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We consider a source-destination pair that can only communicate through an untrusted intermediate relay node. The intermediate
node is willing to employ a designated relaying scheme to facilitate reliable communication between the source and the destination.
Yet, the information it relays needs to be kept secret from it. In this two-hop communication scenario, where the use of the
untrusted relay node is essential, we find that a positive secrecy rate is achievable. The center piece of the achievability scheme is
the help provided by either the destination node with transmission capability, or an external “good samaritan” node. In either case,
the helper performs cooperative jamming that confuses the eavesdropping relay and disables it from being able to decipher what it
is relaying. We next derive an upper bound on the secrecy rate for this system. We observe that the gap between the upper bound
and the achievable rate vanishes as the power of the relay node goes to infinity. Overall, the paper presents a case for intentional
interference, that is, cooperative jamming, as an enabler for secure communication.
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1. Introduction

Information theoretic security was proposed by Shannon [1].
The idea of measuring secrecy using mutual information
lends itself naturally to the investigation of how the channel
can influence secrecy and further to the characterization of
the fundamental limit of secure transmission rate. Wyner,
in [2], defined the wiretap channel, and showed that secure
communication from a transmitter to a “legitimate” receiver
is possible when the signal received by the wiretapper
(eavesdropper) is degraded with respect to that received by
the legitimate receiver. Reference [3] identified the secrecy
capacity of the general discrete memoryless wiretap channel.
The secrecy capacity of the Gaussian wiretap channel is
found in [4].

Recent progress in this area has extended classical infor-
mation theory channel models to include secrecy constraints.
Examples are the multiple access channel, the broadcast
channel, the two-way channel, the three-node relay channel
and the two-user interference channel [5–13]. These studies
are beginning to lead to insights for designing secure
wireless communication systems from the physical layer up.
Prominent such examples include using multiple antennas

to steer the transmitted signal away from an eavesdropper
[14–16], transmitting with the intention of jamming the
eavesdropper [8, 10, 17], and taking advantage of variations
in channel state to provide secrecy [18–20].

The focus of this work is on a class of relay networks
where the source and the destination have no direct link
and thus can only communicate utilizing an intermediate
relay node. This models the practical scenario where direct
communication between the source and the destination is
too “expensive” in terms of power consumption: direct com-
munication may be used to send some very low rate control
packages, for example to initialize the communication, but
it is infeasible to sustain a nontrivial reliable communication
rate due to the power constraint.

In such a scenario, the source-destination pair needs the
relay to communicate. On the other hand, more often than
not, this relay node may be “untrusted” [11]. This does not
mean the relay node is malicious, in fact quite the opposite,
it may be part of the network and we will assume that it is
willing to faithfully carry out the designated relaying scheme.
The relay simply has a lower security clearance in the network
and hence is not trusted with the confidential message it
is relaying. Equivalently, we can assume the confidential
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message is one used for identification of the source node
for authentication, which should never be revealed to a relay
node in order not to be vulnerable to an impersonation
attack. In all these cases, we must assume there is an
eavesdropper colocated at the relay node when designing the
system.

The “untrusted” relay model, or the eavesdropper being
colocated with the relay node, was first studied in [9] for
the general relay channel, with a rather pessimistic outlook,
finding that for the degraded or the reversely degraded
relay channel the relay node should not be deployed. More
optimistic results for the relay channel with a colocated
eavesdropper have been identified recently in [11, 21, 22].
Specifically, it has been shown that the cooperation from
the relay may, in fact, be essential to achieving nonzero
secrecy rate [11, 21]. The model is later extended to the
more symmetric case in [23, 24] where the relay also has a
confidential message of its own, which must be kept secret
from the destination.

All these models assume that a direct link between the
source and the destination is present including our previous
work [11]. In contrast, when there is no direct link, it is
impossible for this network to convey a confidential message
from the source to the destination while keeping it secret
from the relay [9]. This is because the destination can
only receive signals from the relay resulting in a physically
degraded relay channel [25]. Therefore, the relay knows
everything the destination knows regarding the confidential
message, and the secrecy capacity is zero.

The differentiating feature of the model studied in this
work from those described above including [11] is that
the destination has transmission capability. This opens the
possibility of the destination node to actively participate in
ensuring the secrecy of the information it wants to obtain.
In an effort to address a practical two-hop communication
scenario, we shall consider each node to be half-duplex,
which leads to a two-phase communication model. In
addition, feedback to the source is not considered in the
channel model. Interestingly, in this model, the transmission
capability of the destination proves to be the enabler of secure
communication. By recruiting the help of the destination
to do “cooperative jamming”, positive secrecy rate can be
achieved that would not have been possible otherwise. We
also remark that in case the transmission by the destination is
not possible or desired, the help from an external cooperative
jammer will do as well.

