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however, they fail to achieve all the points of the optimal diversity-multiplexing tradeoff. In the presence of a low-rate feedback link
from the destination to each relay stage and the source, this paper proposes an end-to-end antenna selection (EEAS) strategy as an
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source signal to the destination with amplifying and forwarding at each relay stage. The subsets are chosen such that they maximize
the end-to-end mutual information at the destination. The EEAS strategy achieves the corner points of the optimal diversity-
multiplexing tradeoff (corresponding to maximum diversity gain and maximum multiplexing gain) and achieves better diversity
gain at intermediate values of multiplexing gain, versus the best-known distributed space-time coding strategies. A distributed
compress and forward (CF) strategy is also proposed to achieve all points of the optimal diversity-multiplexing tradeoff for a two-
hop relay channel with multiple relay nodes.
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1. Introduction

Finding optimal transmission strategies for wireless ad-
hoc networks in terms of capacity, reliability, diversity-
multiplexing (DM) tradeoff [1], or delay has been a long
standing open problem. The multi-hop relay channel is an
important building block of wireless ad-hoc networks. In a
multi-hop relay channel, the source uses multiple relay nodes
to communicate with a single destination. An important
first step in finding optimal transmission strategies for the
wireless ad-hoc networks is to find optimal transmission
strategies for the multi-hop relay channel.

In this paper, we focus on the design of transmission
strategies to achieve the optimal DM-tradeoff of the multi-
hop relay channel. The DM-tradeoff [1] characterizes the
maximum achievable reliability (diversity gain) for a given
rate of increase of transmission rate (multiplexing gain), with
increasing signal-to-noise ratio (SNR). The DM-tradeoff
curve is characterized by a set of points, where each point is

a two-tuple whose first coordinate is the multiplexing gain
and the second coordinate is the maximum diversity gain
achievable at that multiplexing gain. We consider a multi-
hop relay channel, where a source uses N − 1 relay stages
to communicate with its destination, and each relay stage is
assumed to have one or more relay nodes. Relay nodes are
assumed to be full-duplex. Under these assumptions we find
and characterize multi-hop relay strategies that achieve the
DM-tradeoff curve (in the two hop case) or come close to
the optimum DM-tradeoff curve while outperforming prior
work (with more than two hops).

In prior work there have been many different transmit
strategies proposed to achieve the optimal DM-tradeoff of
the multi-hop relay channel, such as distributed space time
block codes (DSTBCs) [2–17], or relay selection [2, 3, 18–
23]. The best known DSTBCs [14, 15] achieve the corner
points of the optimal DM-tradeoff of the multi-hop relay
channel, corresponding to the maximum diversity gain and
maximum multiplexing gain, however, fail to achieve the
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optimal DM-tradeoff for intermediate values of multiplexing
gain. Moreover, with DSTBCs [14, 15] the encoding and
decoding complexity can be quite large. Antenna selection
(AS) or relay selection (RS) strategies have been designed
to achieve only the maximum diversity gain point of the
optimal DM-tradeoff when a small amount of feedback is
available from the destination for a two-hop relay channel
in [2, 3, 18–23], and for a multi-hop relay channel in [24].
RS is also used for routing in multi-hop networks [25–27]
to leverage path diversity gain. The primary advantages of
AS and RS strategies over DSTBCs are that they require a
minimal number of active antennas and reduce the encoding
and decoding complexity compared to DSTBCs. The only
strategy that is known to achieve all points of the optimal
DM-tradeoff is the compress and forward (CF) strategy [28],
but that is limited to a 2-hop relay channel with a single relay
node.

In this paper we design an end-to-end antenna selection
(EEAS) strategy to maximize the achievable diversity gain
for a given multiplexing gain in a multi-hop relay channel.
The EEAS strategy chooses a subset of antennas from each
relay stage that maximize the mutual information at the des-
tination. The proposed EEAS strategy is an extension of the
EEAS strategy proposed in [24], where only a single antenna
of each relay stage was used for transmission. The proposed
EEAS strategy is shown to achieve the corner points of the
optimal DM-tradeoff corresponding to maximum diversity
gain and maximum multiplexing gain. For intermediate
values of multiplexing gains, the achievable DM-tradeoff
of the EEAS strategy does not meet with an upper bound
on the DM-tradeoff, but outperforms the achievable DM-
tradeoff of the best known DSTBCs [15]. Other advantages
of the proposed EEAS strategy over DSTBCs [14, 15] include
lower bit error rates due to less noise accumulation at
the destination, reduced decoding complexity, and lesser
latency. We assume that the destination has the channel state
information (CSI) for all the channels in the receive mode.
Using the CSI, the destination performs subset selection, and
using a low rate feedback link feedbacks the index of the
antennas to be used by the source and each relay stage.

Even though our EEAS strategy performs better than the
best known DSTBCs [14, 15], it fails to achieve all points
of the optimal DM-tradeoff. To overcome this limitation, we
propose a distributed CF strategy to achieve all points of the
optimal DM-tradeoff of a 2-hop relay channel with multiple
relay nodes. Previously, the CF strategy of [29] was shown
to achieve all points of the optimal DM-tradeoff of the 2-
hop relay channel with a single relay node in [28]. The result
of [28], however, does not extend for more than one relay
node. With our distributed CF strategy, each relay transmits
a compressed version of the received signal using Wyner-Ziv
coding [30] without decoding any other relay’s message. The
destination first decodes the relay signals and then uses the
decoded relay messages to decode the source message.

Our distributed strategy is a special case of the distributed
CF strategy proposed in [31], where relays perform partial
decoding of other relay messages and then use distributed
compression to send their signals to the destination. With
partial decoding, the achievable rate expression is quite com-

plicated [31], and it is hard to compute the SNR exponent
of the outage probability. To simplify the achievable rate
expression, we consider a special case of the CF strategy
[31] where no relay decodes any other relay’s message.
Consequently, the derivation for the SNR exponent of the
outage probability is simplified, and we show that the special
case of CF strategy [31] is sufficient to achieve the optimal
DM-tradeoff for a 2-hop relay channel with multiple relays.

Organization. The rest of the paper is organized as follows.
In Section 2, we describe the system model for the multi-
hop relay channel and summarize the key assumptions.
We review the diversity multiplexing (DM-) tradeoff for
multiple antenna channels in Section 3 and obtain an upper
bound on the DM-tradeoff of multi-hop relay channel. In
Section 4 our EEAS strategy for the multi-hop relay channel
is described, and its DM-tradeoff is computed. In Section 5
we describe our distributed CF strategy and show that it can
achieve the optimal DM-tradeoff of 2-hop relay channel with
any number of relay nodes. Final conclusions are made in
Section 6.

