
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2009, Article ID 246439, 14 pages
doi:10.1155/2009/246439

Research Article

Stochastic Resource Allocation for Energy-Constrained Systems

Daniel Grobe Sachs1, 2 and Douglas L. Jones1

1Coordinated Sciences Laboratory, 1308 W. Main St., Urbana, IL 61801, USA
2Software Technologies Group, Inc., Westchester, IL 60154, USA

Correspondence should be addressed to Daniel Grobe Sachs, dgsachs@nekito.net

Received 21 December 2008; Revised 18 April 2009; Accepted 5 June 2009

Recommended by Sergiy Vorobyov

Battery-powered wireless systems running media applications have tight constraints on energy, CPU, and network capacity, and
therefore require the careful allocation of these limited resources to maximize the system’s performance while avoiding resource
overruns. Usually, resource-allocation problems are solved using standard knapsack-solving techniques. However, when allocating
conservable resources like energy (which unlike CPU and network remain available for later use if they are not used immediately)
knapsack solutions suffer from excessive computational complexity, leading to the use of suboptimal heuristics. We show that use
of Lagrangian optimization provides a fast, elegant, and, for convex problems, optimal solution to the allocation of energy across
applications as they enter and leave the system, even if the exact sequence and timing of their entrances and exits is not known.
This permits significant increases in achieved utility compared to heuristics in common use. As our framework requires only a
stochastic description of future workloads, and not a full schedule, we also significantly expand the scope of systems that can be
optimized.

Copyright © 2009 D. G. Sachs and D. L. Jones. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

The goal of resource allocation is to assign a system’s
resources to applications in the way that maximizes the
system’s utility to the user. Resource allocation is in general a
difficult problem, and as a result the allocation of resources
to multiple applications in a multimedia system has seen
considerable research. Ideally, we would be able to allocate
resources—CPU time, network bandwidth, energy—in a
way that best reflects the user’s needs and hence maximizes
the utility achieved by the user.

We specifically consider the case of a mobile system that
performs several simultaneous tasks, each of which can be
reconfigured in several modes with a variety of different CPU
and network utilizations. Each of the modes is associated
with a specific utility value that represents the quality of
service in some way that is meaningful to the user.

In the traditional problem setup, allocation is done by
assuming that the same tasks will run from startup until
a specified future time [1]. If this is the case, the energy
constraint and runtime constraint can be converted into a
single constraint on power consumption, and the allocation

problem can then be converted into an ordinary knapsack
problem, subject to the constraints on network load, CPU
load, and system power. Although the resulting allocation
problem is an NP-hard knapsack problem, it is usually small
enough to be computationally tractable and also tends to be
amenable to fast heuristic solutions [2, 3].

In the context of unvarying workloads, the available
energy and requested runtime are converted into a power
constraint, and the resulting allocation is optimal if the
system is allowed to run until the battery is exhausted.
However, the runtime may be longer than requested due to
the discrete selection of available application configurations.

The allocation problem where all workloads vary, but are
all known in advance, can be solved using a straightforward
extension of the techniques used for a single workload:
the conversion to a knapsack problem by simultaneously
considering all sets of applications. In this form, the energy
constraint would be left unconverted, and the knapsack
problem would optimize utility over all sets of applications
that run during the battey’s lifetime. In this case, there is
a set of four constraints: CPU time, network bandwidth,
desired runtime, and total energy available. However, this

2 EURASIP Journal on Wireless Communications and Networking

optimization problem is particularly complex as it requires
the evaluation of a cross product of all configurations for
each set of applications that will run during the entire
running time of the system.

Due to the complexity of this optimization problem,
various simplifications have been proposed. One approach
to solve the energy-allocation problem involves creating
a list of applications that will run in the future, and
allocating energy to each of these applications in priority
order [4]. Although this greedy heuristic can approach
optimality if applications are being admitted only and do
not have variable utility, it does not support applications
with multiple possible utility levels and does not always have
a clear ordering when multiple resources are considered.
Another approach involves the use of various suboptimal
optimization strategies, including the integer programming
techniques described by Lee [3] and a fast heuristic solution
to the underlying multidimensional multichoice knapsack
described by Moser [2].

There is also an important class of problems in this family
that have not been addressed in the literature; cases where the
workload schedule is not known in advance, and instead only
a probability distribution of workloads is known.

The theory of Lagrangian optimization [5] offers a
framework in which we can optimally allocate resources
under relatively weak convexity assumptions, and hence
provides an approach we can take to solve this entire class
of allocation problems without needing to solve a full NP-
hard optimization problem. In addition to providing a direct
solution to the scheduling of multiple workloads known in
advance, the Lagrangian approach also allows us to solve
the allocation problem stochastically, permitting statisically
optimal allocations to be made even if we have only a
probability distribution of the workloads that are to be
run. In other words, through the use of the Lagrangian
framework, we must know only what might run, and not
necessarily if or when.

2. Stochastic Allocation Problem

Consider a battery-powered wireless security monitor system
consisting of a controller and multiple cameras, placed to
monitor an area for specified period of time. For much
of the time, the area it is monitoring shows nothing of
interest, and the utility gained by providing a high-quality
representation of the area is low. Sometimes we may know
when interesting events (such as a person appearing within
the view of the camera) will occur; for example, when the
facility being monitored opens and closes. But also consider
the case where, while , for example, we may know from prior
experience that 20% of the time, events of interest will occur,
we do not know in advance exactly when these events will
occur or which camera or cameras will see them. In either
case, it is important that all of the cameras operate for the
entire requested interval, and that when events of interest
occur we get high-quality video from all of the cameras that
have views of the events. This setup describes a stochastic
allocation problem, which we analyze as a variant of the

prescheduled workload problem described in [4]. Unlike the
setup in [4], instead of having a list of workloads and the
time periods that they are active, we have a list of potential
or representative workloads, and probabilities that they are
active at any given time instant.

This setup describes a stochastic allocation problem that
differs from problems previously solved in the literature
in that not only are applications entering and exiting the
system, but they are doing so in an unscheduled and
unpredictable way. We know in advance only that the tasks
may appear with a certain probability, not when or even if
they will.

2.1. Utility Model. The utility model we use is that each
application configuration is assigned a “utility rate” that is
additive across applications and time. In other words, if
we select a particular application configuration, we credit
the system with its corresponding utility for as long as that
configuration is active. We further assume that the utility
of the application configurations increases as the resource
utilization increases, and that the utility/energy curve of the
applications being optimized is convex or nearly so, which
implies a diminishing return in utility as more energy is
expended.

For our experiments, we assigned increasing utility rates
to application configurations as the frame rate and number
of quantizer steps are increased. However, our utility model
is general enough to permit the replacement of these assigned
utilities with values that better reflect the actual utility of the
tasks, for example, by assigning utility based on perceptual
values of video quality derived from human trials.

2.2. Problem Formulation. Inputs to this optimization prob-
lem are an application list and the state of the system. Each
application entry includes data providing estimates of the
CPU utilization, network utilization, and utility associated
with each configuration for the application. Network and
CPU constraints are implemented using these utilization
values, which represent a fraction of the total network and
CPU time available used for a particular application. To avoid
overloading the resource, the total utilization of both the
CPU and the network must be less than or equal to 1.

