Hindawi Publishing Corporation

EURASIP Journal on Wireless Communications and Networking
Volume 2009, Article ID 206524, 12 pages
doi:10.1155/2009/206524

Research Article

Turbo Processing for Joint Channel Estimation, Synchronization,
and Decoding in Coded MIMO-OFDM Systems

Hung Nguyen-Le,! Tho Le-Ngoc,' and Chi Chung Ko’

I Department of Electrical and Computer Engineering, Faculty of Engineering, McGill University, Montreal, QC, Canada H3A 2K6
2 Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576

Correspondence should be addressed to Tho Le-Ngoc, tho.le-ngoc@mcgill.ca

Received 2 July 2008; Revised 11 November 2008; Accepted 25 December 2008

Recommended by Erchin Serpedin

This paper proposes a turbo joint channel estimation, synchronization, and decoding scheme for coded multiple-input multiple-
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pilot tones during the data segment. Simulation results show that the proposed turbo joint channel estimation, synchronization,
and decoding scheme offers fast convergence and low mean squared error (MSE) performance over quasistatic Rayleigh multipath
fading channels. The proposed scheme can be used in a coded MIMO-OFDM transceiver in the presence of multipath fading,
carrier frequency offset, and sampling frequency offset to provide a bit error rate (BER) performance comparable to that in an
ideal case of perfect synchronization and channel estimation over a wide range of SFO values.
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1. Introduction

Coded multiple-input multiple-output orthogonal fre-
quency division multiplexing (MIMO-OFDM) has been
intensively explored for broadband communications over
multipath-rich, time-invariant frequency-selective channels
[1]. Turbo processing has been considered for coded MIMO
and MIMO-OFDM systems for performance enhancement
[2-5]. In particular, iterative detection and decoding issues
in MIMO systems to achieve near-Shannon capacity limit
[2] and performance gain [5] were investigated under the
assumption of perfect channel estimation and synchroniza-
tion. Taking into account the effects of imperfect channel
knowledge on the system performance, [4] developed a
combined iterative detection/decoding and channel estima-
tion scheme to improve the overall performance of MIMO-
OFDM systems with perfect synchronization.

Under imperfect synchronization conditions, multicar-
rier transmissions such as OFDM and MIMO-OFDM are
highly susceptible to synchronization errors such as carrier

frequency offset (CFO) and sampling frequency offset (SFO)
[6-11], especially for operation at low signal-to-noise ratio
(SNR) regimes in case of high-performance coded systems.
Therefore, estimation of frequency offsets (CFO and SFO)
and channel impulse responses (CIRs) are of crucial impor-
tance in (coded) MIMO-OFDM systems using coherent
detection. So far, most studies on the issue have been
focused on separate and sequential CFO/SFO and channel
estimation [7, 11-14]. More specifically, channel estimation
is performed by assuming that perfect synchronization has
been established [12-14], even though channel estimation
would be degraded by imperfect synchronization and vice
versa. In most practical systems (e.g., WiFi, WIMAX), data
is transmitted in bursts, and each burst is appended with a
preamble that contains known training sequences to facilitate
the initial synchronization and channel estimation. However,
the insufficient accuracy of initially estimated CFO, SFO,
and channel responses as well as their time variation still
require known pilot tones inserted in the data segment of
the burst to update and enhance the CFO, SFO, and channel
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estimation accuracy in order to maintain the high system
performance at the cost of reduced transmission/bandwidth
efficiency (due to inserted pilot tones), for example, in the
IEEE802.11 [15], 4 pilot tones are inserted in every block of
48 data tones, representing an overhead of 8.33%.

Since synchronization and channel estimation are mutu-
ally related, joint channel estimation and synchronization
would provide better performance [10]. Recently, a few
algorithms [8, 16-19] have been proposed for the estimation
of CIRs and CFO in uncoded MIMO-OFDM systems but
these algorithms have neglected the SFO effect in their
studies. However, the detrimental effect of the SFO (even for
a very small SFO) will likely lead to a significant degradation
of the OFDM receiver performance even when perfect CIR
and CFO knowledge is available [20]. Specifically, the SFO
induces a sampling delay that drifts linearly in time over an
OFDM symbol [21]. Without any SFO compensation, this
delay hampers the OFDM receiver as soon as the product
of the relative SFO and the number of subcarriers become
comparable to one [9]. Consequently, OFDM receivers
become more vulnerable to the SFO effect as the used FFT
size increases. For instance, an SFO of 40 ppm can cause
a window shift of up to six samples [21] in a burst of
1000 OFDM symbols used in multiband OFDM systems
[22]. As another example, in the presence of sampling clock
offset of 1ppm in the DVB-T 2K mode [23], the FFT
window will move one sample around every 400 symbols
[10].