Notation. We denote by A a matrix, a a vector, and ai the ith
element of a. A† denotes the transpose conjugate of matrix
A. The maximum and minimum eigenvalue of A is denoted
by λmax(A) and λmin(A), respectively. The determinant and
trace of matrix A is denoted by det(A) and tr(A). The
field of real and complex numbers is denoted by R and
C, respectively. The set of natural numbers is denoted by
N. The set {1, 2, . . . n} is denoted by [n], n ∈ N. The
set [n]/k denotes the set {1, 2, . . . , k − 1, k, . . . n}, k, n ∈
N. [x]+ denotes max{x, 0}. The space of M × N matrices
with complex entries is denoted by CM×N . The Euclidean
norm of a vector a is denoted by |a|. The superscriptsT ,
† represent the transpose and the transpose conjugate. The
cardinality of a set S is denoted by |S|. The expectation of
function f (x) with respect to x is denoted by Ex( f (x)). A
circularly symmetric complex Gaussian random variable x
with zero mean and variance σ2 is denoted as x ∼ CN (0, σ).
We use the symbol

.= to represent exponential equality,
that is, let f (x) be a function of x, then f (x)

.= xa if
limx→∞ log( f (x))/ log x = a, and similarly ≤̇ and ≥̇ denote
the exponential less than or equal to and greater than or
equal to relation, respectively. To define a variable we use the
symbol :=.

2. SystemModel

We consider a multi-hop relay channel where a source
terminal with M0 antennas wants to communicate with a
destination terminal with MN antennas via N − 1 stages
of relays as shown in Figure 1. The nth relay stage has Kn

relays and, the kth relay of nth stage has Mkn antennas n =
1, 2, . . . ,N − 1. The total number of antennas in the nth
relay stage is Mn := ∑Kn

k=1 Mkn. In Section 5 we consider a
2-hop relay channel with K relay nodes, where the kth relay
has mk antennas and

∑K
k=1 mk = M1. We assume that the

relays do not generate their own data, and each relay stage
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Figure 1: System block diagram of a multi-hop relay channel with N − 1 stages.

has an average power constraint of P. We assume that the
relay nodes are synchronized at the frame level. To keep
the relay functionality and relaying strategy simple we do
not allow relay nodes to cooperate among themselves. For
Section 4 we assume that there is no direct path between the
source and the destination, but we relax this assumption in
Section 5 for the 2-hop relay channel. The absence of the
direct path is a reasonable assumption for the case when relay
stages are used for coverage improvement, and the signal
strength on the direct path is very weak. We also assume
that relay stages are chosen in such a way that all the relay
nodes of any two adjacent relay stages are connected to each
other, and there is no direct path between relay stage n
and n + 2. This assumption is reasonable for the case when
successive relay stages appear in increasing order of distance
from the source toward the destination, and any two relay
nodes are chosen to lie in adjacent relay stages if they have
sufficiently good SNR between them. In any practical setting
there will be interference received at any relay node of stage
n because of the signals transmitted from relay nodes of relay
stage 0, . . . ,n − 2 and n + 2, . . . ,N − 1. Due to relatively
large distances between nonadjacent relay stages, however,
this interference is quite small and we account for that in
the additive noise term. The system model is similar to the
fully connected layered network with intralayer links [15]
and more general than the directed multi-hop relay channel
model of [14]. We consider the full-duplex multi-hop relay
channel, where each relay node can transmit and receive at
the same time.

As shown in Figure 1, the channel matrix between the
subset Skn ⊂ [Mn] of antennas of stage n and the subset
Skn+1 ⊂ [Mn+1] of antennas of stage n + 1 is denoted by
Hn

SknSkn+1
, kn = 0, 1, . . . ,

(
Mn
m

)
, where |Skn| = m for all n.

Stage 0 represents the source and stage N the destination.
In Section 5, we only consider a 2-hop relay channel and

denote the channel matrix between the source and kth relay
by Hk and between the kth relay and destination by Gk. The
channel between the source and destination is denoted by
Hsd and the channel matrix between relay k and relay � by
Fk� .

We assume that the CSI is known only at the des-
tination, and none of the relays have any CSI, that is,
the destination knows Hn

SknSkn+1
, kn = 0, 1, . . . ,

(
Mn
m

)
, n =

0, 1, . . . ,N . For Section 5, we assume that the destination
knows Hk,Gk, and Hsd, for all k, and the kth relay node

knows Hsd,Hk and Gk. We assume that Hn
SknSkn+1

,Hk,Gk,Hsd,

and Fk� have independent and identically distributed (i.i.d.)
CN (0, 1) entries for all n to model the channel as Rayleigh
fading with uncorrelated transmit and receive antennas. We
assume that all these channels are frequency flat, block fading
channels, where the channel coefficients remain constant in
a block of time duration Tc ≥ N and change independently
from block to block.

3. Problem Formulation

We consider the design of transmission strategies to achieve
the DM-tradeoff of the multi-hop relay channel. In the next
subsection we briefly review the DM-tradeoff [1] for point-
to-point channels and obtain an upper bound on the DM-
tradeoff of the multi-hop relay channel.

Review of the DM-Tradeoff: following [1], let C(SNR) be
a family of codes, one for each SNR. The multiplexing gain
of C(SNR) is r if the data rate R(SNR) of C(SNR) scales is r
with respect to log SNR, that is,

lim
SNR→∞

R(SNR)
log SNR

= r. (1)

Then the diversity gain d(r) is defined as the rate of fall of
probability of error Pe of C(SNR) with respect to SNR

Pe(SNR)
.= SNR−d(r). (2)

The exponent d(r) is called the diversity gain at rate R =
r log SNR, and the curve joining (r,d(r)) for different values
of r characterizes the DM-tradeoff. The DM-tradeoff for
a point-to-point multi antenna channel with Nt transmit
and Nr antennas has been computed in [1] by first showing
that Pe(SNR)

.= Pout(r log SNR) and then computing the
exponent dout(r), where

Pout
(
r log SNR

) .= SNR−dout(r), (3)

where dout(r) = (Nt − r)(Nr − r), for r = 0, 1, . . . ,
min{Nt,Nr}.

Next, we present an upper bound on the DM-tradeoff of
the multi-hop relay channel obtained in [14].
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Lemma 1 (see [14]). The DM-tradeoff curve of the multi-
hop relay channel (r,d(r)) is upper bounded by the piece-
wise linear function connecting the points (r,dn(r)), r =
0, 1, . . . , min{Mn,Mn+1} where

dn(r) = (Mn − r)(Mn+1 − r), (4)

for each n = 0, 1, 2, . . . ,N − 1.

