outperform PFS only at high spectral
efficiencies. However, as delay tolerance of the application
increases, OSP can outperform PFS over a wider range of
spectral efficiencies. Also, the improvement in the energy
efficiency of OSP over that of PFS increases monotonically
with an increase in the delay tolerance. Note that the
improvement happens while guaranteeing a required rate for
each user, which is not the case for PFS. A notable feature of
OSP is that changing the opportunism threshold results in
an approximately horizontal shift of the performance curve,
which again indicates that the energy-delay tradeoff behaves
in a similar manner for a wide range of system spectral
efficiencies.

An empirical verification for the convergence of the
system energy can be found in Figure 3, where the smallest
and largest empirically found energy efficiencies of an
ensemble of 1000 simulated systems are reported. Each
system has a different random pathloss vector. The system
employs hard fairness, that is, it does not allow for delay, and
data is assumed to arrive at users’ transmit buffers in each
slot. The extreme energies converge towards the asymptotic
at K = ∞ as the user population grows.

Figure 3 indicates that the system energy efficiency
deviates from asymptotic behavior at high spectral effi-
ciency and with a small number of users. This behavior
is due to the following. With a finite number of users,
the transmitted rate is no longer deterministic as in the
asymptotic case. Instead, the number of simultaneously
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Figure 3: Empirical convergence of extremes with a finite number
of users.

scheduled users and their buffer lengths vary from slot to
slot. This results in energy loss due to the convexity of
the exponential rate-energy function in (4). Since the rate-
energy function has the spectral efficiency as a multiplicative
factor in the exponential, the loss is greater at high spectral
efficiency.

7. Conclusions

We showed that by opportunistically choosing a suitable
fraction of users with the best channels in each slot, we
can improve the energy efficiency of the system while
providing the required delay to each user. Since the policy
empties the scheduled users’ queues, it has good stability
properties. We showed that the expected user delay is
inversely proportional to the scheduling fraction. Delay
can then be adjusted simply by choosing an appropriate
opportunism threshold, while delay differentiation can be
achieved by applying different thresholds for different delay
classes. Moreover, if the application does not need any delay
guarantees, then OSP can achieve any required energy effi-
ciency (Eb/N0 > 0) while maintaining system stability. The
scheme performs well compared to PFS, while providing rate
guarantees.

Appendices

A. Proof of Lemma 4.3

Proof. First, we show that for every x and t,

lim
K→∞

∑

k∈Aκ
K (x,t)

ρΔ
∗(κ)

k (t) = ΓFκ(x) w.p.1. (A.1)
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If x lies below the support of dk the result trivially holds as
both sides of (A.1) are equal to zero. Hence, we consider x >
κmin{sk : k ∈Aκ

K (x, t)} in the following.

For a chosen user k, the rate ρΔ
∗(κ)

k is equal to its total
buffer occupancy in slot t. Under Δ∗(κ), buffer occupancy in
slot t is equal to the number arrivals since the last time k was

scheduled. Let νk
def= ∑t

u=τ(t)+1 νk(u), where τ(t) = max{u <
t : fk(u) > κ}. Note that νk(u) and the fading are i.i.d.
across both the slots and users, and they are also mutually
independent. So, clearly, νk are i.i.d. across the chosen users
and E[(νk)] = (1/γ)E[(νk)] = 1/γ. Moreover, for a chosen
user k,

ρΔ
∗(κ)

k (t) = Γ

K
νk. (A.2)

We then have

lim
K→∞

∑

k∈Aκ
K (x,t)

ρΔ
∗(κ)

k (t)

= lim
K→∞

∑

k∈Aκ
K (x,t)

Γ

K
νk (from (A.2))

= Γ lim
K→∞

∣∣Aκ
K (∞, t)

∣∣

K
lim
K→∞

∣∣Aκ
K (x, t)

∣∣
∣∣Aκ

K (∞, t)
∣∣ lim
K→∞

∑
k∈Aκ

K (x,t) νk∣∣Aκ
K (x, t)

∣∣

= ΓFκ(x) w.p.1.
(A.3)

Note that |Aκ
K (x, t)| → ∞ as K → ∞ for every t and x > κ

and then the first limit converges to γ, the second to Fκ(x)
and the last one to 1/γ. The final relation (A.3) follows as
fading and arrivals are independent.

Now, we claim that the channel gains dk’s for the chosen
users can be viewed as i.i.d. variables. Note that if Δ∗(κ)
had scheduled users based on dk rather than on fk, then
dk for the chosen users would not be i.i.d. as the users that
are nearer to the receiver are likely to be favored. Since fk’s
are i.i.d. irrespective of the distance between the user and
receiver, the scheduling decision can be viewed as scheduling
each user independently w.p.γ. Since the users are placed at
random, sk is a deterministic function of distance, and fk
and sk are independent, we conclude that dk’s for the chosen
users are i.i.d. and each dk is distributed as Fκ(·). Finally,
(11) follows from (A.3) using the Glivenko-Cantelli Theorem
[30].

