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derived. It is comprised of the optimum distortion exponent and the multiplicative optimum distortion factor. Demonstrated by
the simulation results, the analysis on the joint impact of the optimum distortion exponent and the optimum distortion factor
explains the behavior of the optimum expected end-to-end distortion varying with the numbers of antennas, source-to-channel
bandwidth ratio, and spatial correlation. It is also proved that as the correlation tends to zero, the optimum asymptotic expected
end-to-end distortion in the setting of correlated channel approaches that in the setting of uncorrelated channel. The results in
this paper could be performance objectives for analog-source transmission systems. To some extent, they are instructive for system
design.
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1. Introduction

1.1. Background. It is well known that the functional dia-
gram and the basic elements of a digital communication
system can be illustrated by Figure 1 [3]. The source can
be either analog (continuous-amplitude) or digital (discrete-
amplitude). Whichever is the source, there is always a
tradeoff between the efficiency and the reliability. For trans-
mitting a digital sequence, the tradeoff would be between the
spectral efficiency (bit/s/Hz) [4] and the error probability.
For transmitting a bandlimited analog source, under the
assumption of a band-limited white Gaussian source, the
tradeoff would be between the source-to-channel bandwidth
ratio Ws/Wc (SCBR) [5] and the mean squared error (MSE)
[6, 7], that is, the end-to-end distortion.

A point of distinction between digital-source transmis-
sion and analog-source transmission is as follows: in digital-
source transmission, if the spectral efficiency (bit/s/Hz) is
below the upper bound (channel capacity) subject to channel
state and the transmitter knows the instantaneous channel
state information (CSI) perfectly, the error probability would
go to zero, whereas, in analog-source transmission, no matter

how good the channel condition and the system are, the
end-to-end distortion is nonvanishing, because the entropy
of a continuous-amplitude source is infinite and thus the
exact recovery of an analog source requires infinite channel
capacity [6–9].

Regarding the end-to-end distortion, in [10, 11], Ziv
and Zakai investigated the decay of MSE with SNR for the
analog-source transmission over a noisy single-input single-
output (SISO) channel without any channel knowledge on
the transmitter side (CSIT). In [12, 13], Laneman et al. used
the distortion exponent in the asymptotic expected distortion

Δ � − lim
ρ→∞

ED
(
ρ
)

log ρ
(1)

related to SCBR as a metric to compare different source-
channel coding approaches for parallel channels. Note that
ρ denotes the SNR and ED denotes the expected end-to-
end distortion over all possible channel states. Choudhury
and Gibson presented the relations between the end-to-end
distortion and the outage capacity for AWGN channels [14].
Zoffoli et al. studied the characteristics of the distortions in
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Figure 1: Basic elements of a digital communication system.

MIMO systems with different strategies, with and without
CSIT [15, 16].

In [17–19], for tandem source-channel coding systems,
assuming optimal block quantization and SNR-dependent
rate-adaptive transmission as in [20], Holliday and Gold-
smith investigated the expected end-to-end distortion for
uncorrelated block-fading MIMO channels based on the
results in [20–22]. They gave the following upper bound on
the total expected distortion (MSE):

ED ≤ 2−(2r/η) log ρ+O(1) + 2−(Nr−r)(Nt−r) log ρ+o(log ρ), (2)

where η is the SCBR, r is the multiplexing gain (the source
rate scales like r log ρ), Nt is the number of transmit anten-
nas, and Nr is the number of receive antennas. Considering
the asymptotic high SNR regime, they proposed that the
multiplexing gain r should satisfy

Δ∗sep = (Nr − r)(Nt − r) = 2r
η

+ o(1), (3)

where Δ∗sep is the optimum distortion exponent for tandem
source-channel coding systems. The explicit expression of
Δ∗sep is given by Theorem 2 in [23]:

Δ∗sep

(
η
) = 2

[
jd∗

(
j − 1

)− ( j − 1
)
d∗
(
j
)]

2 + η
(
d∗
(
j − 1

)− d∗
(
j
)) ,

η ∈
[

2
(
j − 1

)

d∗
(
j − 1

) ,
2 j

d∗
(
j
)

) (4)

for j = 1, . . . ,Nmin with Nmin = min{Nt,Nr} and d∗( j) =
(Nt − j)(Nr − j). Note that a factor 2 appears here and there
because the source is real whereas the channel is complex.