Various SFO, CFO, and channel schemes have been
investigated. In [24], a correlation-based SFO estimation
scheme for MIMO-OFDM systems in the absence of CFO
was proposed. Under the assumption of perfect channel esti-
mation, decision-directed (DD) techniques were proposed
for joint CFO/SFO estimation and tracking [21] and for
phase noise and residual frequency offset compensation [25]
in OFDM systems. Unlike [21, 25], under the assumption
of perfect channel estimation, maximum likelihood (ML-)-
based joint CFO and channel estimation schemes using pilot
signals in multiuser MIMO-OFDM systems were considered
in [18, 19]. An overview of CFO/SFO estimation and
compensation schemes using pre-FFT nondata-aided (NDA)
acquisition, post-FFT data-aided (DA) acquisition, and post-
FFT DA tracking can be found in [6, 26]. However, existing
joint channel estimation and synchronization algorithms for
coded MIMO-OFDM systems have omitted the SFO in their
investigations regardless of its detrimental effect [9, 10, 20,
21, 24].

In this paper, we propose a joint synchronization,
channel estimation, and decoding turbo processing scheme
for coded MIMO-OFDM systems in the presence of qua-
sistatic multipath channels, CFO, and SFO. By analyzing
the nonlinear interrelation between CFO, SFO, channel
responses, and received subcarriers, we develop an iterative
vector recursive least-squares (RLSs-)-based joint CIR, CFO,
and SFO tracking scheme that can be incorporated in the
turbo processing between the MIMO-demapper and soft-
input soft-output (SISO) decoder for the coded MIMO-
OFDM receiver. Conceptually, more accurate estimates of
CFO, SFO, and CIR can be obtained by using more reliably

detected data and also help to enhance the MIMO-demapper
output reliability that will improve the performance of
the SISO decoder in the next iteration of the turbo pro-
cess. Furthermore, the use of soft estimates alleviates the
detrimental effect of error propagation that usually occurs
when hard decisions are used in a feedback tracking loop
or in decision-directed modes. As a result, better accuracy
in CFO/SFO/CIR estimation and tracking can be achieved
without the need of overhead pilot tones, that is, removing
significant transmission efficiency loss and enhancing the
spectral efficiency. As initial values of the CFO, SFO, and
CIR play an important role in the convergence of the joint
synchronization, channel estimation, and decoding turbo
processing, we also develop a coarse CFO, SFO, and CIR
estimation scheme (that was not studied in [27]) applied
to the preamble of the burst and based on the combined
CFO-SFO perturbation in order to provide the accurately
estimated initial values of the CFO, SFO, and CIR.

The rest of the paper is organized as follows. Section 2
describes the coded MIMO-OFDM signal model. Section 3
analyzes the effects of CFO, SFO, and channel responses
on the received samples. These interrelations are further
explored to develop the turbo joint channel estimation,
synchronization, and decoding scheme in Section 4, and
the vector RLS-based joint CIR, CFO, and SFO tracking
algorithm is delineated in Section 5. Section 6 presents the
coarse estimation of the CFO, SFO, and CIR. Simulation
results for various scenarios are discussed in Section 7.
Finally, Section 8 summarizes the paper.

2. System Model

Figure 1 shows a simplified block diagram of a convo-
lutional-coded MIMO-OFDM transmitter using N; trans-
mit antennas and M-ary quadrature amplitude modula-
tion (M-QAM). This transmitter architecture is similar
to the space-time (ST) bit-interleaved coded modulation
(BICM) in [28]. Using a serial-to-parallel (S/P) converter,
the input convolutional-encoded bitstream is first split
into N; parallel sequences. Each sequence is further bit-
interleaved and then organized as a sequence of Q-bit
tuples, {d”m)k}, where Q = log,M, u = 1,...,N;, and
each Q-bit tuple, d;; , = [dy o - Zak,Qfl]T, is mapped
to a complex-valued symbol, X, (k) € A. A is the M-
ary modulation signaling set, and u, m, and k denote
the indices of the transmit antenna, OFDM symbol, and
subcarrier, respectively. (Notation: Upper and lower case
bold symbols are used to denote matrices and column
vector, respectively. ()T denotes transpose. ()H denotes
Hermitian transpose. (-)* stands for conjugation. E{-} is
expectation operator. Re{-} and Im{-} denote real and
imaginary parts, respectively. Iy is the N X N identity matrix,
® denotes Kronecker product, and P(-) is the probability
operator.)

Each OFDM symbol consists of K < N informa-
tion bearing subcarriers, where N is the size of the fast
Fourier transform (FFT) or inverse-FFT (IFFT). After IFFT,
cyclic-prefix (CP) insertion and digital-to-analog conversion
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FiGure 1: Coded MIMO-OFDM transmitter.