The idea of using a helpful jammer goes back to [17,
26, 27] and has since been used in many different models.
Besides the multiple access, two-way [8] and relay wiretap
channels [10], other recent results that use “cooperative
jamming” as the part of the achievability scheme, include
[28–30]. In [28], a separate jammer is added to the classical
Gaussian wiretap channel model. The jamming signal is
revealed to the legitimate receiver via a wired link so that
an advantage over the eavesdropper is gained. Reference
[30] does not assume the wired connection, and employs a
scheme tantamount to the two user multiple access channel
with an external eavesdropper where one of the users
perform cooperative jamming. Reference [29] considers the
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Figure 1: Two-hop communication using an untrusted relay.

case where both the eavesdropper and the legitimate receiver
observes a modulus Λ channel and the destination carries
out the jamming. We note that all these works deal with
an external eavesdropper, in contrast to the focus of this
work, which is an untrusted (but legitimate) node in the
network.

In general, the optimality of recruiting a helpful jammer
remains open as the converse results are limited. For the
Gaussian case, the main difficulty is to find a upper bound
for which the optimal input distribution can be found
and evaluated. Doing so usually involves the introduction
of genie information, as in the converse for the Gaussian
wiretap channel [4], MIMO wiretap channel [14] and MAC
wiretap channel [31]. The proofs then typically invoke the
entropy power inequality, as in [4], or the generalized
entropy power inequality, as in [32].

In this work, we derive a computable upper bound for
the model in consideration by first introducing a second
eavesdropper, an approach first used for a three-node relay
channel in [11]. Next, after several steps of genie arguments,
the channel is transformed into a wiretap channel with
a helpful jammer, whose outer bound is then evaluated.
The resulting bound is nontrivial in the sense that it is
strictly tighter than the bound for the same channel without
secrecy constraints. We also prove that it is tighter than an
upper bound derived using the generalized entropy power
inequality following a similar approach to [32], when the
maximum sum received SNR at the relay is greater than 0 dB.
We show that the gap between the bound and the achievable
rates converges to zero when the power of the relay goes to
infinity.

The paper is organized as follows. Section 2 presents
the channel model and the two-phase protocol that utilizes
cooperative jamming. In Section 3, we derive the achievable
rates. Section 4 presents our upper bound and compares with
other known upper bounds. Section 5 presents the numerical
results. Finally, Section 6 presents the conclusion.

The following notation is used throughout this work: We
use H to denote the entropy, h to denote the differential
entropy, and εk to denote any variable that goes to 0 when
n goes to∞. We define C(x) = (1/2)log2(1 + x).

2. Channel Model

The system model is shown in Figure 1. We assume all nodes
are half-duplex and the communication alternates between
two phases, called phase one and phase two respectively.
During phase one, shown with solid lines in Figure 1, the
source transmits signal X1. At the same time, the destination
node transmits jamming signal X2 in order to confuse the
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relay node. The signal received by the relay in phase one, Y1,
is given by

Y1 = X1 + X2 + Z1, (1)

where Z1 is a zero mean Gaussian random variable with unit
variance. In an effort to reflect on the design of a practical
system, we assume that the computation of Xi, i = 1, 2 does
not rely on the signals received by node i in the past.

In phase two, shown with dashed lines, the relay trans-
mits signal Xr , which is computed from the local randomness
at the relay, the signal transmitted and received by the relay
in the past.

The signal received by the destination in phase two is
denoted by Y2, which is given below:

Y2 = Xr + Z2, (2)

where Z2 is a zero mean Gaussian random variable with unit
variance.

The channel alternates between these two phases accord-
ing to a random or deterministic schedule, which is gener-
ated by a global controller independently from the signals
associated with the channel model. Hence here the term
“schedule” is simply a finite number of channel uses which
are either marked as phase one or phase two. We use n to
denote the number of channel uses marked as phase one, and
m to denote the number of channel uses marked as phase
two. It should be noted that in general the n channel uses of
phase one are not consecutive. Neither are them channel uses
of phase two. We assume the schedule is stable, in the sense
that the following limit exists:

α = lim
n+m→∞

n

m + n
. (3)

For a given α, we use {T(α)} to denote a sequence of
schedules with increasing number of channel uses n+m such
that (3) holds. According to this definition, α becomes the
limit of the time sharing factor of phase one in the schedule
T(α) as n + m → ∞.

When transmitting signals, the source, the destination,
and the relay must satisfy certain power constraints. The
average power constraints for the source, the jammer and the
relay can be expressed as follows:

1
N

N∑

k=1

E
[
X2
i,k

]
≤ Pi, i = 1, 2, (4)

1
N

N∑

k=1

E
[
X2
r,k

]
≤ Pr , (5)

where

N = n + m (6)

is the total number of channel uses.
For the purpose of completeness, we also introduce the

notation Pi, i = 1, 2 to denote the average power of node i

during phase one. Since node 1 and 2 are only transmitting
during phase one, Pi and Pi are related as

Pi = Pi

α
, i = 1, 2. (7)

Similarly, we use Pr to denote the average power of the relay
node during phase two. Since the relay node only transmits
during the second phase, Pr is related to Pr as follows:

Pr = Pr

1− α
. (8)

After a number of phases, the destination node (node 2)
decodes a message Ŵ from the signals it transmitted during
the periods of phase one and the signals it received during
the periods of phase two. For reliable communication, Ŵ
should equal the message W from the source node with high
probability. Hence we have the following requirement:

lim
n+m→∞Pr

(
W /= Ŵ

)
= 0. (9)

The message W must also be kept secret from the
eavesdropper at the relay node, who can infer the value of
W based on the following knowledges available to it.