Each application is represented with a unique ID app;
freqapp represents the CPU operating frequency for a par-
ticular application, and confapp is the selected configuration
ID for the application. Applications entering and leaving the
system result in a switch to a new workload. The utility of
a particular workload is equal to the sum of the selected
configurations of all applications running in a particular
workload. The objective of the optimization is to maximize
the integral of the sum of instant utilities of all running
applications over the desired system runtime, such that at
no point the CPU and network bounds are exceeded and the
total energy consumed over the specified runtime runtime is
less than or equal to the starting battery energy Ebatt.

We define the term Pr(i) to be the probability of
workload i—that is, a combination of applications we index
using i—being active at any given time instant. In other

EURASIP Journal on Wireless Communications and Networking 3

words, it is the probability that the system is running that
particular combination of applications. We further assume
independence of applications running at different times.
While this assumption is generally false, if battery lifetime is
long enough, the actual distribution of applications running
during the lifetime of the battery will be close to the a priori
probabilities. Pavg is computed as:

Pavg = Ebatt
runtime

. (1)

With these assumptions, the stochastic resource alloca-
tion problem can be stated as

max
confsi, freqi

∑

i

Pr(i)
∑

appsi

U
(
app, confi,app

)

subject to

∑

i

Pr(i)
∑

appsi

P
(
app, confi,app, freqi,app

)
≤ Pavg,

∀i,
∑

appsi

C
(
app, confi,app, freqi,app

)
≤ 1,

∀i,
∑

appsi

N
(
app, confi,app

)
≤ 1,

(2)

where

(i) Pavg: average total system power (in Watts);

(ii) Pr(i): probability of workload i being active at any
given time instant;

(iii) U(t, app, conf): average utility (integrated over time);

(iv) P(t, app, conf, freq): average power in Watts;

(v) C(t, app, conf, freq): normalized CPU utilization (0
to 1);

(vi) N(t, app, conf): normalized network utilization (0 to
1).

Note that in this context, the energy constraint, and
hence the average power constraint, is special because it
extends across all workloads in the system. If a particular
workload uses less energy than the average, another workload
can use more. This is because energy that is not used is con-
served for later use. The conservability of energy means that
energy and power must be treated differently when solving
the optimization problem, and it causes a dependency across
workloads when finding optimal application configurations.

2.3. Naive Solution. Because the average power is added
across different workloads in the stochastic allocation prob-
lem above, the allocation algorithm is equivalent to solving
one instance of the NP-hard multidimensional multichoice
knapsack problem (formally defined in [2]) which optimizes
over every application and workload, choosing exactly
one configuration for each application in every workload.
Although the CPU and network constraint is affected only by

application configurations selected in the current workload,
the average power constraint depends on the configurations
chosen for all applications in every workload that may
potentially execute on the system. This means that the
knapsack optimizer must evaluate all configurations for all
applications across all workloads, which rapidly becomes
computationally prohibitive as the number of applications
and potential workloads increases. Suboptimal solutions
such as the approximation algorithm presented in [2] can
reduce the required computation, but even the use of these
suboptimal approximations still leaves a large computation-
ally complex problem.

3. Lagrangian Optimization

Solving a constrained problem is generally difficult. Specif-
ically, the direct solution to a constrained optimization
problem described in the previous section is equivalent to
solving an NP-hard knapsack, where the knapsack represents
the energy contained in the battery and the items that can be
placed in the knapsack represent the various configurations
of the tasks that run during the lifetime of the battery. To
make matters worse, because tasks can enter and leave the
system, it is not optimal to simply optimize for the current
workload (as is done in [1]); if low-utility tasks enter the
system early, they will “soak up” more than their share of
energy from the battery, leaving little energy for high-utility
tasks that arrive later. As a result, we cannot simply optimize
for the tasks that are available now; we must optimize over
the entire schedule of tasks that will arrive between the
system’s startup time and the time the battery is exhausted.

Because the underlying knapsack problem is nonpoly-
nomial in complexity, this is a combinatorial explosion.
To optimize over two different workloads that appear at
different times, we must (in the worst case) evaluate every
combination of application configurations in the first work-
load and every combination of application configurations
in the second workload pairwise. In other words, the
computational time required increases exponentially as the
number of different workloads increases.

Because the combinatorial explosion that results when
we must jointly optimize across varying workloads, we
wanted to find a way to optimize the performance of
a battery-operated system while keeping the optimization
“local” to a particular workload and therefore tractable. One
tool that can be used to do this is Lagrangian optimization.

3.1. Lagrangian Construction. The core idea of the
Lagrangian approach to optimization [5] is that the
constraints in a constrained optimization problem can
be replaced with a Lagrange multiplier λ by rewriting a
constrained problem in the form of

max•
∑

i

Ai(·) s.t.
∑

i

Bi(·) ≤ C, (3)

using the form

min• J(λ) =
∑

i

− Ai(·) + λBi(·). (4)

4 EURASIP Journal on Wireless Communications and Networking

Instead of having the constraint Bi inside a maximization
operator, we have only a linear combination of the utility
analog Ai and the constrained functions Bi. The constraint
C has been removed; it will be used to pick a particular value
of λ but does not directly affect the minimization.

In this construction, the Lagrange multiplier λ represents
a particular tradeoff between the term being maximized
A and the constrained term B. This formulation can in
fact be generalized to an arbitrary number of constraints
by introducing a separate Lagrange multiplier λk for each
constraint to be eliminated.

3.2. Lagrangian Optimization of Independent Cells. The
Lagrangian form of the optimization problem is ideally
suited for the particular case where the functions Ai and Bi

in (3) can be split into independent “cells” [5] that can be
summed to calculate the value of J(λ). For this special case,
the original optimization problem takes the specific form

max
x1···xn

∑

i

Ai(xi) s.t.
∑

i

Bi(xi) ≤ C. (5)

If the optimization problem takes this form, then when the
original problem is reformulated as a Lagrangian it becomes

min
x1···xn

J(λ) =
∑

i

− Ai(xi) + λBi(xi). (6)

The summation and theminimization in (6) can be swapped,
leaving

J(λ) =
∑

i

min
xi

[−Ai(xi) + λBi(xi)] (7)

and reducing the problem from a joint maximization over
the set of all x1 · · · xn to a set of n optimizations over a single
variable xi.

3.3. Optimality of the Lagrangian Formulation. Before the
Lagrangian reformulation is used to solve an optimization
problem, it is important to understand when and why it
is equivalent to directly solving the original constrained
optimization problem. This equivalence was shown for the
general case with multiple Lagrange multipliers by Everett
[5]; for clarity I summarize his argument for the multiple-
cell, single-λ case of (7) here.

Theorem 1. For any nonnegative real number λ, if x∗

minimizes the function
∑

i−Ai(xi) + λBi(xi), x∗ maximizes∑
i Ai(xi) over all x such that

∑
i Bi(xi) ≤

∑
i Bi(x∗i).

Proof. Because x∗ minimizes
∑

i−Ai(xi) + λBi(xi),
∑

i

− Ai
(
x∗i
)
+ λBi

(
x∗i
) ≤

∑

i

− Ai(xi) + λBi(xi),

∑

i

− Ai
(
x∗i
)
+
∑

i

λBi
(
x∗i
) ≤

∑

i

− Ai(xi) +
∑

i

λBi(xi),

∑

i

− Ai
(
x∗i
)
+
∑

i

Ai(xi) ≤ λ

⎡
⎣
∑

i

Bi(xi)−
∑

i

Bi
(
x∗i
)
⎤
⎦.