B. Proof of Lemma 4.4

Proof. For simplicity, we prove the required when νi has finite
support, say νmax. Let τ0(i) denote last time before t user i was
scheduled, that is, τ0(i) = maxu<t{ fi(u) > κ}. Moreover, let
Ti = t − τ0(i) for each user i. Note that {Ti}i∈{1,...,K} is i.i.d.
sequence and P{Ti > u} = (1− γ)u for every i.

Fix any user i ∈Aκ
K (x, t), and observe that

ρΔ
∗(κ)

i (t) = Γ

K

t∑

τ0(i)+1

νi(t) ≤ ΓνmaxTi

K
. (B.1)

Next, fix ε > 0, and consider

P

⎧
⎨
⎩ sup
i∈Aκ

K (x,t)
ρΔ

∗(κ)
i (t) > ε

⎫
⎬
⎭

≤
∑

i∈Aκ
K (x,t)

P
{
ρΔ

∗(κ)
i (t) > ε

} (
by union bound

)

≤
∑

i∈Aκ
K (x,t)

P
{
ΓνmaxTi

K
> ε

} (
by (B.1)

)

≤
K∑

i=1

P
{
ΓνmaxTi

K
> ε

}

(
as
∣∣Aκ

K(x, t)
∣∣ ≤ K ∀x and t

)

= KP
{
Ti >

εK
νmaxΓ

} (
as T′i s are i.i.d.

)

= K
(
1− γ

)εK/BΓ
.

(B.2)

Since γ > 0, it follows that

∞∑

K=1

P

⎧
⎨
⎩ sup
i∈Aκ

K (x,t)
ρΔ

∗(κ)
i (t) > ε

⎫
⎬
⎭ ≤

∞∑

K=1

K
(
1− γ

)εK/BΓ
<∞.

(B.3)

Now, the result follows by Borel-Cantelli Theorem [31]
as ε was arbitrary.

C. Proof of Lemma 4.7

Proof. The proof is by construction. We construct a sequence
of rate vectors {−→ρ (u)}u≥0 such that −→ρ (0) = −→ρ and

limu→∞
−→ρ (u) = −→ρ ′. Let

−→
E (u) denote the energy allocation

to realize −→ρ (u). Then, we show that
∑

i∈A Ei(u) is a
nonincreasing function of u, and thus proving the required.
The recursive procedure to construct −→ρ (u) is as follows.

Initialize: −→ρ (0) = −→ρ .

STEP u:

C1. ρi(u) = ρi(u− 1) for every i /∈{u,u + 1},

C2. ρu(u) = ρ′u,

C3. ρu+1(u) = ρu+1(u− 1) + ρu(u− 1)− ρ′u.
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Note that −→ρ (u) satisfies ρi(u) = ρ′i for every i ≤ u, and
ρi(u) = ρi for every i > u + 1. Thus, clearly, limu→∞

−→ρ (u) =
−→ρ ′. Now, using induction, we prove that for every u

u+1∑

i=1

ρi(u) =
u+1∑

i=1

ρi. (C.1)

Note that (C.1) holds for u = 0 as ρ1(0) = ρ1 by initialization.
Now, let (C.1) hold for every u = 0, . . . ,n−1. We show (C.1)
for u = n.

Since (C.1) holds for u = n− 1, we know that

n∑

i=1

ρi =
n∑

i=1

ρi(n− 1)

=
n−1∑

i=1

ρi(n) + ρn(n− 1)
(
by step C1.

)

=
n+1∑

i=1

ρi(n)− ρn+1(n− 1)
(
from step C3.

)

=
n+1∑

i=1

ρi(n)− ρn+1
(
as ρi(u) = ρi for every i > u + 1

)
.