The upper bound on the DM-tradeoff of multi-hop relay
channel is obtained by using the cut-set bound [32] and
allowing all relays in each relay stage to cooperate. Using
the cut-set bound it follows that the mutual information
between the source and the destination cannot be more
than the mutual information between the source and any
relay stage or between any two relay stages. Moreover, by
noting the fact that mutual information between any two
relays stages is upper bounded by the maximum mutual
information of a point-to-point MIMO channel with Mn

transmit and Mn+1 receive antennas, n = 0, 1, . . . ,N −1, then
the result follows from (3).

In the next section we propose an EEAS strategy for
the multi-hop relay channel and compute its DM-tradeoff.
We will show that the achievable DM-tradeoff of the EEAS
strategy meets the upper bound at r = 0 and r =
minn=0,1,...,NMn.

4. Joint End-to-EndMultiple Antenna
Selection Strategy

In this section we propose a joint end-to-end multiple
antenna selection strategy (JEEMAS) for the multi-hop relay
channel and compute its DM-tradeoff. In the JEEMAS
strategy, a fixed number (= m) of antennas are chosen from
each relay stage to forward the signal towards the destination
using amplify and forward (AF). Before introducing our
JEEMAS strategy and analyzing its DM-tradeoff, we need the
following definitions and Lemma 2.

Definition 1. Let Skn be a subset of antennas of stage n,
that is, Skn ⊂ [Mn]. Let enSknSkn+1

be the edge joining the
set of antennas Skn of stage n to the set of antennas Skn+1

of stage n + 1, where |Skn| = m,∀,n. Then a path in a
multi-hop relay channel is defined as the sequence of edges

(e0
Sk0Sk1

, e1
Sk1Sk2

, . . . , eN−1
SkN−1SkN

).

Definition 2. Two paths (e0
Sk0Sk1

, e1
Sk1Sk2

, . . . , eN−1
SkN−1SkN

) and

(e0
Sl0Sl1

, e1
Sl1Sl2

, . . . , eN−1
SlN−1SlN

) are called independent if Skn ∩
Sln = φ, ∀n = 0, 1, . . . ,N .

In the next lemma we compute the maximum number of
independent paths in a multi-hop relay channel.

Lemma 2. The maximum number of independent paths in a
multi-hop relay channel is

α := min
{⌊

Mn

m

⌋⌊
Mn+1

m

⌋}

, n = 0, 1, . . . ,N − 1. (5)

Proof. Follows directly from [24, Theorem 3] by replacing
Mn by �Mn/m�.

Now we are ready to describe our JEEMAS strategy for
the full-duplex multi-hop relay channel. To transmit the
signal from the source to the destination, a single path in a
multi-hop relay channel is used for communication. How to
choose that path is described in the following. Let the chosen
path for the transmission be (e0

Sk∗0 Sk∗1
, e1

Sk∗1 Sk∗2
, . . . , eN−1

Sk∗N−1
Sk∗N

).

Then the signal is transmitted from the S∗thk∗0
subset of

antennas of the source and is relayed through Sth
k∗n

subset of

antennas of relay stage n,n = 1, 2, . . . N − 1 and decoded by
the Sth

k∗N
subset of antennas of the destination. Each antenna

on the chosen path uses an AF strategy to forward the signal
to the next relay stage, that is, each antenna of stage n on the
chosen path transmits the received signal after multiplying by
μn, where μn is chosen to satisfy an average power constraint
P across m antennas of stage n.

Therefore with AF by each antenna subset on the chosen
path, the received signal at the Sth

k∗N
subset of antennas of the

destination at time t + N of a multi-hop relay channel is

rt+N =
N−1∏

n=0

√
Pμn
m

Hn
Sk∗n Sk∗n+1

xt

+
t−1∑

j=1

√
Pγj
m

fj

(

Hn
Sk∗n Sk∗n+1

)

xt− j

+
N−1∑

m=1

N−1∏

l=m

√
μlql

(

Hn
Sl∗n Sl∗n+1

)

vSl∗n + vSk∗N
︸ ︷︷ ︸

zt+N

,

(6)

where f j(Hn
S∗knS

∗
kn+1

) and ql(Hn
S∗knS

∗
kn+1

) are functions of channel

coefficients Hn
S∗knS

∗
kn+1

, μn ensures that the power constraint

at each stage is met, γj is a function of μn’s, vSl∗n ,n =
1, 2, . . . ,N is the complex Gaussian noise with zero mean
and unit variance added at stage n, and μ0 = 1. Since the
destination has the CSI, accumulated noise zt+N is white
and Gaussian distributed. From hereon in this paper we
assume that the accumulated noise at the destination for all
the multi-hop relay channels is white Gaussian distributed
without explicitly mentioning it. Let (W)−1 be the covariance
matrix of zt+N , then by multiplying W1/2 to the received
signal we have

r′t+N =W1/2
N−1∏

n=0

√
Pμn
m

Hn
Sk∗n Sk∗n+1

xt

+ W1/2
t−1∑

j=1

√
γjP

m
fj

(

Hn
Sk∗n Sk∗n+1

)

xt− j

+ z′t+N ,

(7)

where z′t+N is a matrix with CN (0, 1) entries. Note that W is
a function of channel coefficients Hn

S∗n S
∗
n+1

.
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We propose to use successive decoding at the destination
with the JEEMAS strategy, similar to [24]. With successive
decoding, the destination tries to decode only xt at time t +
N , t = 1, 2, . . . ,T , T ≤ Tc assuming that all the symbols
x1, x2, . . . , xt−1 have been decoded correctly. Assuming that at
time t + N all the symbols x1, x2, . . . , xt−1 have been decoded
correctly, the received signal (7) can be written as

r
eq
t+N =W1/2

N−1∏

n=0

√
Pμn
m

Hn
Sk∗n Sk∗n+1

xt + z
′
t+N , (8)

since the channel coefficients Hn
S∗n S

∗
n+1

are known at the
destination. Let the probability of error in decoding xt from
(8) be Pt, then the probability of error Pe in decoding
x1, x2, . . . , xT from (7) with successive decoding Pe is

Pe ≤ 1−
T∏

t=1

(1− Pt)

≤̇ Pt for any t, t = 1, . . . ,T ,

(9)

where the last equality follows from [24].
From (8) it is clear that Pt is the same for any t, t =

1, 2, . . . ,T , since the channel coefficients Hn
Sk∗n Sk∗n+1

do not

change for T ≤ Tc time instants. Therefore without loss
of generality we compute an upper bound on P1 to upper
bound Pe. Next, we describe our JEEMAS strategy and
compute an upper bound on P1 of the JEEMAS strategy to
evaluate its DM-tradeoff. Let SNR := (P/m)

∏N−1
n=0 μn. Let

ΠkN
k0
= ∏N−1

n=0 H
n
SknSkn+1

, then the mutual information of path

(e0
Sk0Sk1

, e1
Sk1Sk2

, . . . , eN−1
SkN−1SkN

) is

M.I.
(
W1/2ΠkN

k0

)

:= log det
(
Im + SNR W1/2ΠkN

k0
ΠkN†

k0
W(1/2)†

)
.