(8)

Since parameter set x must not use the resource B more
than parameter set x∗,

∑

i

Bi(xi) ≤
∑

i

Bi
(
x∗i
)

(9)

and thus the number in brackets is less than or equal to zero.
Since λ ≥ 0, we can remove it from the inequality, leaving

∑

i

− A
(
x∗i
)
+
∑

i

A(xi) ≤ 0,

∑

i

A(xi) ≤
∑

i

A
(
x∗i
) (10)

and therefore x∗ satisfies the original optimization problem.
In other words, if we solve the reformulated problem for
some λ ≥ 0 and get back a configuration for which

∑
i Bi(xi)

is C, for that particular C and λ the solutions of the
constrained and unconstrained optimization problems are
identical.

3.4. Completeness: Can We Find λMatching C ? Although we
have proven that any solution found using the unconstrained
Lagrangian form is in fact a solution to the original
constrained optimization problem, we have not proven that
we can find a solution corresponding to a particular value
for C. In fact, not all values of C that can be reached with
equality in the constrained form of the optimization can be
achieved in the Lagrangian form; specifically, a particular
value for C can be “found” by the Lagrangian optimization
if it lies on a convex portion of the payoff verses resource use
curve [5]. In other words, if a scatter plot is built using the
resource consumption

∑
i Bi(xi) on the x-axis and the payoff∑

i Ai(xi) on the y-axis for all possible configuration sets x,
the Lagrangian optimizer will be able to match any values of
C that correspond to points on the convex hull of this scatter
plot.

If the desired value of C does not correspond to a point
on the convex hull of the resource-payoff scatter plot, when
we search for an appropriate value of λ, we will locate
the value of λ that selects the point on the convex hull
that comes closest to consuming the desired amount of the
resource. This selection is still “optimal” in the sense that
no other configuration achieves a greater payoff for the same
or lesser resource utilization; however, selection of another
point could result in a higher total payoff by using more of
the available resource.

3.5. Finding λ: Bisection Search Strategy. The convexity
property of the Lagrangian optimization can also be used to
create a fast strategy for finding a value for λ that matches
the actual resource consumption

∑
i Bi(xi) against the desired

resource consumption C.
Because of this convexity, increasing values of λ will

result in a monotonically increasing use of the constrained
resource, so an efficient bisection search technique presented

EURASIP Journal on Wireless Communications and Networking 5

by Krongold [6] can be used to find the value of λ cor-
responding to the desired constraint. This bisection search
works by starting with low and high values of λ; initially, zero
and a value of λ sufficiently high to dominate the Ai term
are used, and J(λ) is calculated for each of these values. For
each iteration, a new value of λ is set at the midpoint of these
two values, and its corresponding J(λ) is computed. If the
resource utilization realized from the new λ is greater than
the goal constraint C, the range is reduced to the new λ and
the previous low value; if it is less, the new range is the new
λ to the previous high value. This procedure is repeated until
the resource utilizations of the new λ and the previous low λ
are equal.

This bisection algorithm converges quickly; in its use
to solve the DMT power allocation problem in [6], the
optimal solution was found within 14 iterations with very
conservative initial low and high values. Furthermore, nearly
optimal solutions are found even if the search is terminated
early; in [6], 98.8% of the optimal performance was achieved
after only 8 iterations of the bisection search.

4. Lagrangian Formulation of
the Optimization Problem

We can apply the Lagrangian technique to the resource-
allocation problem in (2) by realizing that we have a utility
function analogous to the A(·) shown in (3), and several
resource constraint functions analogous to B(·). We can
therefore transform this problem into a Lagrange form,
and by finding suitable values for the Lagrange multipliers
remove the constraints on the optimization, yielding an
unconstrained problem.

Although the Lagrangian form can be used to transform
multiple constraints into Lagrange multipliers, fast bisection
searches for λ are optimal only if a single Lagrange multiplier
is used. (Bisection searches for λ are not known to be efficient
or optimal if multiple Lagrange multipliers are used [5].) For
this reason, we convert only the utility-energy tradeoff into a
Lagrangian form and leave the CPU and network constraints
in place. This results in a problem in the form of the single-
resource multicell constrained optimization problem of (5).

Once reformulated to use a Lagrange multplier to opti-
mally tradeoff utility and energy, the optimization problem
can be stated as follows:

J(λ) = min
confs,freqs

∑

i

Pr(i)

×
∑

appsi

−U
(
app, confi,app

)
+ λP

(
app, confi,app, freqi,app

)
,

subject to

∀i, ∑
appsi

C
(
app, confi,app, freqi,app

)
≤ 1,

∀i, ∑
appsi

N
(
app, confi,app

)
≤ 1.

(11)

Because this transformation matches the Lagrangian
form, the theoretical results shown in the previous sec-

tion can be applied. Specifically, this means that we can
optimize the system for a particular average power Pavg
by finding a value of λ that chooses configurations that
meet this power constraint. If a particular value of λ
results in the optimization choosing a set of application
configurations that is equal to the desired power Pavg, that
set of application configurations maximizes the utility U
for that power level. Furthermore, there exists a value of
λ that will match the average power consumed by every
configuration on the convex hull of the utility/energy curve
formed by the set of all possible applications and config-
urations weighted by the probability of the corresponding
workloads.

The key benefit we get from the use of the Lagrangian
technique is that it can be used to allocate energy across many
different workloads while optimizing configurations across
only one workload at a time. This is because each workload
that may run forms a unique, independent “cell,” linked only
by the value of λ chosen to optimize overall system utility.
Consider the case where only one workload i = 0 exists and
hence Pr(0) = 1. In this case, the maximization problem
reduces to the form

max
confs,freqs

∑

apps

U
(
app, confi,app

)
(12)

subject to constraints on power, CPU, and network avail-
ability. This single-workload problem can be converted into
a Lagrangian in the following form, subject to only the
constraints on CPU and network

Ji(λ) = min
confs,freqs

∑

appsi

−U
(
app, confi,app

)

+ λP
(
app, confi,app, freqi,app

)
.

(13)

But because (11) fits the form of (6), we can interchange
the order of summation and minimization and rewrite the
stochastic Lagrangian optimization problem in terms of this
single-workload Lagrange weight Ji(λ):

J(λ) =
∑

i

Pr(i) min
confs,freqs

×
⎡
⎣
∑

appsi

−U
(
app, confi,app

)

+ λP
(
app, confi,app, freqi,app

)
−U

(
app, confi,app

)
⎤
⎦

=
∑

i

Pr(i)Ji(λ).

(14)

Critically, in so doing we have eliminated the depen-
dence of the optimization problem across workloads, and
we can optimally allocate energy across workloads without
considering the cross product of application configurations
across all workloads.

Computing the value for Ji(λ) for a given value of λ
is equivalent to solving the problem of allocating resources
to the applications running in a particular workload; other
workloads are considered only in the effect that they have

6 EURASIP Journal on Wireless Communications and Networking

in the search for λ. In other words, after transforming the
original optimization problem into the Lagrangian form, we
can find an optimal set of configurations for a particular
workload in the larger stochastic allocation problem without
doing a search across configurations in other workloads.