In [23, 24], assuming an uncorrelated block-fading
MIMO channel, perfect CSIT and joint source-channel
coding, Caire and Narayanan derived the optimum distortion
exponent:

Δ∗
(
η
) =

Nmin∑

i=1

min

{
2
η

, 2i− 1 + |Nt −Nr|
}

, (5)

which is larger than Δ∗sep. Concurrently, the same result as (5)
was also provided by Gunduz and Erkip [25, 26].

Caire-Narayanan’s and Gunduz-Erkip’s derivations are
extensions to the outage probability analysis in [20]. They
jointly considered the MIMO-channel mutual information
in bits per channel use (bpcu) [27]:

I = log
∣
∣
∣∣INt +

ρ

Nt
HH†

∣
∣
∣∣, (6)

where H is the Nr × Nt complex channel matrix with Nt

inputs and Nr outputs, the rate-distortion function for a
N (0, 1) source [9]:

D(Rs) = 2−2Rs , (7)

where Rs is the source rate, and Shannon’s rate-capacity
inequality for outage-free transmission [7]:

Rs ≤ Rc. (8)

1.2. Problem Statement. Nevertheless, there is something
more than the distortion exponent in the expected end-to-
end distortion. Intuitively, for high SNR, the form of the
asymptotic optimum expected end-to-end distortion can be
written as

ED∗
asy = μ∗

(
ρ
)
ρ−Δ

∗
, (9)

where the multiplicative optimum distortion factor μ∗(ρ)
varies less than exponentially,

lim
ρ→∞

logμ∗
(
ρ
)

log ρ
= 0. (10)

For an analog-source transmission system, its perfor-
mance at a high SNR could be measured via the asymptotic
expected end-to-end distortion:

EDasy = μ
(
ρ
)
ρ−Δ, (11)

where the distortion exponent Δ and the distortion factor
μ(ρ) could be obtained analytically.

Obviously, we cannot say that a system achieves the
optimum asymptotic expected distortion ED∗

asy if what it
achieves is only the optimum distortion exponent Δ∗. Also,
we cannot say that in the regime of practical high SNR,
the scheme with a larger distortion exponent must perform
better than the other. As illustrated by Figure 2, in the regime
of practical high SNR, the effect of the distortion factor must
be taken into consideration. In other words, for practical
cases, studying only the optimum distortion exponent is
insufficient and giving the closed-form expression of ED∗

asy is
more meaningful. Using ED∗

asy as an objective, via analyzing
both Δ∗ and μ∗(ρ), it is possible to design an analog-source
transmission system performing better than the existing
systems in the regime of practical high SNR.

For deriving ED∗
asy, if we could obtain the analytical

expression of ED∗ valid for any SNR, then it would be easy
to find out the optimum distortion factor μ∗(ρ) and the
optimum distortion exponent Δ∗.
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Figure 2: Impact of distortion factor.

1.3. Outline. In this paper, for the cases of spatially uncor-
related channel and correlated channel, we give an analytical
expression of the optimum expected end-to-end distortion
ED∗ in an outage-free MIMO system valid for any SNR,
based on which the optimum asymptotic expected end-to-
end distortion ED∗

asy is derived. The simulation results agree
with our analysis with the derived results on the joint impact
of the numbers of antennas, source-to-channel bandwidth
ratio, and spatial correlation.

The remainder of this paper is organized as follows.
The system model is given in Section 2. In Section 3, the
preliminaries such as the mathematical definitions, prop-
erties, and lemmas are presented for deriving the main
results in Section 4. Section 5 is dedicated to the simulation
results, numerical analysis, and discussions. Finally, the
contributions of this paper are concluded in Section 6, with
our perspectives on future work.