(10)

Then the JEEMAS strategy chooses the path that maxi-
mizes the mutual information at the destination, that is, it
chooses path (e0

Sk∗0 Sk∗1
, e1

Sk∗1 Sk∗2
, . . . , eN−1

Sk∗N−1
Sk∗N

), if

Sk∗0 ,Sk∗1 ,Sk∗N−1
,Sk∗N

= arg max
Skn⊂[Mn],
n∈{0,1,...,N}

M.I.
(
W1/2ΠkN

k0

)
. (11)

Thus defining Π∗ =∏N−1
n=0 H

n
Sk∗n Sk∗n+1

, the mutual information

of the chosen path is

M.I.
(
W1/2Π∗

)

:= log det
(
Im + SNRW1/2Π∗Π∗†W1/2†

)
.

(12)

Since we assumed that the destination of the multi-hop
relay channel has CSI for all the channels in the receive
mode, this optimization can be done at the destination,
and using a feedback link, the source and each relay stage
can be informed about the index of antennas to use for

transmission. Next, we evaluate the DM-tradeoff of the
JEEMAS strategy by finding the exponent of the outage
probability (8).

From [1] we know that P1
.= Pout(r log SNR), where

Pout(r log SNR) is the outage probability of (8). Therefore
it is sufficient to compute an upper bound on the outage
probability of (8) to upper bound Pe. With the proposed
EEAS strategy, the outage probability of (8) can be written
as

Pout
(
r log SNR

) = P
(
M.I.

(
W1/2Π∗

)
≤ r log SNR

)
. (13)

From [14, 15] W1/2 can be dropped from the DM-
tradeoff analysis without changing the outage exponent,
since λmax(W1/2)

.= λmax(W1/2)
.= SNR0 [14], that is, the

maximum or the minimum eigenvalue of W1/2 does not scale
with SNR. Thus,

Pout
(
r log SNR

) .= P
(
M.I.(Π∗) ≤ r log SNR

)
. (14)

We first compute the DM-tradeoff of the JEEMAS strategy
for the case when there exists αn such that Mn = αnm,∀n =
0, 1, . . . ,N , and then for the general case.

If Mn = αnm,∀n = 0, 1, . . . ,N , then by Lemma 2, the
total number of independent paths in a multi-hop relay
channel is κ := minn=0,1,...,N−1{αnαn+1}. Thus,

Pout
(
r log SNR

) ≤
(
P
(
M.I.

(
ΠkN

k0

)
≤ r log SNR

))κ
, (15)

since from (14) M.I.(Π∗) ≥M.I.(ΠkN
k0

) for any ΠkN
k0

.
From [14]

P
(
M.I.

(
ΠkN

k0

)
≤ r log SNR

) .= SNR−d
N
m(r), (16)

where

dNm(r) = (m− r)(m + 1− r)
2

+
a(r)

2
((a(r)− 1)N + 2b(r)),

(17)

where a(r) := �(m − r)/N�, and b(r) := (m − r) mod N .
Thus, Pout(r log SNR) ≤ SNR−κd

N
m(r), and the DM-tradeoff of

the JEEMAS strategy is given by

d(r) = κdNm(r). (18)

For the general case when Mn /=αnm, ∀n = 0, 1, . . . ,N ,
let Mn = αnm + βn, βn ≤ m, for some αn and βn. Then
partition the multi-hop relay channel into two parts, the
first partition P1 containing αnm antennas of each stage,
such that the chosen set of antennas by the JEEMAS strategy
Sk∗n ⊂ P1,∀n, and the second partition P2 containing the
rest βn antennas of each stage. By reordering the index of
antennas, without loss of generality, let P1 contain antennas
1 to αnm of each relay stage, and let P2 contain antennas
αnm + 1 to αnm + βn of stage n. Recall that the JEEMAS
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strategy chooses those m antennas of each stage that have the
maximum mutual information at the destination. Thus,

Pout
(
r log SNR

)

= P

(

max
Skn⊂[Mn]

M.I.
(
ΠkN

k0

)
≤ r log SNR

)

≤ P

(

max
Skn⊂[αnm]

M.I.
(
ΠkN

k0

)
≤ r log SNR,

M.I.(Πlast) ≤ r log SNR

)

,

(19)

where Πlast =
∏N

n=0H
n
S last
n S last

n+1
, and Hn

S last
n S last

n+1
is the m × m

channel matrix between Mn −m + 1 to Mn antennas of stage
n and Mn+1 − m + 1 to Mn+1 antennas of stage n + 1. Note
that the channel coefficients in Πlast are not independent of

the channel coefficients in ΠkN
k0

, Skn ⊂ [αnm], and therefore
we cannot write Pout(r log SNR) as the product of

P

(

max
Skn⊂[αnm]

M.I.
(
ΠkN

k0

)
≤ r log SNR

)

,

P
(
M.I.(Πlast) ≤ r log SNR

)
.

(20)

To circumvent this problem, let ΠP2 =
H0

S last
0 β1

H1
β1S

last
n+1

. . .HN−1
S last
N−1βN

, where Hn
S last
n βn+1

is the channel

matrix between the last m antennas of stage n and the last
βn+1 antennas of stage n+ 1 of partition P2, and Hn

βnS
last
n+1

is the

channel matrix between the last βn antennas of stage n and
the last m antennas of stage n+1 of partition P2. Basically we
pick m and βn antennas alternatively, note that use of more
antennas increases the mutual information of the channel,
and consequently reduces the outage probability. Since ΠP2

uses a subset of antennas of Πlast, therefore from (19),

Pout
(
r log SNR

)

≤ P

(

max
Skn⊂[αnm]

M.I.
(
ΠkN

k0

)
≤ r log SNR,

M.I.
(
ΠP2

) ≤ r log SNR

)

.

(21)

Since the channel coefficients in ΠP2 are independent of the
channel coefficients of ΠkN

k0
, Skn ⊂ [αnm],

Pout
(
r log SNR

)

≤ P

(

max
Skn⊂[αnm]

M.I.
(
ΠkN

k0

)
≤ r log SNR

)

× P
(
M.I.

(
ΠP2

) ≤ r log SNR
)
.

(22)

Therefore,

Pout
(
r log SNR

)

≤ P
(
M.I.

(
ΠkN

k0

)
≤ r log SNR

)κ

× P
(
M.I.