To find the value of λ that maximizes the expected utility
(to within a convex-hull approximation) while ensuring that
the expected running time of the system is at least some
fixed value, we simply do a search over λ to find the value
that minimizes J(λ). Because J(λ) is expressed in terms of
Ji(λ), this search does not require evaluating cross products
of different workloads; each workload is only optimized once
per value of λ checked.

5. Properties of the Lagrangian Approach
to Optimization

This section describes various properties of the Lagrangian
optimation technique and uses these properties to analyze
the behavior and performance of the Lagranian solution to
the stochastic allocation algorithm.

5.1. Optimality. In Section 3.3, we showed that if a particular
set of parameters i1 · · · in minimizes J(λ) for a particular
value of λ, the use of the resource C has been optimally
allocated across the parameter set. Because our power
allocation algorithm maps the average power parameter
Pavg to the resource C in the Lagrangian formulation, an
argument analogous to the theorem presented there can
be used to show that the configurations that minimize the
Lagrangian J(λ) for a particular λ and the configurations
that maximize the utility for the average power Pavg that
corresponds to that λ are the same. Furthermore, this is true
even if the original utility-energy curve is not convex.

5.2. Computational Complexity. Even in the Lagrangian
problem formulation, to compute J(λ) (and determine the
optimal configurations for each application), we need to
do an exhaustive search over the configurations of appli-
cations running at any given time, to ensure that the best
possible use is made of the CPU and Network resources.
In addition, the search for the value of λ that maximizes
utility while operating within the energy constraint adds
complexity to the optimization problem, and as a result
the Lagrange implementation requires more computation
than the straight knapsack solver for a single application
workload.

However, the amount of extra work required is limited.
By nature J(λ) is a convex function of λ, so the search for λ
can be done using a fast bisection search that will converge
within a small number of iterations [6, 7]. Our present
implementation searches up to 18 points and finds λ to
precision of 2×10−5 times the efficiency of the most efficient
application configuration.

However, for the case where multiple workloads are
considered, the search for λ removes the need to jointly
consider the application configurations across different
workloads. This results in a reduction in the optimization

complexity that is exponential in the number of workloads.
For example, consider the case where there are two possible
workloads, each consisting of two applications with 16
configurations each (like our Sensor workload). To optimize
this system using the traditional approach, we must evaluate
the 256 possible configurations of each of the two workloads
pairwise, resulting in a total of 65536 combinations of
configurations evaluated. Using the Lagrangian approach,
however, we need to evaluate the constraints for each
workload singly at up to 18 values of λ, resulting in only 9216
configurations evaluated. This is with only two workloads
used; as the number of workloads increases, the benefit of
evaluating workloads singly instead of jointly becomes larger
and the computational workload of the joint optimization
rapidly becomes infeasible.

5.3. Interpretation: What Is λ? Another key insight is the
nature of the intermediate parameter λ. Although the
Lagrangian is a “synthesized” intermediate parameter, in
many cases it has a real-world meaning. For example, in
Frank Kelly’s work on network pricing for elastic traffic [8],
the Lagrangian values λs represent the marginal or “shadow”
price of a unit of traffic on the corresponding network link.
And in [9], the selected value for λ represents the tradeoff
between the energy consumed by an equalizer filter tap and
the amount of interference the filter tap can remove from the
signal being received.

In the allocation problem we address here, the inter-
mediate parameter λ defines a tradeoff between the two
optimization targets it connects—in this case, between
utility and energy. A high λ means that energy is at a
premium, and that we should only use a configuration if it
offers a particularly high utility in exchange for its energy
consumption. A low λ, on the other hand, means that power
can be spent relatively freely in exchange for modest amounts
of utility. In fact, due to the construction of J(λ), λ is actually
the minimum allowable slope between the selected point and
the previous point on the utility-energy convex hull. (This
property is the key observation used to prove that there is
a value of λ corresponding to all convex-hull points in the
scatter in [6].) This can be easily shown using an argument
analagous to one presented by Ramchandran et al. in [7].

Lemma 1. λ is the minimum permissible energy-utility slope
(marginal utility for energy consumed) for the set of application
configurations that minimizes J(λ).

Proof. Define

J(λ) = −U + λP, (15)

where U and P correspond to the total utility and power
consumed by the configuration minimizing J(λ).

Because these values minimize J(λ), perturbing λ to λ− ε
can only increase J(λ). Let U ′ and P′ = P − Δ represent the

EURASIP Journal on Wireless Communications and Networking 7

utility and power consumed by a configuration minimizing
J(λ− ε) where ε > 0. Then

J(λ) ≤ −U ′ + λP′

≤ −U ′ + λ(P − Δ)

≤ −U ′ +U −U + λP + Δ · λ
≤ −U ′ +U + J(λ)− Δ · λ,

0 ≤ (U −U ′)− Δ · λ,

λ ≤ U −U ′

Δ
,

λ ≤ slope,

(16)

where slope is the slope of the utility-energy convex hull at
the optimal operating point.

Even with the constraints, we can achieve any particular
tradeoff between utility and power by only considering
system configurations that have marginal efficiencies—the
change in utility over the change compared to the next lower-
utility lower-energy point on the convex hull—greater than
or equal to a fixed number λ. (This observation also provides
us with an indication of how we find the range over which
we must search for λ: it is sufficient to search from zero,
which will permit any application configuration to run, to a
number greater than the efficiency (utility over energy) of the
efficient available application configuration in the system.)
Furthermore, once we fix a value for λ, we can continue to use
it even if the applications running on the system change! The
system will continue to run optimally with the same tradeoff
between utility and energy, which means that if similar
applications replace the currently running applications they
will achieve a similar total runtime and utility. Moreover, if
we replace the applications with new ones that offer more
utility for energy spent, energy consumption will increase to
take advantage of the better opportunities to gain utility for
the user; likewise, if new applications are less efficient, energy
use will be reduced to conserve energy for the future. The
marginal efficiency metric λ therefore provides a mechanism
which permits the actual power consumption of the system
to vary in response to the changing workloads in an optimal
fashion.

Because our constant as the workload changes is the
efficiency metric λ rather than power, energy, or utility, the
system’s power consumption can increase at one time to
take advantage of the availability of high-efficiency tasks, and
decrease at others if no high-efficiency tasks are available.

5.4. Optimality Properties. It is important that although our
restated optimization problem remains anNP-hard knapsack
problem, it shares important optimality properties with the
Lagrangian approach.

First, a fixed λ applies to all workloads and will correctly
allocate energy to different applications, even as the workload
changes. As long as the marginal utility remains constant, the
allocation of energy to the various applications running at

different times will achieve the optimal utility for the energy
spent. In fact, if we use any fixed Lagrange multiplier λ when
we allocate utility and energy to the applications running
on the system, the resulting system configurations will be
optimal in that they will achieve the maximum possible
utility for the amount of energy consumed.

Second, as proven in the theorem of Section 3, for any
value of λ the returned solution is optimal in that no
other solution has both a larger utility, and a smaller total
energy consumption. Therefore the system using Lagrange
optimization will always operate at an efficient operating
point. And since an appropriate value of λ can be found to
match any point on the convex hull utility-energy scatter
plot, as long as the composite utility/energy curve is dense
and nearly convex (which will be true for systems with a
sufficiently large number of configurations), a value of λ that
consumes energy close to Pavg can be found.