Throughout the paper, vectors and matrices are denoted
by bold characters, |A| denotes the determinant of matrix A,
and {ai j}i, j=1,...,N is an N × N matrix with entries ai j , i, j =
1, . . . ,N . Also, E{·} denotes expectation and, in particular,
Ex{·} denotes expectation over the random variable x. The
superscript † denotes conjugate transpose. (a)n denotes Γ(a+
n)/Γ(a). log refers to the logarithm with base 2. Parts of the
work in this paper have been presented in [1, 2].

2. MIMO SystemModel

Assume that a continuous-time white Gaussian source s(t)
of bandwidth Ws and source power Ps is to be transmitted
over a flat block-fading MIMO channel of bandwidthWc and
the system is working on “short” frames due to strict time
delay constraint, that is, no time diversity can be exploited.
The transmission system is supposed to be free of outage, for
example, the transmitter knows the instantaneous channel
capacity by scalar feedback and does joint source-channel
coding. Let ŝ(t) denote the recovered source at the receiver.

Suppose that a K-to-(Nt × T) joint source-channel
encoder is employed at the transmitter [23], which maps
the source block s′ ∈ RK onto channel codewords X ∈
CNt×T . Herein, the source block s′ is composed of K source
samples, Nt is the number of transmit antennas, and T
is the number of channel uses for transmitting one block.
The corresponding source-channel decoder is a mapping
CNr×T → RK that maps the channel output Y = {y1, . . . , yT}
into an approximation ŝ′. Assuming that the continuous-
time source s(t) is sampled by a Nyquist sampler, 2Ws

samples per second, and the bandlimited MIMO channel
is used as a discrete-time channel at 2Wc channel uses per
second [9, pages 247–250], we have the SCBR

η = Ws

Wc
= K

T
. (12)

At the tth channel use, the output of the discrete-time flat
block-fading MIMO channel with Nt inputs and Nr outputs
is

yt = Hxt + nt , t = 1, . . . ,T , (13)

where xt ∈ CNt is the transmitted signal satisfying the long-
term power constraint E[xHt xt] = P, H ∈ CNt×Nt is the
channel matrix with entries hi j ’s distributed as CN (0, 1),
and nt ∈ CNt is the additive white noise vector with entries
nt,i’s distributed as CN (0, σ2

n). Note that the SNR per receive
antenna is ρ = P/σ2

n .
In the case of uncorrelated channel, the hi j ’s are inde-

pendent to each other. In the case of receiver-side spatially
correlated channel, we have the correlation matrix Σ =
E(HH†) which is assumed to be a full-rank matrix with
distinct eigenvalues σ = {σ1, σ2, . . . , σNmin}, 0 < σ1 < σ2 <
· · · < σNmin . It can be seen that in the case of uncorrelated
channel, Σ is an identity matrix with σ1 = σ2 = · · · =
σNmin = 1.

3. Mathematical Preliminaries

The mathematical properties, definitions, and lemmas in this
section will be used in the derivations for the main results.

3.1. Mathematical Properties and Definitions. We shall use
the integral of an exponential function
∫∞

0
e−pxxq−1(1 + ax)−νdx = a−qΓ

(
q
)
Ψ
(
q, q + 1− ν,

p

a

)
,

R
{
q
}
> 0, R

{
p
}
> 0, R{a} > 0

(14)

as introduced in [28, page 365]. This involves the confluent
hypergeometric function

Ψ(a, c; x) = 1
Γ(a)

∫∞

0
e−xtta−1(1 + t)c−a−1dt, R{a} > 0,

(15)

which satisfies (with y = Ψ)

x
d2y

dx2
+ (c − x)

dy

dx
− ay = 0. (16)
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Table 1: Ψ(a, c; x) for small x, real c.

c Ψ

c > 1 x1−cΓ(c − 1)/Γ(a) + o(x1−c)

c = 1 −[Γ(a)]−1 log x + o(| log x|)
c < 1 Γ(1− c)/Γ(a− c + 1) + o(1)

Bateman has given a thorough analysis on Ψ(a, c; x) [29,
pages 257–261]. In particular, he obtained the expressions on
Ψ(a, c; x) for small x as Table 1 shows. In Appendix A, we also
state some of his more general results for any x, which we will
use for the analysis in the case of spatially correlated MIMO
channel.