(
ΠP2

) ≤ r log SNR
)
,

(23)

since the number of independent paths in partition P1 is κ.
From [14], P(M.I.(ΠP2 ) ≤ r log SNR) =

SNR−(dm,β1,m,...,m,βN (r)), where

dNm,β1,m,...,m,βN (r) =
βmin∑

k=r+1

1− k + min
n=1,...,N

⎢
⎢
⎣
∑n

l=0 β̂l − k

n

⎥
⎥
⎦,

(24)

r = 0, 1, . . . , min{β1, . . . ,βN ,m}, where βmin := min{β1,β3,

. . . ,βN} and {β̂0, β̂1, . . . , β̂N} is the nondecreasing ordered

version of {m,β1,m, . . . ,m,βN}, β̂0 ≤ β̂1 ≤ . . . ≤ β̂N . Thus,

Pout
(
r log SNR

) ≤ SNR−
(
κdNm(r)+dNm,β1,m,...,m,βN

(r)
)

. (25)

Therefore, using (16), the DM-tradeoff of the JEEMAS
strategy is

d(r) = κdNm(r) +
[
dNm,β1,m,...,βN−1,m(r)

]+
, (26)

r = 0, 1, . . . , minn=0,1,...,N{Mn}.
Recall that in the JEEMAS strategy the design parameter

is m, the number of antennas to use from each stage. To
obtain the best lower bound on the DM-tradeoff of JEEMAS
strategy one needs to find out the optimal value of m. From
(26), it follows that using a single antenna m = 1, maximum
diversity gain point can be achieved. Similarly, choosing m =
minn=0,...,NMn, the maximum multiplexing gain point can
also be achieved. For intermediate values of r, however, it
is not apriori clear what value of m maximizes the diversity
gain. After tedious computations it turns out that choosing
m = minn=0,...,NMn provides with the best achievable DM-
tradeoff for r > 0. Thus, we propose a hybrid JEEMAS
strategy, where for r = 0 use m = 1, and for r > 0 use
m = minn=0,...,NMn. Our approach is similar to [15], where
for each r an optimal partition of the multi-hop relay channel
is found by solving an optimization problem. We compare
the achievable DM-tradeoff of our hybrid JEEMAS strategy
and the strategy of [15] for M0 = 2,M1 = 4,M2 = 2 and
M0 = 3,M1 = 5,M2 = 3 in Figures 2 and 3.

For the case when βn = 0,∀n, the achievable DM-
tradeoff of our hybrid JEEMAS strategy matches with that
of the partitioning strategy of [15]. For the case when
βn /= 0,∀n, however, it is difficult to compare the hybrid
JEEMAS strategy with the strategy of [15] in terms of
achievable DM-tradeoff, since an optimization problem has
to be solved for the strategy of [15]. For a particular example
of N = 2,M0 = 3,M1 = 5,M2 = 3 the hybrid JEEMAS
strategy outperforms the strategy of [15] as illustrated in
Figure 3. Moreover, in [15] a new partition is required for
each r, in contrast to our strategy, which has only two modes
of operation, one for r = 0 and the other for r > 0.

The following remarks are in order.

Remark 1. Recall that we assumed that |Skn| = m, that is,
equal number of antennas are selected at each relay stage.
The justification of this assumption is as follows. Let us
assume that Mn, n = 0, 1, . . . ,N antennas are used from
each relay stage. Now assume that all relay stages are using
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Figure 2: DM-tradeoff comparison of hybrid JEEMAS with the
strategy of [15].

the same number of antennas Mn = m,∀n,n /= l, except
l, which is using k antennas, Ml = k, and m /= k. Using
(26), it can be shown that the achievable DM-tradeoff with
Mn = m,∀n,n /= l, and Ml = k is a subset of the union
of the achievable DM-tradeoff with using Mn = m,∀n (all
relay stages using m antennas), and Mn = k,∀n (all relay
stages using k antennas). Thus, it is sufficient to consider
same number of antennas from each relay stage. It turns out,
however, that different values of m provide with different
achievable DM-tradeoff ’s because of the different number
of independent paths in the multi-hop relay channel. To
optimize over all possible values of m we keep m as a variable
and choose m to obtain the best achievable DM-tradeoff.

Remark 2. Using the DM-tradeoff analysis of the JEEMAS
strategy, we can obtain the DM-tradeoff of an antenna
selection strategy for the point-to-point MIMO channel by
considering a multi-hop relay channel with N = 1, Mt

transmit, and Mr receive antennas such that (Mt ≥ Mr).
Surprisingly we could not find this result in literature and
provide it here for completeness sake. Let Mt = αMr + β,
and the transmitter uses Mr antennas out of Mt antennas that
have maximum mutual information at the destination, then
the DM-tradeoff is given by

d(r) = α(Mr − r)(Mr − r) +
[
(β − r)(Mr − r)

]+, (27)

r = 0, 1, . . . ,Mr . The proof follows directly from (26).

Remark 3 (CSI Requirement). With the proposed hybrid
JEEMAS strategy, the destination needs to feedback the index
of the path with the maximum mutual information to the
source and each stage. Recall from the derivation of the
achievable DM-tradeoff of the JEEMAS strategy that only
κ paths in a multi-hop relay channel are independent, and
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Figure 3: DM-tradeoff comparison of hybrid JEEMAS with the
strategy of [15].

control the achievable DM-tradeoff for βn = 0, ∀n. Thus,
the destination only needs to feedback the index of the best
path among κ independent paths with the maximum mutual
information. Consequently the destination only needs to
know CSI for κ paths. For the case when βn /= 0, ∀n, we need
to consider one more path from partition P2 corresponding
to m and βn antennas of alternate relay stages. Thus, the CSI
overhead is moderate for the proposed EEAS strategy.

Remark 4 (Feedback Overhead). As explained in Remark 3,
to obtain the achievable DM-tradeoff of the hybrid JEEMAS
strategy it is sufficient to consider any one set of κ or κ + 1
independent paths. Let the destination choose a particular
set S of κ+ 1 independent paths. Then each relay node knows
on which of the paths of S it lies, and depending on the
index of the element of S from the destination, it knows
whether to transmit or remain silent. Thus, only log2(κ + 1)
bits of feedback is required from the destination to the source
and each stage. Therefore the feedback overhead with the
proposed EEAS strategy is quite small and can be realized
with a very low-rate feedback link.