(C.2)

This proves (C.1) for every u.
Now, we show that

∑
i∈A Ei(u) is nonincreasing function

of u. From (4) and (C.1), it is clear that Ei(u) = Ei(u− 1) for
every i /∈{u,u + 1}. Thus it suffices to consider

[Eu(u) + Eu+1(u)]− [Eu−1(u)− Eu+1(u− 1)]

= N0

du

[
e
∑u

i ρi(u) − e
∑u

i ρi(u−1)
]
− N0

du+1

[
e
∑u

i ρi(u) − e
∑u

i ρi(u−1)
]

= N0

[
1
du
− 1

du+1

][
e
∑u

i ρi(u) − e
∑u

i ρi(u−1)
]

= N0

[
1
du
− 1

du+1

][
e
∑u

i ρ
′
i − e

∑u
i ρi
]

(
by steps C1 and C2, and (C.1)

)

≤ 0.
(C.3)

The last inequality follows as du ≤ du+1 and
∑u

i ρ
′
i ≤

∑u
i ρi by

suppositions in the lemma.
Now, to prove the required, we need to show that

limu→∞
∑

i∈A Ei(u) = ∑
i∈A E′i . First, note that if

∑
i∈A Ei =

∞, then the result immediately follows. So, we consider
a nontrivial case,

∑
i∈A Ei < ∞. We know that for every

u, 0 ≤ ∑
i∈A Ei(u) ≤ ∑

i∈A Ei. Moreover, the sequence
{∑i∈A Ei(u)}u≥0 is monotone. Thus, limu→∞

∑
i∈A Ei(u)

exists. Moreover, by dominated convergence theorem, we can
exchange the limit and summation. Thus,

lim
u→∞

∑

i∈A
Ei(u)

=
∑

i∈A
lim
u→∞Ei

(u)

=
∑

i∈A
lim
u→∞

[
N0

di
e
∑i−1

k=1 ρk(u)
(
eρi(u) − 1

)]
(from (4))

=
∑

i∈A

[
N0

di
e
∑i−1

k=1 ρ
′
k

(
eρ

′
i − 1

)]

(
as −→ρ (u) → −→ρ ′ and exp(·) is continuous

)

=
∑

i∈A
E′i .

(C.4)

This proves the required.

D. Channel Statistics

Channel state is assumed to remain constant during one
transmission slot and assume a new value for each slot
independently for all slots and users. We, thus, avoid the
dependence on users and time in the following.

Users are placed uniformly on a circular cell. The channel
state of each user is the product of two independent ergodic
random processes, path loss and short-term fading. Path loss
is polynomially dependent on the distance of the user from
the access point and is assumed to remain constant for a
users across transmission slots. The distance dependency is
parametrized by the path loss exponent α, usually ranging
within the interval [2, 4]. To avoid a singularity for users next
to the access point, a forbidden circular region of radius δ is
created around the access point. This model results in the
following cumulative distribution of the path loss:

Ps(x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, x ≤ 1,

1− x−2/α − δ2

1− δ2
, 1 ≤ x ≤ δ−α,

1, x ≥ δ−α.

(D.1)

Note that the model is normalized to provide unit path loss at
cell border. Thus, the results reported here must be rescaled
in terms of (Eb/N0)sys by a factor of D−α0 , where D0 denotes
the actual radius of the cell. Naturally, since all results behave
accordingly, all comparisons remain valid.

The short-term fading process on each band m is
modeled by a zero-mean Gaussian circularly symmetric ran-
dom variable (i.e., Rayleigh fading), with an exponentially
distributed squared envelope. It assumes a new value for each
user in each slot. The multiple bands are assumed indepen-
dently fading. In each slot, those users i whose maximum
channel gain (over all M channels) max{ f mi (t) . . . f Mi (t)} > κ
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are scheduled by OSP on each band, and the cumulative
short-term fading distribution is given by

Pf (x) = 1− 1− (1− e−x)M

γ
, x ∈ [κ,∞), (D.2)

where γ = P( fi > x) = 1 − (1− e−κ)M . With some algebra,
the cumulative distribution for the (product) channel can be
expressed as

F
∗
κ (x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1−κ/x
1−δ2

− 1
γx(1−δ2)

M∑

i=1

1
i

[(
1−exp(−x)

)i−(1−exp(−κ)i
]

x < κδ−2,

1− 1
γx(1−δ2)

M∑

i=1

1
i

[(
1−exp(−x)

)i − (
1− exp(−xδ2

)i]

x ≥ κδ−2.

(D.3)

E. Proportional Fair Scheduling

We follow the approach of [7] in the evaluation. The average
spectral efficiency of the system with PFS is given implicitly
by [7]

C =
∫∞

0
log2(1 + x SNR)dFsmax{ f },K (x),

(
Eb
N0

)PFS

sys
= SNR

C
,

(E.1)

where Fsmax{ f },K (x) denotes the distribution of the product
of the random path loss and the maximum of K users’ short-
term fading coefficients, smax{ fk, . . . , fK}, and is given by

Fsmax{ f },K (x) = 1− 1
x(1− δ2)

×
K∑

i=1

1
i

[(
1−exp(−x)

)i−(1− exp(−xδ2)i
]

,

(E.2)

which is identical to (D.3) when γ = 1, κ = 0, and M = K .
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