(DAC), the transmitted baseband signal at the uth transmit
antenna can be written as

+oo  K/2-1

Su(t)—* Z Z X (k)ef (2nk/NT)(t=Ty~ mT‘)U(t—st),
Nk T

(1)

Where T is the sampling period at the output of IFFT, N,
denotes the number of CP samples, T, = N;T, T; = (N +
Ng)T is the OFDM symbol length after CP 1nsert10n, u(t) is
the unit step function, and U(t) = u(t) —u(t—T;). Practically,
the colocated DACs are driven by a common sampling clock
with frequency of 1/T".

The multiple coded OFDM signals are transmitted over
a frequency-selective, multipath fading channel. We assume
fading conditions are unchanged within an OFDM burst
interval, so that the quasistatic channel response between
the uth transmit antenna and the vth receive antenna can be
represented by

L-1

Z zu,v,l(s(T - Tl)a (2)

1=0

hu,v(T) =

where %W,, and 7; are the complex gain and delay of the
Ith path, respectively. L is the total number of resolvable
(effective) paths.

3. Effects of CFO, SFO, and Channel Responses
on Received Samples

Frequency discrepancies between oscillators used in the radio
transmitters and receivers, and channel-induced Doppler
shifts cause a net carrier frequency offset (CFO) of Af in
the received signal, where f is the operating radio carrier
frequency. Practically, it is reasonable to assume that all pairs
of transmit-receive antennas experience the same CFO [8],
and the received signal at the vth receive antenna element can
be written as

rv(t) = ejZHAftZ i uvlsu t— Tl +Wv(t) (3)

u=1[=0

The impinging signals at all receive antennas are then
sampled for analog-to-digital conversion (ADC) by the
common receive clock at rate 1/T". Since T’ # T, the time
alignment of received samples is also affected by the sampling
frequency offset (SFO). After sampling and CP removal, the
sample of the mth OFDM symbol of the received signal r, ()
at time instant t, = nT" is given by

ol Qn/N)(Now+n)ey K/2-1

omn = N Z ej(an/N)n(1+11)ej(2nk/N)77Nm
k=—K/2
. (4)
X > Xum(k)Huy (k) + Wy mns
u=1
where n = 0,1,...,N = 1, Ny = N, + m(N + Ng).

The complex-valued Gaussian noise sample, wy ., has zero
mean and a variance of 02. H,, (k) = 31 hyye 1N s
the channel frequency response (CFR) at the kth subcarrier

for the pair of the wth transmit antenna and the vth
. T,
receive antenna, and h,, = [Huy0 Huy, © hyyi-1] s

the corresponding effective time-domain channel impulse
response (CIR). The SFO and CFO terms are represented
in terms of the transmit sampling period T as 4 = AT/T,
AT =T —T,ande = AfNT = (Af/f)(NTf), respectively,
and g, = (1 +n)e.

As observed in (4), the CFO and SFO induce the time-
domain phase rotation that will translate into intercarrier
interference (ICI), attenuation, and phase rotation in the
frequency domain as shown in the following derivations.

After FFT, the received FD sample at the vth receive
antennais Yv,m(k) = Z:fl\]:_()1 rv,m,ne_j(ZH/N)nk. Based on (4), we
obtain

K/2-1 N,

Yom(k) = S edCMNNueip ST X, (i) Hy (i) + Wiy (K),
=—K/2 u=1

(5)

where & = ir + &g, Wyn(k) = 30 Wy m(n+ Ny )e JC7NIK,

the ICI coefficient p;x (I/N)SN- L einNon(eitizk) -
sinc(e; + i — k)e/™&+ k) and sinc(x) = sin(nx)/(mx). It is
noted that the frequency-domain expression of the received
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samples in [6, Equation 37] corresponds to an approxima-
tion of (5) for the case of the single-input single-output
configuration (N; = 1, N, = 1). In the first summation in
(5), the term i = k corresponds to the subcarrier of interest,
while the other terms with i# k represent ICI. As can be
observed from the above expression for p;x, the term &; = in+
&, needs to be removed in order to suppress ICI. Obviously,
in an ideal case with zero SFO and CFO, ¢ = 0, pjx = 1
for i = k and pjx = 0 (i.e., no ICI) for i # k. Therefore,
Yom(k) = S0 Xum(k)Huy(k) + Wim(k), and perfect
orthogonality among subcarriers is preserved at the receiver.
In addition, the coefficient p;x ~ sinc(e; + i — k)e/™+i=k)
quantifies the CFO-SFO-induced attenuation and phase
rotation of received subcarriers. Thus, to mitigate ICI and
attenuation, the effects of CFO and SFO on the received
samples have to be compensated. Hence, the estimates of
CFO and SFO are needed to compensate for the detrimental
effects (phase rotation) of synchronization errors, while the
channel estimates are required for the MIMO demapping
as illustrated in Figure 2. More specifically, the CFO and
SFO compensations will be performed in the time domain
(before FFT implementation at receiver) as described in the
following derivations.