Although we are limited to points on the convex hull
of the utility/energy scatter, in fact these points are “better”
than points off the convex hull in the following sense: if we
consider total (integrated over time) utility and we permit
the system to achieve additional utility by slightly extending
our runtime from the original goal, choosing convex hull
points on the utility-energy curve will increase the total
utility compared to a solution off the convex hull that comes
closer to the desired lifetime. This directly follows from the
optimality of the Lagrange (convex hull) solution for any
runtime it finds.

Theorem 2. Total utility (integrated over time) from a point
on the utility-energy convex hull is higher than the net utility
from a point off the convex hull that provides the same or
greater utility.

Proof. If we consider a point on the convex hull, and another
point that provides more utility and is not on the convex hull,
the efficiency (utility per unit energy) of the point on the
convex hull will be greater than the efficiency of the point not
on the convex hull. (Otherwise, the point not on the convex
hull would also be on the convex hull, a contradiction.)

Therefore, as long as we can use any remaining energy
to increase run time and achieve additional integrated utility,
we will achieve more utility from the additional time than
we would have by using the additional energy earlier. And
as we accumulate more different workloads, the convex hull
becomes denser and the extra utility we can achieve by
using operating points not on the utility-energy convex hull
diminishes.

5.5. Implementation Details. The complexity of the internal
optimization operation is equal to the cross product of all
the configurations of all applications running in a particular
workload and each available CPU frequency. This represents
a great reduction in computational complexity, because
applications that are not active in a particular workload do
not need to be considered.

Several effective but suboptimal simplifications can also
be made. One is that the CPU frequency of all applications

8 EURASIP Journal on Wireless Communications and Networking

running at a particular time can be set to the same value. By
doing so, we reduce the search space to only the cross product
of the application configurations, times the number of CPU
frequencies, with an increase in power consumption that is
bounded by Jensen’s inequality to the difference between two
adjacent frequency steps.

Also, conventional fast search techniques for solving
the multidimensional, multichoice knapsack problem can
be applied to estimate J(λ) with reasonable results. This
is especially valuable when the number of applications is
high, as the complexity of a full search is higher and the
suboptimality of doing a partial search is reduced.

Because J(λ) is a convex function of λ, the search for λ can
be done using a fast bisection search that will converge within
a small number of iterations [7]; our present implementation
searches up to 18 points and finds λ to a precision of 2 ×
10−5 times the efficiency of the most efficient application
configuration.

The probability distribution of the workload is only
used to select λ to achieve the average system power and
hence the runtime. Once the value of λ is selected the
probability distribution is not used again; more specifically,
the probability distribution is not necessary to determine the
configuration of the applications that is used at any particular
time. This limits the effect of inaccuracies in workload
probability estimates. Although an inaccurate estimate of the
workloads’ probability distribution will result in a runtime
longer or shorter than desired, the system will still run
efficiently.

Because λ conveys all the information about how to select
configurations to properly tradeoff between system lifetime
and quality of service, it is also possible to design the system
to allow the user to control λ more directly. For example,
the user can be presented with a slider selecting between
optimizing for quality and system life. If this is done, the
probability distribution can be used to provide an estimate
of the resulting runtime for the value of λ selected by the
user.

The optimal value of λ depends only on the probability
distribution of workloads that may run on the system; it
does not depend on what applications are running at any
particular time. Therefore, once an optimal λ is chosen,
it can be used for a long time—until the desired runtime
changes or the battery is replaced or charged, or until the
probability distribution that was used to compute λ is no
longer valid. Even as the workload changes, the value of λ we
use to compute the optimal allocation of resources for any
given workload stays the same, as it represents the optimal
division of energy between the current workload and the
future.

The same Lagrangian approach used to solve the stochas-
tic allocation problem can also be used to solve the related
known-workload problem. For a single workload, simply
setting napps = 1 and Pr(1) = 1 for the workload maps it
into the stochastic framework and all the above proofs apply.
The reservations proposed in [4] can also be accomodated
by setting the probability associated with each workload to
be the running time of that workload over the total running
time of the system.

6. Optimality of the Energy-Greedy Heuristic

One important omission in the prior work by Yuan [1] is that
it does not discuss the optimality of its allocation heuristics.
The Lagrangian framework we use to solve the stochastic
allocation problem can also be used to make statements
about these types of heuristics. Because we compare the
performance of the Lagrangian optimizer against the energy-
greedy heuristic in Section 7, we digress briefly here to
describe the conditions under which the “energy-greedy”
heuristic described by Yuan is optimal.

The simplification made by the energy-greedy heuristic
is that applications running when the allocation decision
is made will continue to run until the system is shut
down. Since this assumption describes a subproblem of
the stochastic or varying-workload allocation problems, the
energy-greedy heuristic is optimal if the applications in fact
do not change, and is a good heuristic if the character of the
applications running on the system stays roughly the same.
However, if the utility or energy demands of the applications
change dramatically over time, it may result in significantly
suboptimal allocations.

Going back to our wireless camera example, this sub-
problem would assume that the data is equally “interesting”
(and hence has an unvarying utility) for the entire running
time of the system.

This unvarying-workload subproblem (and by extension
the energy-greedy heuristic) is essentially a constant-power
approach to the larger resource allocation problem; at all
times it limits power consumption to a value that allows
the required lifetime to be achieved given the current energy
supply. (The power constraint can vary in response to
current energy availability as the optimization is repeated.)

Theorem 3. Given a dense set of application configurations,
the energy-greedy heuristic results in a near-constant system
power (The system power will vary by no more than the
difference between the operating point and the next higher-
power point on the utility/power curve. If operating points
are closely spaced over the powers being optimized across,
the utility/energy curve points will be close together and this
difference is small.).

Proof. To see that the energy-greedy approach attempts to
equalize power consumption over time, we can consider
its associated optimization problem. The energy-greedy
heuristic maximizes the utility of the currently running
applications subject to the power constraint

Pavg ≤ Eremain

Tremain
. (17)

Utility is a monotonically increasing function of power,
(although this is not true in general, any nonmonotonic
points are always suboptimal and will therefore be ignored
by the optimization process) and we will always choose to
use as much power as possible to achieve the greatest possible
utility. As a result, the energy consumption of the system will
be as close as possible to Pavg given the available application
configurations. If the set of application configurations is

EURASIP Journal on Wireless Communications and Networking 9

dense, the actual power will be close to Pavg, and when the
maximum allowable power is calculated again the result will
be near (but perhaps slightly higher than)Pavg.

7. Simulations

To evaluate the effectiveness of this Lagrangian resource
allocation, we use a simulation of the GRACE framework
[10, 11]. This simulation is described inmore detail in [11]. It
provides, earliest deadline first (EDF) scheduling of both the
network and CPU, management of applications entering and
leaving the system, and power modelling and estimation for
both the network and CPU. The system runs a multimedia
video encoder that is capable of operating at several utility
levels (with varying image sizes, quantizer step sizes, and
frame rates) and also permits compression efficiency to vary.
The variable compression efficiency allows the system to
save energy by reducing CPU demand at the expense of an
increase in network-bandwidth utilization [12].