(1) The local randomness at the relay, denoted by A.

(2) The n signals the relay transmitted during the periods
of phase one, denoted by Yn

1 .

(3) The m signals the relay transmitted during the
periods of phase two, denoted by Xm

r .

The information on W that the eavesdropper can extract
from these knowledges should be limited. Hence we have the
following secrecy constraint:

lim
n+m→∞

1
n + m

H(W)

= lim
n+m→∞

1
n + m

H
(
W | Xm

r ,Yn
1 ,A

)
.

(10)

Since W − {Xm
r ,Yn

1 } − A is a Markov chain, we have

lim
n+m→∞

1
n + m

H
(
W | Xm

r ,Yn
1 ,A

)

= lim
n+m→∞

1
n + m

H
(
W | Xm

r ,Yn
1

)
.

(11)

Therefore, the secrecy constraint can be expressed as

lim
n+m→∞

1
n + m

H(W)

= lim
n+m→∞

1
n + m

H
(
W | Xm

r ,Yn
1

)
.

(12)

For a given α, and sequences of schedule {T(α)}, the secrecy
rate Re is defined as

Re = lim
n+m→∞

1
n + m

H(W) (13)
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Figure 2: Two-hop network with an external cooperative jammer,
CJ.

such that (9) and (12) are fulfilled. When deriving achievable
rate, we will focus on a specific sequence of schedules {T(α)},
and maximize the secrecy rate over α. When deriving the
upper bound, we will consider all possible sequences of
{T(α)}.

Remark 1. Since the signals transmitted by node 1 and 2 do
not depend on the signals they received in the past, W →
Yn

1 → Xm
r is a Markov chain. Therefore,

lim
n+m→∞

1
n + m

H
(
W | Xm

r ,Yn
1

)

= lim
n+m→∞

1
n + m

H
(
W | Yn

1

)
.

(14)

Hence, the following secrecy constraint can be used instead:

lim
n+m→∞

1
n + m

H(W)

= lim
n+m→∞

1
n + m

H
(
W | Yn

1

)
.

(15)

Remark 2. We observe that in the system model shown in
Figure 1, the destination, as the sender of the jamming signal
during the periods of phase one, has perfect knowledge
of this signal. This can be viewed as a special case of the
model shown in Figure 2, where the destination only has
a noisy copy of the jamming signal YJ = X2 + ZJ . If the
jamming signal is corrupted by a noise sequence ZJ that is
independent of the noise sequences at the other receivers,
then the secrecy capacity of the model in Figure 2 can not
be larger than the secrecy capacity of the model in Figure 1.
This is because giving this noise sequence to the destination
as genie information would simply reveal the jamming signal
X2 to it. Therefore, any upper bound we derive for Figure 1 is
also an upper bound for Figure 2.

Remark 3. An apparent vulnerability of the described two
phase protocol is that the destination may not be aware that
the source has initiated its transmission. In this case, without
the protection of the jamming signal from the destination,
the message from the source would be revealed to the
relay node and hence compromised. To prevent this from
happening, proper initialization of the protocol is necessary.

3. Achievable Rate

In this section, we derive the achievable secrecy rate with the
following sequence of deterministic periodic schedules.

The channel alternates between n′ channel uses for phase
one and m′ channel uses for phase two, where n′ and m′ are
two positive integers. The alternation takes M times. Hence
n = n′M and m = m′M. For a given α, the sequence of
schedules is obtained by letting M,n′,m′ → ∞ and

lim
n′,m′ →∞

n′

m′ + n′
= α. (16)

With this sequence of schedules, we have the following
theorem.

Theorem 1. The following secrecy rate is achievable for the
model in Figure 1:

0 ≤ R ≤ max
0≤P′1≤P1/α,0<α<1

α

[
C

(
P′1(

1 + σ2
c

)
)
− C

(
P′1

(1 + P2)

)]+

,

(17)

where σ2
c is the variance of the Gaussian quantization noise

determined by:

αC

(
P′1 + 1
σ2
c

)
= (1− α)C(Pr), (18)

where P2 is defined in (7), Pr is defined in (8).

Proof. The proof is given in the appendix.

Remark 4. It can be seen from (17) that, for any fixed
time sharing factor α the relay should always transmit at
maximum power Pr . However, the optimal transmission
power of the source may be less than P1. This can be seen
as follows: For a given jamming power P2, the achievable
rate is not a monotonically increasing function of P′1. This is
because, if P′1 → 0 or P′1 → ∞, Re → 0, indicating that even
if the source power budget is ∞, the optimal transmission
power is actually finite. Let this value be P∗1 . P∗1 may or
may not fall into the interval [0,P1], which is the range of
power consumption allowed for phase one. If it does, then
the source should transmit with power P∗1 rather than P1.
If not, then the corresponding optimal value needs to be
determined.

Remark 5. If the power constraint of the relay Pr → ∞, then
σ2
c → 0, α → 1. The achievable rate converges to

C
(
P1

)
− C

(
P1

1 + P2

)
. (19)

4. Upper Bound

In this section, we derive an upper bound for the secrecy rate.
We first need to determine the optimal schedule. It turns

out that it is easy to find: We simply let the first n channel uses
be phase one, and the remaining m channel uses be phase
two. The optimality of this schedule can be proved as follows.