Following the same approach in [20], the received time-
domain sample in (4) can be multiplied by exp[— j2me;n/N]
prior to FFT to mitigate ICI as shown in Figure 2, that 1s,

c _ —j(2m/N)nes
rv,m,n - r")mﬂe / ) (6)

where sg = (1+7°)e", €, and #° are the estimates of CFO and
SFO, respectively.
After FFT, the resulting subcarriers at the vth receive

antenna are
N-1
Yim(K) = 2 15 mne OV, (7)
n=0

After some manipulation, (7) can be rewritten as

K/2—-1 N;
Yo, (k)= > efCNNucipe N Xy (i) Hi (i) + WE,,,(K),
i=—K/2 u=1
(8)
where
N-1
Wﬁm(k) _ Z va(n+Nm)e—j(Zn/N)n(lﬂf)E‘e—j(2n/N)nk,
n=0 (9)

N-1
Py = % S eJ @i e (1r)ecvik]
n=0

Based on (8), the vector representation of the frequency-
domain (FD) received samples at all receive antennas can be
expressed by

Y5, (k) = efCNINnck e H(K)X, (k) + Wy (K),  (10)

where the (u,v)th entry of H(k) is given by [H(k)],, =
H,,(k). Note that W:n(k) includes both AWGN and residual

ICI parts, X,y (k) = [X1,m(k) - - -Xth(k)]T, and each of the
complex elements in VNV:,,(k) has a variance of Np.

Equation (10) provides an insight of the nonlinear
interrelation between CFO, SFO, channel responses, and
received subcarriers. It indicates that the estimation of CFO
(&), SFO (n°), and channel responses requires knowledge
of subcarrier data X,,(k), while the decoding of subcarrier
data X,, (k) also needs to know the CFO, SFO, and channel
responses in addition to the binary convolutional coding
structure in X,,(k). This interrelation can be exploited to
develop a high-performance turbo joint channel estimation,
synchronization, and decoding scheme that can mutually
enhance the estimation accuracy and decoding reliability
in an iterative manner. To reduce the number of estimated
parameters for the MIMO channel, it is desired to esti-
mate the channel impulse response {0, P15 - > Py —1}
instead of the channel frequency response H,, (k) as H,,, (k)
can be derived from the channel impulse response by
a simple Fourier transform. The CFO, SFO, and CIR
estimation needs to deal with the nonlinear relation as
shown in (10) and will be discussed in Section 5. The
development of the turbo processing will be addressed in
Section 4.

4. Turbo Joint Channel Estimation,
Synchronization, and Decoding

The binary convolutional coding structure in X, (k) is
used to develop the constituent soft-input soft-output
(SISO) decoder (shown in Figure2) to provide more
reliable soft estimates of the coded bits, P(c;O), based
on the extrinsic soft-bit information received from the
MIMO-demapper, P(c;I), using the computations pre-
sented in [29]. P(c;O) are then split into N; streams
and interleaved to form N; soft-bit estimate streams
P(dy, 4> 1) that are used as extrinsic information for MIMO
demapping and CIR, CFO, and SFO estimation as fol-
lows.

The purpose of MIMO-demapper is to compute the
extrinsic soft bit information:

P(d" ., = b | Y5 (k),H(K),&7)
P( = b;1) '
(11)

u
m,k,q

P(d

m,k,q = b; O) =

u
m,k,q

where b € {0, 1}, and the letters I and O refer to, respectively,
the input and output of the MIMO-demapper. Based on
(10), the term P(d;‘n,k’q = b | YCm(k),ﬁ(k),g,ﬁ) can be
determined as

P( =b | YS,(k), H(k),&7)

rn,k,q
S Y Pk = x| Y. ARE),

(b)
Xexu,m,k,q
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FIGURE 2: MIMO-OFDM receiver using turbo joint decoding, synchronization, and channel estimation.

where Xs,’,)n)k,q is the set of the vectors X,,(k)
(X1m(k) - - -XNt,m(k)]T corresponding to d;‘n’k,q =b,

P(X(k) = x | Y5,(k), H(k), & 7)
= P(Y5, (k) | Xu(k) = x, H(k), & 7)
x P(Xpm(k) = x)/P(Y5,(K)),

P(YS, (k) | X(k) = x, H(K), & 7)

= (7No) ™ exp (- |[¥5, (k) (13)

— TN e F()x| [N, — 1)

P(YS, (k) = > P(Y5,(k) | Xu(k) = x, H(k), & 7)

xeX,,

x P(Xin(k) = x),

where X,, is the set of all possible values of X,,(k),
PX, (k) = x) = HquP(d;)k,q = Z%k,q(x);l) due to the
use of interleaving, and d;, ; .(x) denotes the value of the
corresponding bit d,, ;. . in the vector x.