Discussion. In this section we proposed a hybrid JEEMAS
strategy that has two modes of operation, one for r = 0,
where it uses a single antenna of each stage, and the other
for r > 0, that uses minn=0,...,NMn antennas of each stage.
The proposed strategy is shown to achieve both the corner
points of the optimal DM-tradeoff curve, corresponding to
the maximum diversity gain and the maximum multiplexing
gain. For intermediate values of multiplexing gain, the
diversity gain of our strategy is quite close to that of the
upper bound. Even though our strategy does not meet the
upper bound, we show that it outperforms the best known
DSTBC strategy [15] with smaller complexity and possess
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several advantages over DSTBCs as described in [24]. In the
next section we propose a distributed CF strategy to achieve
the optimal DM-tradeoff of the 2-hop relay channel.

5. Distributed CF Strategy for 2-hop
Relay Channel

In this section we consider a 2-hop relay channel with
multiple relay nodes in the presence of a direct path between
the source and the destination. For this 2-hop relay channel
we propose a distributed compress and forward (CF) strategy
to achieve the optimal DM-tradeoff. The signal model for
this section is as follows. We consider a 2-hop relay channel
with K relay nodes, where the kth relay has mk antennas, and
∑K

k=1 mk = M1. The source and destination are assumed to
have M0 and M2 antennas, respectively. We assume that the
source and each relay have an average power constraint of P.
Different transmit power constraints do not change the DM-
tradeoff. Let the signal transmitted from the source be x, and
from the relay node k let it be xk, respectively. Then,

y =
√

P

M0
Hsdx +

K∑

k=1

√
P

mk
Gkxk + n,

yk =
√

P

M0
Hkx +

K∑

�=1,k /= �

√
P

m�
Fk�x� + nk,

(28)

where y is the received signal at the destination, and yk is the
signal received at relay k.

Previously in [28], the CF strategy of [29] has been shown
to achieve the optimal DM-tradeoff of a 2-hop relay channel
with a single relay node (K = 1) in the presence of direct
path between the source and the destination. The result
of [28], however, does not generalize to the case of 2-hop
relay channel with multiple relay nodes. The problem with
multiple relay nodes is unsolved, since how multiple relay
nodes should cooperate among themselves to help the des-
tination to decode the source message is hard to characterize.
A compress and forward (CF) strategy for a 2-hop relay
channel with multiple relay nodes has been proposed in [31],
which involves partial decoding of other relays messages at
each relay and transmission of correlated information from
different relay nodes to the destination using distributed
source coding. The achievable rate expression obtained in
[31], however, is quite complicated and cannot be computed
easily in closed form.

The achievable rate expression of the CF strategy [31]
is complicated because each relay node partially decodes all
other relay messages. Partial decoding introduces auxillary
random variables which are hard to optimize over. To allow
analytical tractability, we simplify the strategy of [31] as
follows. In our strategy each relay compresses the received
signal from the source using Wyner-Ziv coding similar to
[31], but without any partial decoding of any other relay’s
message. The compressed message is then transmitted to
the destination using the strategy of transmitting correlated
messages over a multiple access channel [33]. Our strategy
is a special case of CF strategy [31], since in our case

the relays perform no partial decoding. Consequently our
strategy leads to a smaller achievable rate compared to [31].
The biggest advantage of our strategy, however, is its easily
computable achievable rate expression and its sufficiency in
achieving the optimal DM-tradeoff as shown in the sequel.
We refer to our strategy as distributed CF from hereon in
the paper. Even though the relays do not perform any partial
decoding in the distributed CF strategy, in the sequel we
show that they still provide the destination with enough
information about the source message to achieve the optimal
DM-tradeoff. Before describing our distributed CF strategy
and showing its optimality in achieving the optimal DM-
tradeoff, we present an upper bound on the DM-tradeoff of
the 2-hop relay channel.

Lemma 3 (see [14]). The DM-tradeoff of a two-way relay
channel is upper bounded by

d(r) ≤ min{(M0 − r)(M1 + M2 − r),

(M0 + M1 − r)(M2 − r)},
(29)

r = 0, 1, . . . , min{M0,M1 + M2,M0 + M1,M2}.

Proof. Let us assume that all the relay nodes and the
destination are colocated and can cooperate perfectly. This
assumption can only improve d(r). In this case, the com-
munication model from the source to destination is a point
to point MIMO channel with M0 transmit antennas and
M1 + M2 receive antennas. The DM-tradeoff of this MIMO
channel is (M0 − r)(M1 + M2 − r), and since this point to
point MIMO channel is better than our original 2-hop relay
channel, d(r) ≤ (M0 − r)(M1 + M2 − r). Next, we assume
that the source is co-located with all the relay nodes and
can cooperate perfectly for transmission to the destination.
This setting is equivalent to a MIMO channel with M0 + M1

transmit and M2 receive antenna with DM-tradeoff (M0 +
M1 − r)(M2 − r). Again, this point to point MIMO channel
is better than our original 2-hop relay channel and hence
d(r) ≤ (M0+M1−r)(M2−r), which completes the proof.

To achieve this upper bound we propose the following
distributed CF strategy. Let the rate of transmission from
source to destination be R. Then the source generates 2nR

independent and identically distributed xn according to
distribution p(xn) = ∏n

i=1p(xi). Label them x(w),w ∈
[2nR]. The codebook generation, the relay compression, and
transmission remain the same as in [31], expect that no
relay node decodes any other relay’s codewords, that is, no
partial decoding at any relay node. Relay node k generates
2nRk independent and identically distributed xnk according to
distribution p(xnk ) = ∏n

i=1p(xki) and labels them xk(s), s ∈
[2nRk ], and for each xk(s) generates 2nR̂ ŷk’s, each with
probability p( ŷk | xk(s)) = ∏n

i=1p( ŷki | xki(s)). Label these

ŷk(zk | s), s ∈ [2nRk ] and zk ∈ [2nR̂k ] and randomly partition

the set [2nR̂k ] into 2nRk cells Ss, s ∈ [2nRk ].

Encoding. A Block Markov encoding [29] together with
Wyner-Ziv coding [30] is used by each relay. Let in block
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i the message sent from the source be wi, then the source
sends x(wi). Let the signal received by relay k in block i be
yk(i). Then yk(i) is compressed to ŷk(zik) using Wyner-Ziv
coding [30] where correlation among y1, . . . , yK is exploited.
Then relay k determines the cell index sik in which zik lies
and transmits xk(sik) in block i+1. We consider transmission
of B blocks of n symbols each from the source in which
B − 1 messages will be sent. Each message is chosen from
w ∈ [2nR]. Thus, as B → ∞, for fixed n, rate R(B − 1/B)
is arbitrarily close to R [29]. In the first block, the relay has
no information about s0k necessary for compression. In this
case, however, any good sequence allows each relay to start
block Markov encoding [29]. In the last block, the source is
silent, and only the relays transmit to destination.