Suppose a different schedule is used. Since the signals
received in the past are not used for encoding purposes at
node 1 and 2, we can always move the channel uses of phase
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Figure 4: Two-eavesdropper channel.

one to the front without affecting the signals transmitted
by these two nodes. On the other hand, we notice that the
relay can only use signals received in the past to compute
its transmission signals. However, during phase one, the
relay only receives signals. Since moving phase one ahead
only means the relay could receive signals sooner, doing
so will not limit the capability of the relay to calculate its
transmitted signals. Consequently, we observe that no matter
what schedule is used to achieve a secrecy rate, we can always
modify this schedule such that all channel uses of phase one
are ahead of those of phase two and still achieve the same
secrecy rate. Hence in the following we only consider the
optimal schedule.

We also observe we can transform the channel into the
one shown in Figure 3. The jammer and the receiver are now
drawn separately, since the jammer does not use the signal
received in the past to compute the jamming signal. Note
that Figure 3 is similar to Figure 12 used in the achievability
proof except that the dimension of the signals is changed
from m′,n′ to m,n.

We next leverage a technique first used in [11, 22] to
derive the upper bound. Specifically, the upper bound is
obtained via the following transformations.

(1) First, we add a second eavesdropper to the channel,
as shown by Figure 4. Its received signal is denoted by Ye and
over n channel uses Yn

e is given by

Yn
e = Xn

1 + Xn
2 + Zn

e . (20)

Here Zn
e is a Gaussian noise with the same distribution as Zn

1 .
Zn
e can be arbitrarily correlated with Zn

1 . Since

Yn
1 = Xn

1 + Xn
2 + Zn

1 . (21)

we have

Pr
(
W ,Yn

e

) = Pr
(
W ,Yn

1

)
. (22)

Therefore,

H
(
W | Yn

e

) = H
(
W | Yn

1

)
. (23)

From (15), this means

lim
n+m→∞

1
m + n

H(W).

= lim
n+m→∞

1
m + n

H
(
W | Yn

e

)
.

(24)

Hence the message W is kept secret from the second eaves-
dropper. This means, for a given coding scheme that achieves
secrecy rate in Figure 3, the same secrecy rate is achievable
with the introduction of this additional eavesdropper.

(2) Next, we remove the first eavesdropper at the relay.
Doing so will not decrease secrecy rate either, since we have
one less secrecy constraint.

From (24), the secrecy rate can be upper bounded via
H(W | Yn

e ). To do that, we provide the signal Xm
r to the

destination by a genie. Similarly, the signal Xn
2 is revealed
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to both the relay and the destination. H(W | Yn
e ) is then

bounded by

H
(
W | Yn

e

)

≤ H
(
W | Yn

e

)−H
(
W | Xm

r Y
m
2 Xn

2

)
+ nε

(25)

= H
(
W | Yn

e

)−H
(
W | Xm

r X
n
2

)
+ nε (26)

≤ H
(
W | Yn

e

)−H
(
W | Yn

1 X
m
r X

n
2

)
+ nε (27)

= H
(
W | Yn

e

)−H
(
W | Yn

1 X
n
2

)
+ nε (28)

= H
(
W | Yn

e

)−H
(
W | Xn

1 + Zn
1

)
+ nε (29)

≤ H
(
W | Yn

e

)−H
(
W | Yn

e ,Xn
1 + Zn

1

)
+ nε. (30)

The genie information Xm
r causes the signal Ym

2 to be
useless to the relay, as shown by (25)-(26). Equation (28)
is due to the fact that once the signal received by the relay
Yn

1 is given, the signal transmitted by the relay Xm
r , which

is computed from Yn
1 , is independent from the jamming

signal Xn
2 and the confidential message W . Finally, revealing

the genie information Xn
2 to the relay and the destination

essentially removes the influence of the jamming signal from
the relay link, as shown by (28)–(30). These are essentially
a consequence of the link noises being independent. The
resulting channel is equivalent to the one shown in Figure 5,
and can be viewed as a special case of the channel in [8, 33].
Similar techniques to those in [31, 33] can be used here to
bound the secrecy rate. Let Ỹ n

r = Xn
1 +Zn

1 . Then (30) becomes

H
(
W | Yn

e

)−H
(
W | Yn

e Ỹ
n
r

)
(31)

= I
(
W ; Ỹ n

r | Yn
e

)
(32)

≤ I
(
WXn

1 ; Ỹ n
r | Yn

e

)
(33)

= I
(
Xn

1 ; Ỹ n
r | Yn

e

)
(34)

= h
(
Ỹ n
r | Yn

e

)
− h
(
Zn

1 | Xn
2 + Zn

e

)
(35)

≤ h
(
Ỹ n
r | Yn

e

)
− h
(
Zn

1 | Xn
2 + Zn

e ,Xn
2

)
(36)

= h
(
Ỹ n
r | Yn

e

)
− h
(
Zn

1 | Zn
e

)
. (37)

Here (34) follows from the fact that Xn
1 determines W . The

first term in (37) is maximized when Xn
1 and Xn

2 are i.i.d.