The above equations, (11) and (12), indicate that unlike
the cases of perfect channel estimation and synchronization
in [2] and perfect synchronization in [4], the MIMO
demapper herein employs the estimated channel responses,

CFO and SFO, ﬁ(k),?,ﬁ to derive the extrinsic soft bit
information.

The estimation of channel responses, CFO and SFO,
H(k), 5, 7], is also based on (10) and hence, needs knowledge
of subcarrier data X,,(k). For this, based on the computed
P(X,,(k) = x), the soft mapper (shown in Figure 2) generates
the soft estimate, X,,(k), as its mean, that is,

Xou(k) = E[Xp(k)] = > xP(X(k) = x).

xeX,,

(14)

Due to the close interaction between the CIR, CFO, and SFO
estimates and the MIMO-demapper, the proposed turbo
processing is performed in a joint detection estimation
manner (as described above) instead of a serial fashion (i.e.,
updating H(k), &, 77 only after a few iterations for simplicity).
As shown in Section 6, convergence to the good performance
can be achieved with only 2 or 3 iterations.

The N, extrinsic soft bit information streams,
P(d,’j,q; 0), u 1,...,N;, are then deinterleaved and
parallel-to-serial converted to form the extrinsic soft
bitstream P(c;I) for the constituent soft-input soft-output
(SISO) decoder that will provide more reliable soft estimates
of the coded bits, P(c;0), for the next iteration. At any
iteration, hard decision can be applied on P(u; O) to produce
the decoded data bits. The information flow graph of the
proposed turbo joint channel estimation, synchronization,



6 EURASIP Journal on Wireless Communications and Networking

and decoding scheme, shown in Figure 3, illustrates the
iterative exchange of the extrinsic information between
the constituent functional blocks in the receiver. By using
the known training sequence X, (k) in the preamble
segment of a burst, initial estimates of CFO and SFO
can be accurately obtained by using the conjugate delay
correlation property and then used to establish the initial
CIR estimates by the vector RLS algorithm as discussed in
Section 5.

5. Vector RLS-Based Joint Tracking of
CIR, CFO, and SFO

Due to the nonlinear effects of CFO and SFO on the received
samples as shown by (10) in both time and frequency
domains, the joint estimation of CIR, CFO, and SFO would
require highly complex nonlinear estimation techniques.
To avoid such complexity, the paper uses Taylor series to
approximately linearize the nonlinear estimation problem.
In addition, under the assumption that all transmit-receive
antenna pairs experience common CFO and SFO values
[7, 8, 11], we can develop a fast-convergence, vector RLS-
based joint CIR, CFO, and SFO estimation and tracking
algorithm suitable for MIMO-OFDM receivers as follows.

As previously discussed, to reduce the number of esti-
mated channel parameters, we consider h,,, = [h,,;,] =0
1,...,L — l]T for u = 1,...,Ny, v = 1,...,N, instead
of Hy, = [Hy,(k),k=0,1,...,K]" since usually L <
K. Using the least squares (LS) criterion, our aim is to
iteratively estimate the (2LN{N, + 2) X 1 parameter vector
®; = [©i0 @i . (/l\)i,zLNrN,Jrl]T at iteration 7 to minimize
the following weighted squared error sum:

i N,
) = Z /\i,pz |ei,p,v|2> (15)
p=1 v=1

where A is the forgetting factor, p = 1,...,i denotes the pth
tone index in the set of i tone indices used in this adaptive
estimation. The elements of @; are

w; J4+2L(u—1)+2LN, (v—1) = Re{h(l }

Qi+ L+2L(u—1)+2LN, (v—1) = Im{hf:)vl}, (16)
@ipinn, = €9, @ipiNN,+1 = 77,
withu=1,...,N,v=1,...,N,,[ = .,L — 1. From (10),
we obtain

R, (kp), @1),

ei,p,v = vml,( )

, PN i
e](ZH/N)Nmpgkpi)\]i > Xum, (kp) f,’},(kp),

u=1

’\(l) Z h(l) € ]271kpl/N

fv ()?u,mp (kp)’ a’t) =

E(’)zk 11(’>+(1+r] )

N
Z ](27r/N n[kpq D (1+7D)el

)—(1+n¢ )ef]

(17)

It is noted that }?u,m!, (k,) denotes the soft estimate of the pth
data tone at subcarrier k, of the m,th OFDM symbol from
the u th transmit antenna.

It is clear that fv()?u,mp(kp),a)i) is a nonlinear function
of @ioiny, = €7 and @ion N1 = 7P For a sufficiently
small error e;p,,, fv()?u,mp(kp),c?)i) can be approximately
represented by the linear terms of its Taylor series, that is,
an approximately linear estimation error can be determined

by
Cipyv ~ Y;,mp( ) — {fV( u,m, (kp) i-1)

+ V£ K, (kp), @i1) (@5 — @i-1)}.