7.1. Simulation Environment. The network is modeled as
having a bandwidth of 500Kbyte/s and an active power of
0.5W, corresponding to a per-byte energy cost of 1 μJ, a
data rate and energy per byte similar to common 802.11 b
wireless network interfaces. The network is assumed to be
reliable as long as the bandwidth constraint is not exceeded,
and no protocol or protocol overhead is assumed. Power
estimates are generated by multiplying the active power of
the network by the estimated or actual network utilization.
The CPU energy and utilization estimates are based on
the AMD Athlon XP-M 1700+ microprocessor, a model
that incorporates voltage and frequency scaling; power is
estimated by multiplying the CPU utilization by the power
consumed when operating at the selected CPU frequency,
ranging from 25W at 1466MHz to 6.4W at 533MHz.

The desired runtime is set to 600 seconds, and the start-
ing energy of the battery is varied to simulate environments
under tighter and looser power constraints. The simulation
runs for 600 seconds or until the initial energy supply is
exhausted, whichever comes first. Parasitic power demands
(such as the display) are not considered; it is assumed that
the provided initial energy excludes any parasitic power that
would be consumed during the requested running time.

The simulation environment does not presently charge
the Lagrange optimization for the processing time and
energy spent doing its one-time search for the Lagrange
multiplier. The run time for the current implementation of
the Lagrange multiplier search is approximately 2 seconds at
full processor speed for the “laptop” workload, so it would
increase the total energy consumption for the Lagrangian
case by about 50 J. We do not charge this energy because in
practice it would be amortized over a much longer runtime
than the 600 seconds used in these simulations.

7.1.1. Applications. For these simulations, we use the GRACE
framework and adaptive encoder application described in
[10], extended to add the ability to send uncoded as well
as encoded macroblocks [11]. The application is run on

Table 1: Application base utilities.

Resolution Frame rate Quantizer step size Utility per second

CIF 10 fps Q = 6 1.00

(352× 288) Q = 12 0.80

5 fps Q = 6 0.60

Q = 12 0.50

3.3 fps Q = 6 0.20

Q = 12 0.15

QCIF 15 fps Q = 6 0.50

(176× 144) 10 fps Q = 6 0.30

5 fps Q = 6 0.10

input streams with two different image sizes, CIF (352×288)
and QCIF (176 × 144). For each image size, the resource
requirements can be reduced at the cost of decreasing utility
by decreasing the frame rate from the base of 10 (CIF)
or 15 (QCIF) fps. The system also supports reducing the
quality by increasing the quantizer step size for CIF encoding,
although these configurations are relatively inefficient (in
terms of utility per unit power consumed) and are therefore
not selected by the optimizer.

Each operating mode allows application adaptation: 15
available compression modes when the quantizer step size Q
is 6, and 6 modes when Q is 12.

The base utilities for every possible configuration of the
encoder are shown in Table 1. These numbers are expressed
as a rate, in terms of utility per second. Each second that
the application is running and set to a given configuration,
it accumulates the utility shown in the table.

Because choosing meaningful values for the base utility
would require extensive human trials, values were instead
assigned by hand. These particular values for utility were
selected to ensure that the utility is a monotonic function of
resource utilization and hence energy. They do not result in a
convex energy/utility curve; this is intentional and intended
to put the Lagrangian approach at a slight disadvantage.

In addition to the base utility, which is associated with
the application itself, each time an application starts it is
assigned a “weight” by the user. The weight connects the
base utility of the application with the user’s perception of its
importance—it is a “utility mapping function.” The imple-
mentation multiplies the weight assigned by the workload by
the base utility rate of the application to find the actual utility
rate for each potential application configuration. The higher
the weight, the higher the resulting utility, and the more
likely it will be that the application will be allocated enough
energy, CPU time, and network bandwidth to operate at a
high quality level.

7.2. Simulation Workloads. We implement these simulations
by defining two different prototype workloads, consisting
of the CIF and QCIF versions of our adaptive encoder
application. The first “laptop” workload is intended to
represent a reasonable variation in desired applications and
utility; the second “sensor” workload is a favorable workload
intended to highlight the improvements in total utility that

10 EURASIP Journal on Wireless Communications and Networking

can come from allocating energy only to the most beneficial
applications.

The prototype workloads list the possible application
sets, the weight for each application, and the probability
that this application set is active. We then generate the
actual workload by choosing a workload from the prototype
according to the associated probability distribution for each
30-second slice of a 600-second simulation run. The input
stream is a composite of severalMPEG test sequences, treated
as a circular array. As part of the workload creation process
a starting position for each application invocation is chosen
randomly (with a uniform distribution) from the frames in
this composite stream.

In all cases, the original probability distribution from
which the actual workloads are drawn is used along
with composite statistics about the application’s resource
demands to compute the value for λ used for the Lagrangian
optimization.

It is important to note that the global allocator is per-
mitted to refuse any offered jobs, and that each application
can run at any one of several different quality/utility levels.
This means that the actual energy consumption of an offered
workload can vary down to zero, if none of the offered
applications receives an energy allocation.

7.2.1. “Laptop” Workload. The “laptop” workload (Table 2)
is intended to represent things a user could plausibly do with
the computer. As we are limited by the fact that our adaptive
application is an encoder, it is not particularly “laptop”
in practice. However, unlike the “sensor” workload it has
not been designed to provide the Lagrangian optimization
approach with a large advantage. We therefore expect the
utility improvement we achieve with this workload to be
more representative of the general case.

One possible explanation for this type of workload is a
laptop participating in a video teleconference. As the video
conference progresses, various portions of the video (for
instance, slides, the user, canned video, and animation) of
varying importance start and end. This results in the entry
and exit of different encoders with different frame sizes and
importance.

7.2.2. “Sensor”Workload. The “sensor” workload (Table 3) is
a realization of the problem outlined in the introduction. It
represents a situation in which the Lagrangian optimization
makes a large difference in the total utility of the system. It
does not represent an upper bound (as the utility improve-
ment given a suitably constructed workload availability is
unbounded). It is instead intended to show that under
certain circumstances, large utility improvements can be
achieved.

This type of workload distribution could be found in
a sensor network. The rare high-value operations occur
when the sensor has detected something of interest and the
operator is likely to be actively viewing the sensor’s output;
the common low-value operations occur when the system
has not detected anything of interest and therefore is unlikely
to be needed or monitored.

Table 2: “Laptop” workload.

Probability Image size Weight

20% CIF 1.5

20% QCIF 0.8

CIF 1.0

25% CIF 1.3

QCIF 1.0

25% QCIF 1.0

QCIF 0.5

QCIF 0.5

10% CIF 1.0

QCIF 0.7

QCIF 0.7

Table 3: “Sensor” workload

Probability Image size Weight

20% CIF 100

CIF 100

80% CIF 1

CIF 1

7.3. Simulation Results. We evaluate the performance of the
Lagrange optimizer against the “Energy-greedy” heuristic
described by Yuan et al. [1]. Figures 2 and 1 show the
results of a simulation of the Lagrangian allocator. Each set of
graphs includes five rows of three graphs. The first four rows
represent the same sequence of workloads; each workload
sequence consists of a list of workloads, drawn randomly
from the “sensor” or “laptop” probability distributions of
applications. New workloads are drawn for every 30-second
slice, so there are 20 different workloads total represented
in each graph. However, the system may shut down early
and not run the last several workloads. The last row of
graphs shows the average results across 10 realizations of the
workload sequences, including the four shown as Workloads
1 through 4.