Gaussian sequences [14]. Let the variance of each component
of Xn

i be Pi = Pi/α, i = 1, 2. Let ρ be the correlation factor
between Z1 and Ze. Then (37) is equal to

n

2
log2

(P1 + 1)(P1 + P2 + 1)− (P1 + ρ
)2

(P1 + P2 + 1)
(
1− ρ2

) . (38)

It can be verified that, for any fixed ρ, equation (37) is an
increasing function of P1 and P2. Therefore, the upper bound
is maximized with maximum average power. Equation (38)
can then be tightened by minimizing it over ρ. The optimal ρ
is given below:

2P1 + P1P2 + P2 −
√
A

2P1
, (39)

where

A = 4P2P
2
1 + 4P2P1 + P2

2P
2
1 + 2P2

2P1 + P2
2 . (40)

As a result, we have the following theorem.

Theorem 2. The secrecy rate of the channel in Figure 12 is
upper bounded by

max
0<α<1

min

⎧
⎪⎪⎨
⎪⎪⎩

α

2
log2

(P1 + 1)(P1 + P2 + 1)− (P1 + ρ
)2

(P1 + P2 + 1)
(
1− ρ2

) ,

(1− α)C(Pr)

⎫
⎪⎪⎬
⎪⎪⎭

(41)

where ρ is given by (39). P1 = P1/α, P2 = P2/α, and Pr =
Pr/(1 − α) are the average power constraints of node 1, 2 and
the relay for the time sharing factor α.

Remark 6. If we further fix P2, and let Pr ,P1 → ∞, then
α → 1. ρ converges to ρ given by

ρ = 1 +
P2

2
−
√√√
P2 +

P
2
2

4
. (42)

The difference of the upper bound and the achievable rate
converges to

C

(
P2 +

(
ρ − 1

)2

1− ρ2

)
− C

(
P2

)
. (43)

We observe that the difference is only a function of P2.
By comparison, the gap between the achievable rate and
the trivial upper bound C(P1) is C(P1/(1 + P2)), which is
unbounded.
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Remark 7. If we instead fix P2 = βP1, and let Pr → ∞, then
α → 1. The achievable rate converges to (19). In this case,
if we further let P1 → ∞, the upper bound given by (41)
converges to

C
(
P1

)
− C

(
1
β

)
. (44)

Comparing it with (19), we observe the difference of the
upper bound and the achievable rate converges to 0. Hence,
in this case, our upper bound is asymptotically tight.

Remark 8. The first term in the bound (41) is strictly smaller
than the trivial bound αC(P1) obtained by removing the
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Figure 8: Secrecy Rate, Pr = 30 dB, P2 = 0.5P1, α = 0.5.
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Figure 9: Secrecy Rate, Pr = 30 dB, P2 = 40 dB, α = 0.5.

secrecy constraints. To show that, simply let ρ = 0. Equation
(41) becomes

αC(P1) +
α

2
log2

1 + P1/((P1 + 1)(P2 + 1))
1 + P1/(P2 + 1)

. (45)

The second term in (45) is always negative.

4.1. Comparison with the Bound Derived with Generalized
Entropy Power Inequality. Recently the generalized entropy
power inequality [34] was used to derive a computable upper
bound for the Gaussian multiple access channel with secrecy
constraints [32]. Here the same technique is applicable and
another computable upper bound for the model in Figure 1
can be derived. It is of interest to know which bound is
tighter. Next, we prove that as long as P1 + P2 > 1, this upper
bound is always looser than the bound given by (38)-(39).
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power control at the source node enabled.

First, we briefly describe the derivation of the bound
based on the approach in [32]:

H
(
W | Yn

1

)

(a)= H
(
W | Yn

1

)−H
(
W | Yn

1 X
n
2

)
+ nε

(46)

= I
(
W ;Xn

2 | Yn
1

)
+ nε (47)

≤ I
(
WXn

1 ;Xn
2 | Yn

1

)
+ nε (48)

= I
(
Xn

1 ;Xn
2 | Yn

1

)
+ nε. (49)

Here step (a) follows from Fano’s inequality. (49) can be
written as:

I
(
Xn

1 ;Yn
1 | Xn

2

)
+ I
(
Xn

1 ;Xn
2

)− I
(
Xn

1 ;Yn
1

)
+ nε (50)

(b)= I
(
Xn

1 ;Yn
1 | Xn

2

)− I
(
Xn

1 ;Yn
1

)
+ nε (51)

= h
(
Xn

1 + Zn
1

)
+ h
(
Xn

2 + Zn
1

)

− h
(
Zn

1

)− h
(
Xn

1 + Xn
2 + Zn

1

)
+ nε

(52)

Step (b) follows from Xn
1 , Xn

2 being independent.
Next, like [32, equation (76)], we invoke the inequality

from [34] and obtain

2(2/n)h(Xn
1 +Xn

2 +Zn
1 ) ≥ 2(2/n)h(Xn

1 +Zn
1 ) + 2(2/n)h(Xn

2 +Zn
1 )

2
. (53)

Hence (52) can be upper bounded with

h
(
Xn

1 + Zn
1

)
+ h
(
Xn

2 + Zn
1

)

− n

2
log2

(
2(2/n)h(Xn

1 +Zn
1 ) + 2(2/n)h(Xn

2 +Zn
1 )
)

+
n

2
log2(2).