(18)

The gradient vector of fv()?u,mp(kp), ;) corresponding to
the vth receive antenna is determined by

Y fy (R, (kp), Dic1)

|:afv( ump(kp) wl 1) L

awz—w

> A T
afv (Xu,mp (kp)) wi—l) :|

a&\)1'71,2LN,N,+1 ’
(19)

where 9 f,(Xim, (kp), @1)/0@1 20— +20N,-1) = Kum, (kp)

_i i(2/N)N, el
x =i (2nlky/N) oI 21N eki’ﬁfcp, 1=0,....,L-1,

s (Kum, (kp), @)

OW; I+ L+2L(u—1)+2LN, (v—1)

. afv(XNu,mp(kp)aa’i)
00} 1+2L(u—1)+2LNy(v—1)

afv( u,my (kp) wz)

awz,ZLN(Nr

=(1+ ﬁ(i))ﬂi,p,v

ia/N)N,ED | . 27 j(2n/N)n[E) —&5]
Qi,p,V:e] kp |:] mpkp+— z ] N J &

N

X 2 Kum, (kp) Y (k)

u=1

afV( u,my (kp) wz)

awz,zLN,N,H

= (kp +€7)Qipy, u=1,...,Ne.

(20)

Note that for p = 1,...,N, and p#v, afv()?ump(kp),
@;)/00; 1421 (u-1)+2LN,(p—1) = 0, fy(Kum, (kp), @;)/
a@imm(u_1>+2LNt<p_1) = 0. Subsequently, the vector

RLS algorithm [30] can be used to formulate the following
vector RLS-based joint CIR, CFO and SFO tracking scheme.

Initialization. Py = y~'IiN,n+2, Where y is the regular-
ization parameter. (The use of a scaled identity matrix for
initialization is mainly for convenience, and a random initial-
ization matrix can also be employed. Since convergence will
invariably be attained, but the final converged position will
depend on many environmental factors and are unknown,
the difference in using the two types of initialization matrices
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FiGure 3: Turbo processing for joint channel estimation, synchronization, and decoding.

is in general not significant. However, due to its randomness,
using a random matrix may give rise to problems with
matrix inversion or other similar matrix operations under
certain conditions. As a result, most adaptive algorithms
make use of the more deterministic scaled identity matrix for
initialization purposes.)

Iterative Procedure. At the ith iteration with a forgetting
factor A, update

Xin, =[ VAT ()?u,m,- (ki), @i-1) VI (XNu,m, (ki), @i-1) ],
-1
Ki =P X}y (My, + XIy PioiXfy) s

Pi=1" (P,;l - KiXEN,Pifl)a

~ ~ T
CiN, = [(Yf,m[(ki) _fV(Xu,m,(ki))wifl)))V = 1)---)Nr] >
u= 1, -)Nt)
Wi = w1 +Kieyy,.
(21)

Under the above implementation of the vector RLS-based
tracking of CIR, CFO, and SFO algorithm, the resulting
computational complexity is (L?N7/N?N,) per each turbo
iteration, where L denotes the channel length, N; stands for
the number of transmit antennas, N, is the number of receive

antennas, and Ny is the number of subcarriers used in each
turbo iteration for the vector RLS tracking.

6. Coarse CIR, CFO, and SFO
Estimation for Initial Values

For a stationary environment and time-invariant parameter
vector, the RLS algorithm is stable regardless of the eigen-
value spread of the input vector correlation matrix [31] as
shown in [32]. Due to the use of the first-order Taylor series
approximation, the stability of the vector RLS-based CFO,
SFO, and CIR tracking scheme requires sufficiently small
initial errors between the initial guesses and the true values
of CIR, CFO, and SFO.

Accurate yet simple coarse estimation of CFO and SFO
can be based on the conjugate delay correlation of the two
identical and known training sequences in the preamble of
the burst (as shown in Figure 3), that is, based on (4), we can
obtain the following approximation:

E { rV,mz,ﬂrjjml N7} }

K/2-1
ej(2nk/N)n(1+11)ej(an/N)qul
N eI /N (N+Np)e k:—ZK/Z
- N2 N 2
X > Xum (k) Hyy (k)|
u=1

(22)
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where m; and m, = m; + 1 denote the indices of the Ist and
2nd training sequences. Therefore, the combined CFO-SFO
perturbation can be estimated by

é\n = ﬁ [E{rv mz,nrv my, n}] (23)
where O[E{ry m, n? 0, o} is the angle of [E{ry p, n?), 1.

Under the assumption of # < 1 (e.g., for a typical SFO
value of around 50 ppm or 5E-5 in practice) and the use of
the two identical long training sequences in the preamble of
a burst, the coarse (initial) CFO and SFO estimates can be
determined separately by

N, —
é\: 2 (N+N |:§ g sz,nrjjml,n:l) (24)

where [ZV SN o PomanT ‘manl s the angle of
SN SN mynTym n- Lhe above coarse CFO and SFO
estimates are then used in the coarse CIR estimation that
employs the vector RLS algorithm with the known X,,(k)’s
during the preamble.