The leftmost column of graphs shows the total realized
utility—in other words, the sum of the utility values
multiplied by the running time and the weight of each
application—over the 600 seconds the system is allowed to
run. The middle column shows the amount of time that
the system runs before it shuts down, either due to running
out of time or exhausting its energy. The rightmost column
shows the total energy consumption of the system. None of
these totals include the time and energy that would be spent
finding the optimal value of λ as it is assumed to have been
computed offline. The overhead of allocating resources to
each application entering and leaving the system is, however,
included.

Each graph has a solid darker line representing the results
for the Lagrangian optimization and a dashed lighter line
representing the “energy-greedy” heuristic. The horizontal
axis on all the graphs is the starting energy of the battery,
expressed in terms of the average power permitted over the
600-second desired runtime; the starting energy in Joules is

EURASIP Journal on Wireless Communications and Networking 11

5 10 15 20 25
0

500

1000

W
or

kl
oa

d
1

Utility

5 10 15 20 25
0

200

400

600

Time

5 10 15 20 25
0

10

20

Average power

5 10 15 20 25
0

500

1000

W
or

kl
oa

d
2

5 10 15 20 25
0

200

400

600

5 10 15 20 25
0

10

20

5 10 15 20 25
0

500

1000

W
or

kl
oa

d
3

5 10 15 20 25
0

200

400

600

5 10 15 20 25
0

10

20

5 10 15 20 25
0

500

1000

W
or

kl
oa

d
4

5 10 15 20 25
0

200

400

600

5 10 15 20 25
0

10

20

5 10 15 20 25
0

500

1000

A
ve

ra
ge

W
or

kl
oa

d
1

W
or

kl
oa

d
2

W
or

kl
oa

d
3

W
or

kl
oa

d
4

A
ve

ra
ge

W
or

kl
oa

d
1

W
or

kl
oa

d
2

W
or

kl
oa

d
3

W
or

kl
oa

d
4

A
ve

ra
ge

5 10 15 20 25
0

200

400

600

Maximum permissible average power Maximum permissible average power Maximum permissible average power

Maximum permissible average power Maximum permissible average power Maximum permissible average power

Maximum permissible average power Maximum permissible average power Maximum permissible average power

Maximum permissible average power Maximum permissible average power Maximum permissible average power

Maximum permissible average power Maximum permissible average power Maximum permissible average power

5 10 15 20 25
0

10

20

Figure 1: “Laptop” workload. The “Workload” graphs show specific results for four workload sequences; all points on the graph for each
row come from the same sequence of applications entering and exiting. The “Average” graphs show average and min/max (indicated by
error bars) results across 10 workloads. Dashed/lighter lines are from the energy-greedy heuristic, solid/dark lines are from the Lagrange
optimizer. The left column shows the total (summed) utility, the middle column shows running time in seconds (limited to 600 seconds),
and right column shows average ower in Watts.

the value in Watts shown 600 times. The vertical axis on the
“utility” graphs is utility units based on the application utility
and weightings; on the “time” graphs it is seconds, and on the
“energy” graphs it is once again in terms of power averaged
over the desired runtime of 600 seconds. The performance is
sampled across average power limits at every two Watts from
5 to 25W.

The minimum and maximum values across all 10
workload sequences are shown as error bars on the “average”
graphs. The darker error bars correspond to the Lagrangian
optimizer, the lighter error bars correspond to the energy-
greedy heuristic. Note that the minimum and maximum val-
ues for each starting energy are each selected independently
and do not represent any single workload.

12 EURASIP Journal on Wireless Communications and Networking

5 10 15 20 25
0

1

2

3
×104

×104

×104

×104

×104

Utility

5 10 15 20 25
0

200

400

600

Time

5 10 15 20 25
0

10

20

Average power

5 10 15 20 25
0

1

2

3

5 10 15 20 25
0

200

400

600

5 10 15 20 25
0

10

20

5 10 15 20 25
0

1

2

3

5 10 15 20 25
0

200

400

600

5 10 15 20 25
0

10

20

5 10 15 20 25
0

1

2

3

5 10 15 20 25
0

200

400

600

5 10 15 20 25
0

10

20

5 10 15 20 25
0

1

2

3

5 10 15 20 25
0

200

400

600

Maximum permissible average power Maximum permissible average power Maximum permissible average power

Maximum permissible average power Maximum permissible average power Maximum permissible average power

Maximum permissible average power Maximum permissible average power Maximum permissible average power

Maximum permissible average power Maximum permissible average power Maximum permissible average power

Maximum permissible average power Maximum permissible average power Maximum permissible average power

5 10 15 20 25
0

10

20

W
or

kl
oa

d
1

W
or

kl
oa

d
2

W
or

kl
oa

d
3

W
or

kl
oa

d
4

A
ve

ra
ge

W
or

kl
oa

d
1

W
or

kl
oa

d
2

W
or

kl
oa

d
3

W
or

kl
oa

d
4

A
ve

ra
ge

W
or

kl
oa

d
1

W
or

kl
oa

d
2

W
or

kl
oa

d
3

W
or

kl
oa

d
4

A
ve

ra
ge

Figure 2: ”Sensor” workload. The “Workload” graphs show specific results for four workload sequences; all points on the graph for each
row come from the same sequence of applications entering and exiting. The “Average” graphs show average and min/max (indicated by
error bars) results across 10 workloads. Dashed/lighter lines are from the energy-greedy heuristic, solid/dark lines are from the Lagrange
optimizer. The left column shows the total (summed) utility, the middle column shows running time in seconds (limited to 600 s), and right
column shows average power in Watts.

7.3.1. “Laptop” Workload. The results for the “laptop”
workload are shown in Figure 1. We see that, on average,
there is a significant increase in utility when the starting
power is low, and no significant change in utility or energy
consumption when the starting power is high. At an average

power constraint of 5W, we improve the average achieved
utility by over 20% by pushing the power consumption from
times that only low-utility tasks are running to other times
when higher-utility tasks are available. However, once the
starting energy is sufficient to allow the average power drain

EURASIP Journal on Wireless Communications and Networking 13

to exceed 15W, there is no benefit from the use of the
Lagrangian approach.

It can also be seen that in some cases, the total utility is
reduced modestly. The worst loss of utility observed is 12%
and occurs due to under-using energy; this case is shown as
“Workload 3.” Here, at an average power limit of 9W, only
77% of the original energy is used at the end of the end of
the 600-second desired runtime. This occurs when the actual
application selections have a lower utility than the prototype
distribution. Although the applications to be run are selected
from the probability distribution provided to the code that
computes the optimal Lagrange multiplier, the workload list
is short enough that significant variations from the mean
distribution can occur.

7.3.2. “Sensor” Workload. The results for the “sensor” work-
load are shown in Figure 2. Because this workload was
constructed to show a large benefit from the Lagrangian
optimization, we see an average improvement in utility of
over 140% when the average power is limited to 5W. (It is
important to remember that a suitably constructed sequence
could realize an arbitrarily large utility improvement.) As
the average power increases, the benefit from the Lagrangian
approach falls; at 13W, the average improvement in utility
is 23%. Above 17W, there is no improvement because the
Lagrangian optimizer and the energy-greedy heuristic yield
exactly the same configuration.