(54)

This expression is maximized when Xn
1 , Xn

2 are chosen to be
i.i.d. Gaussian sequences. Dividing by the total number of
channel uses n + m, the final expression of the upper bound
is given by

α

2
log2

(
2(P1 + 1)(P2 + 1)

P1 + P2 + 2

)
. (55)

Remark 9. Note that (55) is also tighter than the bound
αC(P1) when P1 > P2. Hence it is a nontrivial bound when
P1 > P2.

Remark 10. When Pr → ∞, then α → 1, Pi → Pi, i = 1, 2.
Comparing (19) with (55), the gap between the achievable
rates and the bound given by (55) is

1
2

log2

(
1 +

P1 + P2

2 + P1 + P2

)
. (56)

which is smaller than 0.5 bit/channel use.

We next show that for any given α, if P1 + P2 > 1, (55)
is always bigger than the first term in (41). We omit the time
sharing factor α in the front since they are present in both
expressions. Then we pick ρ such that

1− ρ2 = P1 + P2 + 2
2(P1 + P2 + 1)

. (57)

Note that this is a valid choice for ρ since the right hand side
is within the interval (0, 1). Then (41), after canceling α in
the front, becomes

1
2

log2

2

(
(P1+1)(P1+P2+1)

−(P1+ρ)2

)

P1 + P2 + 2
.

(58)
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Figure 12: Equivalent channel model.

Table 1: Scenarios considered in the numerical results.

Relay’s power Jammer’s power α

Figure 6 ∞ Proportional Optimal

Figure 7 ∞ Fixed Optimal

Figure 8 Limited Proportional 0.5

Figure 9 Limited Fixed 0.5

Figure 10 Limited Proportional Optimal

Figure 11 Limited Fixed Optimal

Hence we only need to verify that (55) is greater than (58)
when P1 + P2 > 1. This is equivalent to verifying

(P1 + 1)(P2 + 1) > (P1 + 1)(P1 + P2 + 1)− (P1 + ρ
)2 (59)

or (2ρ− 1)P1 + ρ2 > 0. A sufficient condition for this to hold
is to require 2ρ− 1 > 0. Substitute (57) into this requirement
we get P1 + P2 > 1.

Remark 11. Since the gap between the achievable rates and
the bound given by (55) is bounded by 0.5 bit/channel use
when Pr → ∞, the gap between the achievable rates and the
bound given by (41) is also bounded by 0.5 bit/channel use
when Pr → ∞ and P1+P2 > 1. Note that since when Pr → ∞
we have α → 1, the condition P1 + P2 > 1 is equivalent to
P1 + P2 > 1.

Remark 12. For the case that P1 + P2 < 1, it is not clear
between (55) and (41) which bound is tighter. However, for
these cases, the secrecy capacity is so small that the bounds
are of no consequence.

5. Numerical Results

Shown in Table 1 are the six cases of interest, corresponding
to different power budgets of the relay and the jammer and
whether time sharing factor α is fixed. We included the cases
with fixed time sharing factor because in a real system, for
simplicity the time sharing factor may not be dynamically
adjusted according to power budgets. The numerical result
of each case is shown in the figures listed in the table. We
stress that, though not explicitly considered in the numerical
results, for the more general case where the cooperative
jammer is external, as shown in Figure 2, the upper bound

still holds, but the gap between the upper bound and
achievable rates would be wider.

Figures 6 and 7 demonstrate the asymptotic behavior
described in Remark 6 when the power of relay goes to ∞.
Note that in this case the optimal time sharing factor α
converges to 1. Figures 8 and 9 demonstrate the case where
the power the relay is finite, and the time sharing factor α is
fixed. In all four cases, we observe the upper bound is close
to the achievable rate when relay’s power is larger than the
power of the source and the jammer. In this region, typically,
the achievable rate increases linearly with the source SNR. In
Figure 6, the gap between the upper bound and achievable
rate goes to zero as P1 → ∞. In Figure 7, the upper bound
almost coincides with the achievable rate. The gap, given by
(43), equals 9.98× 10−4 bits/channel use.

Also shown in each figure is the cut-set bound without
secrecy constraints. The improvement provided by the new
bounds depends on the power budget. In general, the
improvement is small if the power of the jammer is large.
Note that since we have normalized all channel gains and
included them into the power constraint, the power budget
difference can be considered a consequence of the difference
in link gains.

Figure 9 also illustrates the power control problem
described in Remark 4. Without power control at the source
node, the achievable rate will eventually decrease to zero.
Note that this behavior crystallizes only when the relay’s
power is limited.

Finally, in Figures 10 and 11, we compare the achievable
rates and the upper bound when each are maximized over
the time sharing factor α. The gap between the upper bound
and the achievable rate is now wider because the second term
in the upper bound (41) is the same as the upper bound
without secrecy constraint. The role played by the second
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term (41) becomes significant when the bound is optimized
over the time sharing factor, which as pointed out in [35],
has a tendency to balance the two terms in the bound (41).
However, as shown in these figures, compared to the upper
bound without secrecy constraints, the new bound still offers
significant improvement.