7. Simulation Results and Discussions

Computer simulation has been conducted to evaluate the
performance of the proposed turbo joint channel estimation,
synchronization, and decoding scheme for a convolutional-
coded MIMO-OFDM system. In the investigation, the
OFDM-related parameters are set to be similar to that given
by IEEE standard 802.11a [15]. QPSK is employed for data
OFDM symbols, each has 52 data tones. Note that in [15],
4 out of 52 data tones are reserved for known pilot tones to
facilitate the CIR, CFO, and SFO tracking, which represents
an overhead of 8.33%. For the proposed turbo joint channel
estimation, synchronization, and decoding scheme, the
entire OFDM symbol can be used for data tones to eliminate
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Ficure 6: MSE and CRLB of SFO estimates.

this overhead of 8.33%. As illustrated in Figure 3, a burst
format of two identical long training symbols and 225 data
OFDM symbols was used in the simulation. The two identical
long training symbols in the preamble of a burst are used to
perform a correlation-based coarse CFO-SFO estimation to
establish their initial values for the turbo joint tracking of
CIR, CFO, and SFO. The coarse CIR estimation is performed
by using the vector RLS algorithm and the first long training
symbols with the available CFO and SFO initial estimates
and initial guesses of CIRs and the gradient components
at (19) corresponding to CFO-SFO variables set to zeros.
The rate 1/2 nonrecursive systematic convolutional code with
length covering 2 OFDM symbols is employed for encoding
at the transmitter. At the receiver, the SISO decoder is used
as discussed in Section 4. For each transmit-receive antenna
pair, we consider an exponentially decaying Rayleigh fading
channel with a channel length of 5 and a RMS delay spread
of 50 nanoseconds. In the simulation, the channel impulse
responses and frequency offsets are assumed to be unchanged
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over the duration of a burst of 227 OFDM symbols (two
training OFDM symbols for preamble).

Figure4 shows the measured mean squared errors
(MSEs) of the CIR estimate and relevant Cramér-Rao lower
bounds (CRLBs). The numerical results demonstrate that the
proposed estimation algorithm provides a fast convergence
and the best MSE performance with forgetting factor A =
1 and regularization parameter y = 10. For comparison,
the CRLB values of the CIR estimates obtained by using
any unbiased pilot-aided estimation approach with 4 known
pilot tones (in the IEEE standard 802.11a [15]) and of all
52 known tones (i.e., ideal but unrealistic case) in each

10°
ke ke ke ke ke ke ke
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e (N Nr) = (2,2)

1072

1073 L

BER

1074}

1075 L

107°
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-B- C:after 2 iterations of turbo processing
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+- E:ideal BER (perfect channel estimation, CFO = SFO = 0)

Ficure 8: BER performance of the proposed turbo joint channel
estimation, synchronization, and decoding scheme.

data OFDM symbol are also plotted in Figure 4. As can
be seen in Figure 4, the numerical results show that the
MSE values of the CIR estimates obtained by the proposed
scheme with just one iteration are even smaller than the
CRLB obtained by any unbiased pilot-aided joint CIR, CFO,
and SFO estimation approach using 4 pilots in each OFDM
symbol. Furthermore, after just 3 iterations, the proposed
scheme converges to its best MSE performance close to
the CRLB of the ideal but unrealistic case of all 52 known
tones. In the same manner, Figures 5 and 6 show the MSE
results and relevant CRLBs of the CFO and SFO estimates,
respectively. Figure 7 shows the MSE performance and CRLB
values of the proposed turbo scheme with 3 iterations of
turbo processing versus SNR for QPSK (a) and 16-QAM
(b). As can be seen in Figure 7(a), the proposed joint
CIR/CFO/SFO estimation scheme provides more accurate
CFO estimates than the existing ML-based CFO and SFO
tracking algorithm [11] that requires the use of perfect
channel knowledge. For the same SNR, the gap between the
MSE and corresponding CRLB for QPSK is smaller than that
for 16-QAM.

Figure 8 shows the BER performance of the proposed
turbo scheme with different numbers of iterations. For
reference, the ideal BER performance (curve E) in the case
of perfect channel estimation and synchronization (i.e., zero
CFO and SFO, using 3 iterations between MIMO-demapper
and SISO decoder) is also plotted. The results show that the
performance of the proposed turbo scheme is improved with
the number of iterations and can approach that of the case
of perfect channel estimation and synchronization after 3
iterations (curve D). Without turbo processing, the resulting
worst-case BER performance (curve A) corresponding to
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the case of using only the preamble for the vector RLS-
based joint channel estimation and synchronization is plot-
ted in Figure 8. As shown, without the use of the turbo
principle, the vector RLS-based joint channel estimation and
synchronization scheme using only the preamble (curve A)
provides an unacceptable receiver performance (BER values
around 0.5), while the proposed turbo scheme offers a
remarkable improvement in BER performance even after just
one iteration (curve B).