Decoding. Backward decoding is employed at the destina-
tion. At the end of block i, the codeword sent by source in
block i − 1 is decoded. At the end of block i, the destination
first decodes xk for each k by looking for a jointly typical
xk(sik) and yi. If Rk ≤ I(xk; y | x[K]/k), xk(sik) can be decoding
reliably. Next, given that xk’s have been decoded correctly
for each k, the destination tries to find a set L of z1, . . . , zK
such that (x1(s1), . . . , xK (sK ), ŷ1(z1 | s1), . . . , ŷK (zK | sK ), y)
is jointly typical. The destination declares that z1, . . . , zK were
the correctly sent codewords if (z1, . . . , zK ) ∈ (Ss1×Ss2×· · ·×
SsK ) ∩ L. After decoding x1(s1), . . . , xK (sK ) and z1, . . . , zK
the destination decodes ŵ if (x(w), x1(s1), . . . , xK (sK ), ŷ1(z1 |
s1), . . . , ŷK (zK | sK ), y) is jointly typical. With this distributed
CF strategy,

R ≤ I
(
x; y, ŷ1, . . . , ŷK | x1, . . . , xK

)
(30)

is achievable with the joint probability distribution

p(x)

⎡

⎣
K∏

k=1

p(xk)p
(
ŷk | xk, yk

)
⎤

⎦

× p
(
y1, . . . , yK , y | x, x1, . . . , xK

)
,

(31)

subject to

I
(
ŷT ; yT | x[K]ŷT Cy

)
+

∑

t∈T
I
(
ŷt ; x[K]/t | xt

)

≤ I
(
xT ; y | xT C

)
, ∀T ⊆ [K],

(32)

where yT , ŷT are vectors with elements yt, ŷt, t ∈ T , T ⊆
[K], respectively, x[K] is the vector containing x1, x2, . . . , xK ,
and T C is the complement of T , where T ⊆ [K]. For more
detailed error probability analyses we refer the reader to [31].
In the next theorem we compute the outage exponents for
(30) and show that they match with the exponents of the
upper bound.

Theorem 1. CF strategy achieves the DM-tradeoff upper
bound (Lemma 3).

Proof. To prove the theorem we will compute the achievable
DM-tradeoff of the CF strategy (30) and show that it matches
with the upper bound.

To compute the achievable rates subject to the compres-
sion rate constraints for the signal model (28), we fix ŷk =
yk + nqr , where nqk is mk × 1 vector with covariance matrix

N̂kImk . Also, we choose x and xk to be complex Gaussian
with covariance matrices (P/M0)IM0 , and (P/mk)Imk , and
independent of each other, respectively. Next, we compute
the various mutual information expressions to derive the
achievable DM-tradeoff of the CF strategy. By the definition
of the mutual information,

I
(
x; y, ŷ1, . . . , ŷK | x1, . . . , xK

)

= h
(
y, ŷ1, . . . , ŷK | x1, . . . , xK

)

− h
(
y, ŷ1, . . . , ŷK | x, x1, . . . , xK

)
.

(33)

From (28),

h
(
y, ŷ1, . . . , ŷK | x1, . . . , xK

) = logLs, (34)

where Ls is defined as

Ls

=det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

P

M0
Hd

sH
d†
s +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

IM2 0 0 0

0
(
N̂1 + 1

)
Im1 0 0

0 0
. . . 0

0 0 0
(
N̂K + 1

)
ImK

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(35)

and Hd
s = [Hsd H1 · · ·HK ]T . From (28),

h
(
y, ŷ1, . . . , ŷK | x, x1, . . . , xK

)

= log det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

IM2 0 0 0

0
(
N̂1 + 1

)
Im1 0 0

0 0
. . . 0

0 0 0
(
N̂K + 1

)
ImK

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(36)

which implies

I
(
x; y, ŷ1, . . . , ŷK | x1, . . . , xK

)

= log
Ls(

N̂1 + 1
)m1

(
N̂2 + 1

)m2 · · ·
(
N̂K + 1

)mK
.

(37)

Next, we compute the values of N̂k’s that satisfy the
compression rate constraints (32). Note that in (32), we
need to satisfy the constraints for each subset T ⊆ [K].
Towards that end, first we consider the subsets T of the form
T = {k}, k = 1, 2, . . . ,K and obtain the lower bound on
the quantization noise N̂k needed to satisfy (32), that is not
proportional to P for each k. It is important to note that N̂k

should not be proportional to P; otherwise, from (37) it can
be concluded that our distributed CF strategy cannot achieve
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the optimal DM-tradeoff. In the sequel we will point out how
to obtain N̂k satisfying (32) for all subsets of [K].

For T = {k}, from (32), for each relay k, we need to
satisfy

I
(
ŷk; yk | x[K]ŷ[K]/ky

)
+ I

(
ŷk; x[K]/k | xk

) ≤ I
(
xk; y | x[K]/k

)
.

(38)

By definition

I
(
xk; y | x[K]/k

) = h
(
y | x[K]/k

)− h
(
y | xkx[K]/k

)

= log det
(

P

M0
HsdH

†
sd +

P

mk
GkG

†
k + IM2

)

︸ ︷︷ ︸
Lskd

− log det
(

P

M0
HsdH

†
sd + IM2

)

︸ ︷︷ ︸
Lsd

using (10).

(39)

Similarly,

I
(
ŷk; x[K]/k | xk

)

= h
(
ŷk | xk

)− h
(
ŷk | x[K]/kxk

)

= log Ls[K]/k − log det
(

P

M0
HkH

†
k + (N̂k + 1)Imk

)

︸ ︷︷ ︸
Lsk

,

(40)

where Ls[K]/k is defined as

Ls[K]/k = det

⎛

⎝ P

M0
HkH

†
k +

K∑

�=1, � /= k

P

m�
F�kF

†
�k +

(
N̂k + 1

)
Imk

⎞

⎠.

(41)

Similarly,

I
(
ŷk; yk | x[K]ŷ[K]/ky

)

= h
(
ŷk, y | x[K]ŷ[K]/k

)− h
(
y | x[K]ŷ[K]/k

)− h
(
ŷk | yk

)
,

= logLsk̂ − log det
(

P

M0
HsdH

†
sd + IM2

)

︸ ︷︷ ︸
Lsd

− log N̂
mk

k ,
(42)

where Lsk̂ is defined as

Lsk̂=det

⎛

⎝

⎡

⎣

(
N̂k+1

)
Imk 0

0 IM2

⎤

⎦+
P

M0
[Hk Hsd]T

[
H†

k H†
sd

]
⎞

⎠.