6. Conclusion

In this paper, we have considered a relay network without
a direct link, where relaying is essential for the source and
the destination to communicate despite the fact that the
relay node is untrusted. Imposing secrecy constraints at the
relay node, contrary to the previous work, we have shown
that a nonzero secrecy rate is indeed achievable. This is
accomplished by enlisting the help of the destination (or
another dedicated node) who transmits to jam the relay, and
uses the jamming signal as side information. We have derived
an upper bound for the secrecy rate with the assumption that
no feedback is used for encoding at the source or destination.
The new upper bound is strictly tighter than the upper
bound without secrecy constraints. We have also proved that
it is tighter than an upper bound derived from generalized
entropy power inequality when the maximum sum received
SNR at the relay is greater than 0 dB. The gap between the
bound and the achievable rates converges to 0 when the
power of the transmitter, the relay and the jammer goes to
∞. Numerical results show that our upper bound is in general
close to the achievable rate, and is indistinguishable from it
for a fixed time sharing factor with a relay whose power is in
abundance.

In this work, we considered the case where the source
or the jammer does not make use of the relay transmission
for encoding purposes. An upper bound for the secrecy
rate when feedback is used is recently found in [36]. A
gap exists between the upper bound and the achievable rate
in [36], which is bounded by 0.5 bit per channel use but
does not vanish when the power of the transmitter, the
relay and the jammer goes to infinity. By comparison, the
bound presented in this work is asymptotically tighter in this
case.

We conclude by reiterating that our findings in this
paper presents cooperative jamming as an enabler for
secrecy from an internal eavesdropper, and motivates further
investigation of such cooperation ideas in more general
settings including those in larger networks. We also comment
whether and when cooperative jamming actually yields the
secrecy capacity (region) for various multiuser channels
remain open problems in information theory.

Appendix

Proof of Theorem 1

We first introduce several supporting results used in proving
Theorem 1.

In [11, 21], we presented the following achievable secrecy
rate for a general relay channel.

Theorem 3. Consider a relay network with conditional distri-
bution p(Y ,Yr | X ,Xr), with X , Xr being the input from the
source and the relay respectively, and Yr , Y being the signals
received by the relay and the destination, respectively. For the
distribution

p(X)p(Xr)p(Y ,YrX ,Xr)p
(
ŶrYr ,Xr

)
, (A.1)

the following range of rates R is achievable:

0 ≤ R <
[
I
(
X ;YŶr | Xr

)
− I(X ;Yr | Xr)

]+
(A.2)

with

I(Xr ;Y) > I
(
Ŷr ;YrYXr

)
. (A.3)

Theorem 3 follows from the achievable equivocation
region given in [11, Theorem 1] by simply considering
rates R that equal the equivocation rate Re. The proof of
Theorem 3 is given in [11]. The outline of the achievable
scheme is as follows: The relay does compress-and-forward
as described in [25]. Therefore, as in [25], Xr is independent
from X in the input distribution expression (A.1). The
same decoder in [25] is used at the destination. The same
codebook as [25] is used at the source node. However, instead
of mapping the message to the codeword deterministically
as in [25], a stochastic encoder is used at the source node.
In this encoder, the codewords are randomly binned into
several bins. The size of each bin is 2NI(X ;Yr |Xr ) where N is the
total number of channel uses. The message W determines
which bin to use by the encoder. The actual transmitted
codeword is then randomly chosen from the bin according
to a uniform distribution. This randomness serves to confuse
the eavesdropper at the relay node at the cost of the rate as
shown by the term −I(X ;Yr | Xr) in (A.2).

We next extend this result by considering a relay channel
with a jammer defined by

p(Yr,Y | X,X2,Xr), (A.4)

where X2 is the signal transmitted by the jammer and
the notation Y , Yr , X , X2 follows the definition above.
Then, if the jammer transmits an i.i.d. signal according to
distribution p(X2) and p(X ,X2,Xr) = p(X)p(X2)p(Xr), the
induced channel p(Yr ,Y | X ,Xr) is given below:

p(Yr ,Y | X ,Xr) =
∑

X2

p(X2)p(Yr ,Y | X ,X2,Xr) (A.5)

and it is also a memoryless relay channel. Hence, we can use
Theorem 3 and obtain the following corollary.

Corollary 1. The following secrecy rate is achievable:

0 ≤ R ≤ max
p(X)p(X2)p(Xr )p(Y ,Yr |X ,X2,Xr )p(Ŷr |Yr ,Xr )

×
[
I
(
X ;YŶr | Xr

)
− I(X ;Yr | Xr)

]+
(A.6)

with

I(Xr ;Y) > I
(
Ŷr;Yr | YXr

)
. (A.7)
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We next reformulate our channel in Figure 1 in a way
such that Corollary 1 can be applied. This is shown in
Figure 12. Here we can draw the jammer and the receiver
separately, since the jammer does not use the signal received
in the past to compute the jamming signal. The m′ and n′

are the parameters of the schedule described in Section 3. We
then observe Figure 12 can be viewed as a three node relay
network with a jammer, defined as follows:

p(Y, Yr | X, X2, Xr), (A.8)

where

Y =
{
Ym′

2 ,Xn′
2

}
,

Yr = Yn′
1 , X = Xn′

1 ,

Xr = Xm′
r , X2 = Xn′

2 .