To investigate the effect of CFO and SFO on the
performance of the proposed turbo scheme, Figures 9 and

10 show the BER performance of the proposed turbo
algorithm under various CFO and SFO values, respectively.
For reference, the ideal BER performance in the case of
perfect channel estimation and synchronization (i.e., zero
CFO and SFO, using 3 iterations between MIMO-demapper
and SISO decoder) is also plotted. As shown, the proposed
turbo estimation scheme is highly robust against a wide
range of SFO values.

8. Conclusions

In this paper, a received signal model in the presence of CFO,
SFO and channel distortions was examined and explored
to develop a turbo joint channel estimation, synchroniza-
tion, and decoding scheme and a vector RLS-based joint
CFO, SFO, and CIR tracking algorithm for coded MIMO-
OFDM systems over quasistatic Rayleigh multipath fading
channels. The astonishing benefits of turbo process enable
the proposed joint channel estimation, synchronization, and
decoding scheme to provide a near ideal BER performance
over a wide range of SFO values without the needs of known
pilot tones inserted in the data segment of a burst. Simulation
results show that the joint CIR, CFO, and SFO estimation
with the turbo principle offers fast convergence and low
MSE performance over quasistatic Rayleigh multipath fading
channels.

Appendices

A. Cramér-Rao Lower Bound for Pilot-Based
Estimates of CIR, CFO, and SFO

Based on (5), the received subcarrier k; in frequency domain
at the vth receive antennacan be expressed by

N
Yv,m (kl) = ej(zn/N)Nm‘EkiPki,k, Z Xu,m (ki)Hu,v (kz) + Wv,m (kz)

u=1

(A1)

Note that ICI components in (A.1) can be assumed to be
additive and Gaussian distributed and included in W, ,(k;)
(20].

By collecting K subcarriers in each receive antenna, the
resulting KN, subcarriers from N, receive antennas can be
represented in the vector form as follow:

y=ct+w, (A.2)
where
Y = [Yim (k1) -« Yo (ki) - Yn,m (k1)
ce s Y (ki) 1
W= [Wip, (ki) - - Wi (k) - - Wim (k1) (A3)

c s W (ki) ]

¢ = (In, ® (D(&,7)SF))h,
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D(e, ) = diag @GN MNm sk gy 1+ TN Nt ),
x(ki)  Oixn,  Onvi(x—2)
Oi1xny,  x(k2)  Oini(k-2)
S = >

O1xn, Oxnyk-2)  x(kk)

F,
F = ) Fi=1Iy ®[1---e /@/NI-Dk]
Fx
X(ki) = [Xl (k’) o .XNt(ki)])leNt = [O et 0],
| —)
N; elements

h=[hl---hi]",

T
h, = [hivo - -hivio1 - AN - - hwvi-1]
v=1,...,N,

(A.4)

Based on (A.2), the Fisher information matrix [33] can be
computed by

2 ocH oc
T W 717
wherew = [ hg h; ¢ ], hg = Re{h}, h;y = Im{h},
p=Lenl,
oc!! _ HQH pH
ahR = INy ® (F SED (8,17)),
9ct = —jlIy, ® (FISH®H (¢,7))
oh; ' >
5 h (Iy, ® (FFSHOH))
a(p hH(IN, ® (FHSH(D?)) ’ (A6)
dc
— =1 D(e, F),
ah}; N, ®( (8 77)5 )
oc .
ﬁ = jly, ® (©(&,7)SF),
0
WfT = [(Iy, ® (®:SF))h (Iy, ® (©,SF))h].

Therefore, the Cramér-Rao lower bound of estimated
parameters w, CRLB(w), can be determined by

CRLB(w) = diag(M™!). (A.7)

B. SNR

Based on (4), the signal-to-noise ratio (SNR) at the vth
receive antenna is

PS,V
)

SNR, = P
N

(B.1)

where
K/2-1
_ i Q2rk/NIn(1+7) ,j(2k/N)n N,
Ps,, = NZE{ Z e/ n(141) oj 1
k=—K/2
(B.2)
N 2
X > Xum(k)Hyy (k) )S‘
u=1
and Py = o?% Assume that the coefficients of CIR,
huwo> Buvise > huvi-1}s are independent Zero-
mean complex random variables with common
variances{ad¢, 07,...,0f_} for all pairs of transmit-receive

antennas, and all receive antennas experience the same
AWGN power. After some manipulation, it can be shown
that the SNR values at all receive antennas are equal to

L-1 2

SNR = KNE, 5 ——L__ (B.3)
=0

(N2g2)’

where E; = E{ IXu,m(k)Iz} is the average energy of the M-
QAM symbols.
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