In fact, for several of the workloads, the utility curve is
close to flat; for example, this is true of the second and fourth
workloads shown in Figure 2. The flat utility curve is because,
in these cases, there is enough energy to run all the high-
utility tasks at full quality (achieving the highest utility), and
the low-utility tasks do not contribute significantly to the
total utility.

In our test system, the optimization process is driven
entirely by estimates of the system loading and utility for
the various available when the system first starts up. Since
these estimates are by nature stochastic (they represent a
“typical” operating condition rather than the specific oper-
ating condition that is actually encountered), inaccuracies in
these estimates of energy and utility that go into choosing an
appropriate λ can result in the system behaving suboptimally.

At the 15W average power level, we see the effects of
inaccuracy in the initial estimates resulting in a system outage
quite clearly. It manifests as a dip in running time across
all the workloads, which in some workloads results in a
noticeable reduction in utility. This dip occurs because when
we do the search for λ, the system estimates that if all
applications are run at their highest possible utility (i.e., λ
is set to zero), the average power will be slightly less than
15W. In reality, though, the power demand is slightly higher.
Because the system uses more energy than is predicted
as it actually runs, allowing the applications to all run at
maximum utility does not conserve enough energy to run
until the end of the run time. Therefore, if a high-utility task
appears at the end of the sequence of workloads, it will not
run and the system will be unable to achieve the maximum
possible utility.

This “dip” is partly, but not entirely, due to a systemic
bias in the predictions: the power predictions made when
λ is calculated do not include energy used to allocate
resources to applications as they enter and leave the system.
There is also some systemic undercounting in the predicted
cycle count, because the procedures used to create these
tables do not accurately account for the per-application
adaptation overhead. Although these systemic biases could
have been corrected in the initial predictions, and various
other techniques (such as implementing an energy reserve
and recalculating λ periodically based on actual system
performance) could have been used to correct for stochastic
variation, we felt that the resulting reduction in running time
and loss of system utility was illustrative of the possibility of
outage that results when stochastic techniques are used for
optimization.

It is also possible for an outage to result because the
workload has an atypically high occurrence of high-utility
workloads—that is, more high-utility (and therefore energy-
consuming) workloads appear than the probability distri-
bution indicates. In these cases, the system may terminate
early due to energy exhaustion. Because the 600 seconds
lifetime we use in these experiments is relatively short, this
effect can be easily seen in Workload 1, where the total
utility is much higher than the other workloads, but the
system shuts down early if the battery holds only enough
energy for an average power of 5W and fails to run a high-
utility task. The probability of an outage this large would
be diminished in practical implementations of systems using
our stochastic allocation algorithm by longer total runtimes
and more variation of the workload. Implementations could
also recompute λ periodically, which would also combat
outages by forcing some of the high-utility tasks to run at
a lower power level, helping to allow the system to achieve its
required runtime. It is worth noting, however, that doing so
would in general reduce the total utility achieved.

8. Conclusions

Lagrangian optimization techniques can be productively
applied to the problem of optimizing the allocation of a
fixed pool of energy across multiple applications as they
enter and leave a system. The Lagrangian approach to
resource allocation requires only that the probabilities of
various workloads to be known; foreknowledge of the actual
schedule is not required. Compared to existing constant-
power optimization algorithms, the Lagrangian procedure
can provide significant improvements in achievable utility
when energy is at a premium. Depending on workloads and
energy availability, the Lagrangian allocation approach can
increase total utility by a factor of two or more.

We have also shown problems that an actual implemen-
tation of this approach would encounter. The approach is
sensitive to the accuracy of the probability distribution of the
expected workload; the results show that mismatches result
in consuming too much energy and terminating early, or
consuming too little and achieving less than the best possible
utility. By periodically recomputing the value of λ taking

14 EURASIP Journal on Wireless Communications and Networking

into account changes in energy availability and probablility
distribution, inaccuracies in the predictions can be corrected.

Acknowledgment

This material is based upon work supported in part by
the National Science Foundation under Grant no. CCR-
0205638.

References

[1] W. Yuan, K. Nahrstedt, S. V. Adve, D. L. Jones, and R. H.
Kravets, “Design and evaluation of a cross-layer adaptation
framework for mobile multimedia systems,” in Multimedia
Computing and Networking, vol. 5019 of Proceedings of SPIE,
pp. 1–13, January 2003.

[2] M. Moser, D. Jokanovic, and N. Shiratori, “An algorithm
for the multidimensional multiple-choice knapsack problem,”
IEICE Transactions on Fundamentals of Electronics, Commu-
nications and Computer Sciences, vol. 80, no. 3, pp. 582–589,
1997.

[3] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and J. Hansen,
“A scalable solution to the multi-resource QoS problem,” in
Proceedings of the 20th IEEE Real-Time Systems Symposium, pp.
315–326, December 1999.

[4] W. Yuan and K. Nahrstedt, “ReCalendar: calendaring and
scheduling applications with CPU and energy resource guar-
antees for mobile devices,” in Proceedings of the IEEE Pervasive
Computing and Communications (PerCom ’03), March 2003.

[5] H. Everett, “Generalized Lagrange multiplier method for solv-
ing problems of optimum allocation of resources,” Operations
Research, vol. 11, no. 3, pp. 399–418, 1963.

[6] B. S. Krongold, K. Ramchandran, and D. L. Jones, “Compu-
tationally efficient optimal power allocation algorithms for
multicarrier communication systems,” IEEE Transactions on
Communications, vol. 48, no. 1, pp. 23–27, 2000.

[7] K. Ramchandran andM. Vetterli, “Best wavelet packet bases in
a rate-distortion sense,” IEEE Transactions on Image Processing,
vol. 2, no. 2, pp. 160–175, 1993.

[8] F. Kelly, “Charging and rate control for elastic traffic,”
European Transactions on Telecommunications, vol. 8, no. 1, pp.
33–37, 1997.

[9] M. Goel and N. R. Shanbhag, “Dynamic algorithm trans-
forms for low-power reconfigurable adaptive equalizers,” IEEE
Transactions on Signal Processing, vol. 47, no. 10, pp. 2821–
2832, 1999.

[10] V. Vardhan, et al., “Integrating fine-grained application adap-
tation with global adaptation for saving energy,” in Proceedings
of the 2nd International Workshop on Power-Aware Real-Time
Computing (PARC ’05), Jersey City, NJ, USA, September 2005.

[11] D. G. Sachs, A new framework for hierarchical cross-layer adap-
tation, Ph.D. dissertation, University of Illinois at Urbana-
Champaign, Urbana-Champaign, Ill, USA, May 2006.

[12] D. G. Sachs, S. V. Adve, and D. L. Jones, “Cross-layer adaptive
video coding to reduce energy on general-purpose processors,”
in Proceedings of IEEE International Conference on Image
Processing, vol. 3, pp. 109–112, Barcelona, Spain, September
2003.

	1. Introduction
	2. Stochastic Allocation Problem
	3. Lagrangian Optimization
	4. Lagrangian Formulation of the Optimization Problem
	5. Properties of the Lagrangian Approach to Optimization
	6. Optimality of the Energy-Greedy Heuristic
	7. Simulations
	8. Conclusions
	Acknowledgment
	References