(A.9)

The input distributions to this vector input channel are
chosen as

p
(
Xn′

1 ,Xn′
2 ,Xm′

r

)
= p

(
Xn′

1

)
p
(
Xn′

2

)
p
(
Xm′
r

)
, (A.10)

where p(Xn′
1 ), p(Xn′

2 ) and p(Xm′
r ) are given below.

(1) Let Xn′
1 ∼ N (0,P′1In′×n′), where P′1 is the average

power consumption of node 1 during the periods of
phase one. Hence 0 < P′1 < P1.

(2) Let the auxiliary random variable in compress-and-
forward Ŷr be Ŷ n′

1 . Let Ŷ n′
1 = Yn′

1 + Zn′
Q , where Zn′

Q ∼
N (0, σ2

c In′×n′),

(3) Let Xm′
r ∼ N (0,PrIm′×m′) and Xn′

2 ∼ N (0,P2In′×n′),

where In′×n′ denotes an n′ ×n′ identity matrix. With (1)–(3),
we have

I
(

X; YŶr | Xr

)
(A.11)

= I
(
Xn′

1 ;Ym′
2 Xn′

2 Ŷ n′
1 | Xm′

r

)
(A.12)

= I
(
Xn′

1 ;Ym′
2 Ŷ n′

1 | Xm′
r Xn′

2

)

+ I
(
Xn′

1 ;Xn′
2 | Xm′

r

)
.

(A.13)

From (A.10), I(Xn′
1 ;Xn′

2 | Xm′
r ) = 0. Therefore (A.13) equals

I
(
Xn′

1 ;Ym′
2 Ŷ n′

1 | Xm′
r Xn′

2

)
(A.14)

= I
(
Xn′

1 ; Ŷ n′
1 | Xm′

r Ym′
2 Xn′

2

)

+ I
(
Xn′

1 ;Ym′
2 | Xm′

r Xn′
2

) (A.15)

= I
(
Xn′

1 ; Ŷ n′
1 | Xm′

r Ym′
2 Xn′

2

)

+ I
(
Xn′

1 ;Zm′
2 | Xm′

r Xn′
2

) (A.16)

= I
(
Xn′

1 ; Ŷ n′
1 | Xm′

r Ym′
2 Xn′

2

)
, (A.17)

(A.17) equals:

I
(
Xn′

1 ;Yn′
1 + Zn′

Q | Xm′
r Ym′

2 Xn′
2

)
(A.18)

= I
(
Xn′

1 ;Xn′
1 + Xn′

2 + Zn′
1 + Zn′

Q

| Xm′
r ,Xm′

r + Zm′
2 ,Xn′

2

) (A.19)

= I
(
Xn′

1 ;Xn′
1 + Xn′

2 + Zn′
1 + Zn′

Q | Xn′
2

)
(A.20)

= I
(
Xn′

1 ;Xn′
1 + Zn′

1 + Zn′
Q

)
(A.21)

= n′C

(
P′1

1 + σ2
c

)
, (A.22)

I(X; Yr | Xr) (A.23)

= I
(
Xn′

1 ;Yn′
1 | Xm′

r

)
(A.24)

= I
(
Xn′

1 ;Xn′
1 + Xn′

2 + Zn′
1 | Xm′

r

)
(A.25)

= I
(
Xn′

1 ;Xn′
1 + Xn′

2 + Zn′
1

)
(A.26)

= n′C
(

P′1
1 + P2

)
, (A.27)

I(Xr; Y) (A.28)

= I
(
Xm′
r ;Ym′

2 ,Xn′
2

)
(A.29)

= I
(
Xm′
r ;Ym′

2

)
(A.30)

= m′C(Pr), (A.31)

I
(

Ŷr; Yr | Y, Xr

)
(A.32)

= I
(
Ŷ n′

1 ;Yn′
1 | Ym′

2 Xn′
2 Xm′

r

)
(A.33)

= I
(
Yn′

1 + Zn′
Q ;Yn′

1 | Xn′
2 Xm′

r Zm′
2

)
(A.34)

= I
(
Xn′

1 + Xn′
2 + Zn′

1 + Zn′
Q ;

Xn′
1 + Xn′

2 + Zn′
1 | Xn′

2 ,Xm′
r

) (A.35)

= I
(
Xn′

1 + Xn′
2 + Zn′

1 + Zn′
Q ;

Xn′
1 + Xn′

2 + Zn′
1 | Xn′

2

) (A.36)

= I
(
Xn′

1 + Zn′
1 + Zn′

Q ;Xn′
1 + Zn′

1

)
(A.37)

= n′C

(
P′1 + 1
σ2
c

)
. (A.38)

In (A.14), (A.20), (A.26), (A.30), (A.36), and (A.37), we
use (A.10) repeatedly, which says that with compress-
and-forward, the input distribution are chosen such that
Xn′

1 ,Xn′
2 ,Xm′

r are independent.
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Substituting the values of I(X; YŶr | Xr), I(X; Yr | Xr),
I(Xr; Y) and I(Ŷr; Yr | Y, Xr) into Corollary 1, dividing both
sides by m′+n′, and taking the limit m′+n′ → ∞, we proved
the theorem.
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