(43)

From (39), (40), and(42), to satisfy the compression rate
constraints (38), we need

N̂mk

k ≥ Ls[K]/kLsk̂
LskdLsk

. (44)

Note that both sides of (44) are functions of N̂k; however,
the resulting N̂k is not a function of P or SNR similar to
[28]. Recall that we have only considered the subsets of [K]
of the form T = {k}. For the rest of the subsets also, we
can show that the quantization noise N̂k required to satisfy
(32) is not proportional to P. The analysis follows similarly
and is deleted for the sake of brevity. Thus, to satisfy (32),
we can take the maximum of the N̂k required for each subset
T ⊆ [K] and use that to analyze the DM-tradeoff. Let the
maximum N̂k required to satisfy (32) be N̂max,k. Since N̂k for
each subset T ⊆ [K] is not proportional to P, and N̂max,k is
also not proportional to P.

Then, using (30) and (37), we can compute the outage
probability of the distributed CF as follows. From [1], to
compute d(r), it is sufficient to find the negative of the
exponent of the SNR of outage probability at the destination,
where outage probability Pout(r log SNR) is defined as

Pout
(
r log SNR

) = P
(
R ≤ r log SNR

)
. (45)

From (30) and (37),

R = log
Ls(

N̂max,1 + 1
)m1 · · ·

(
N̂max,K + 1

)mK
. (46)

Let Ld := log det((P/M0)HsdH
†
sd +

∑M
k=1(P/mk)GkG

†
k + IM2 ).

Then choose lk ∈ Z such that

N̂max,k ≤ lk

((
Ls
Ld

)1/M1

+ 1

)

, ∀k. (47)

It is possible to choose lk’s that satisfy (47), since N̂max,K is
not proportional to P.

Then

Pout
(
r log SNR

)

= P

⎛

⎜
⎝log

Ls
∏K

k=1lk
(

(Ls/Ld)1/M1 + 1
)mk

≤ r log SNR

⎞

⎟
⎠

= P

⎛

⎜
⎝log

Ls
(

(Ls/Ld)1/M1 + 1
)M1∏K

k=1lk
≤ r log SNR

⎞

⎟
⎠,

Pout
(
k log SNR

)

.= P

⎛

⎜
⎝

Ls
(

(Ls/Ld)1/M1 + 1
)M1

≤
K∏

k=1

lkSNRr

⎞

⎟
⎠

= P

⎛

⎝ (Ls)
1/M1 (Ld)1/M1

(Ls)
1/M1 + (Ld)1/M1

≤
K∏

k=1

l1/M1
k SNRr/M1

⎞

⎠

= P

(
(Ls)

1/M1 (Ld)1/M1

(Ls)
1/M1 + (Ld)1/M1

≤ SNRr/M1

)

,

(48)

where the last equality follows since multiplying SNR by
constant does not change the DM-tradeoff.



EURASIP Journal on Wireless Communications and Networking 11

From here on we follow [28] to compute the exponent of
the Pout(r log SNR).

Let

Lsl = det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

P

M0
Hd

sH
d†
s +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

IM2 0 0 0

0 Im1 0 0

0 0
. . . 0

0 0 0 ImK

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (49)

Then, from (34), Lsl ≤ Ls; therefore, using [28, Lemma 2], it
follows that

Pout
(
r log SNR

)

≤ P
(

(Lsl)
1/M1 ≤ SNRr/M1

)
+ P

(
(Ld)1/M1 ≤ SNRr/M1

)

= P(Lsl ≤ SNRr) + P(Ld ≤ SNRr)

:= SNR−d1(r) + SNR−d2(r).
(50)

Therefore, to lower bound the DM-tradeoff we need to find
out the outage exponents d1(r) and d2(r) of Lsl and Ls. Notice
that, however, log(Lsl) is the mutual information between
the source and the destination by choosing the covariance
matrix to be (P/M0)IM0 and allowing all the relays and
the destination to cooperate perfectly. From [1], choice of
(P/M0)IM0 as the covariance matrix does not change the
optimal DM-tradeoff; therefore, d1(r) = (M0 − r)(M1 +
M2 − r). Similar argument holds for log(Ld), by noting that
log(Ld) is the mutual information between the source and
the destination if all the relays and the source were co-located
and could cooperate perfectly, while using covariance matrix
Q, where

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P

M0
IM0 0 0 0

0
P

m1
Im1 0 0

0 0
. . . 0

0 0 0
P

mK
ImK

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (51)

Thus, d2(r) = (M0 + M1 − r)(M2 − r). Thus, the achievable
DM-tradeoff with CF strategy meets the upper bound
(Lemma 3).

Discussion. In this section we proposed a simplified version
of the distributed CF strategy of [31] and showed that it can
achieve the optimal DM-tradeoff for the 2-hop relay channel
for any number of relays. In our distributed CF strategy,
each relay uses Wyner-Ziv coding to compress the received
signal without any partial decoding of other relay messages.
After compression, each relay transmits the message to the
destination using the strategy for multiple access channel
with correlated messages [33], since the relay compressed

messages are correlated with each other. Even though the
achievable rate with our strategy is smaller than the one
obtained in [31] (because of no partial decoding at any relay),
we show that it is sufficient to achieve the optimal DM-
tradeoff. We prove the result by showing that the exponent
of the outage probability of our strategy matches with the
upper bound on the optimal DM-tradeoff, without requiring
the compression noise constraints to be proportional to the
SNR.

Generalizing our distributed CF strategy is possible for
more than 2-hop relay channel; however, computing the
exponents of the outage probability of achievable rate and
compression rate constraints is a nontrivial problem.

6. Conclusions

In this paper we considered the problem of achieving
the optimal DM-tradeoff of the multi-hop relay channel.
First, we proposed an antenna selection strategy called
JEEMAS, where a subset of antennas of each relay stage
is chosen for transmission that has the maximum mutual
information at the destination. We showed that the JEEMAS
strategy can achieve the maximum diversity gain and the
maximum multiplexing gain in a multi-hop relay channel.
Then we compared the DM-tradeoff performance of the
JEEMAS strategy with the best known DSTBC strategy
[15]. We observed that the DM-tradeoff of the JEEMAS
is better than the DSTBCs [15], except for the case when
the number of antennas at each stage are divisible by
the minimum of the antennas across all relay stages, in
which case the DM-tradeoffs of JEEMAS and DSTBCs [15]
match.

Next, we proposed a distributed CF strategy for the 2-hop
relay channel with multiple relay nodes and showed that it
achieves the optimal DM-tradeoff. Our distributed CF strat-
egy is a special case of the strategy proposed in [31], where
the specializations are done to allow analytical tractability.
We showed that if each relay transmits a compressed version
of the received signal using Wyner-Ziv coding, it is sufficient
to achieve the optimal DM-tradeoff. Our distributed CF
strategy can be extended to more than 2-hop relay channels;
however, computing the outage probability exponents is a
non-trivial problem.
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