3.2. Mathematical Lemmas. The proofs of the mathematical
lemmas below can be found in Appendices B–H.

Lemma 1. Define an m × m full-rank matrix W(x) whose
(i, j)th entry is of the form ci jxmin{a,i+ j}, ci j /= 0, x, a ∈ R+,
1 � i, j � m. Then

lim
x→ 0

log|W(x)|
log x

=
m∑

i=1

min{a, 2i}. (17)

Lemma 2. Define an m × m Hankel matrix W(x) whose
(i, j)th entry is of the form ci+ jxi+ j , ci+ j /= 0, x ∈ R+, 1 � i, j �
m. Then, each summand in the determinant of W(x) has the
same degreem(m + 1) over x.

Lemma 3. Define an m ×m Hankel matrix W whose (i, j)th
entry is Γ(a + i + j − 1), 1 � i, j � m, a ∈ R. Then

|W| =
m∏

k=1

Γ(k)Γ(a + k). (18)

Lemma 4. Define an m ×m Hankel matrix W whose (i, j)th
entry is Γ(a + i + j − 1)Γ(b − i − j + 1) where 1 � i, j � m,
m � 2 and a, b ∈ R. Then

|W| = Γ(a + 1)Γ(b − 1)Γm−1(a + b)

×
m∏

k=2

Γ(k)Γ(a + k)
Γ(b − 2k + 2)Γ(b − 2k + 1)
Γ(a + b − k + 1)Γ(b− k + 1)

.

(19)

Lemma 5. Define an m×m Toeplitz matrixW whose (i, j)th
entry is Γ(a + i− j), 1 � i, j � m, a ∈ R. Then

|W| = (−1)m(m−1)/2
m∏

k=1

Γ(k)Γ(a + k −m). (20)

Lemma 6. Define

f (n) =
m∏

k=1

Γ(n−m− a + k)
Γ(n− k + 1)

,

g(n) = nam f (n),

(21)

subject to a ∈ R+,m,n ∈ Z+, n ≥ m, and n−m+ 1 ≥ a. Then
both f (n) and g(n) are monotonically decreasing.

Lemma 7. Let (a)n denote Γ(a+n)/Γ(a), a ∈ R, n ∈ Z+. Then

(a + 1)n = (−1)n(−a− n)n. (22)

4. Main Results

4.1. Uncorrelated MIMO Channel

Theorem 1 (Optimum Expected Distortion over an Uncor-
related MIMO Channel). Assume a continuous-time white
Gaussian source s(t) of bandwidth Ws and power Ps to be
transmitted over an uncorrelated block-fading MIMO channel
of bandwidthWc. The optimum expected end-to-end distortion
is

ED∗
unc

(
η
) = Ps

∣
∣U
(
η
)∣∣

∏Nmin
k=1 Γ(Nmax − k + 1)Γ(Nmin − k + 1)

, (23)

where η = Ws/Wc (SCBR), Nmin = min{Nt ,Nr}, Nmax =
max{Nt,Nr}, and U(η) is an Nmin × Nmin Hankel matrix
whose (i, j)th entry is

ui j
(
η
) =

(
ρ

Nt

)−di j
Γ
(
di j
)
Ψ

(

di j ,di j + 1− 2
η

;
Nt

ρ

)

, (24)

where di j = i+ j+|Nt−Nr|−1, 1 ≤ i, j ≤ Nmin, andΨ(a, b; x)
is the Ψ function (see [29, pages 257–261]). This theorem is
valid for any SNR.

Proof. The source rate of the source s(t) is

Rs =Ws log
Ps
D

, (25)

where D is the distortion (MSE) [6].
Under the assumption that the transmitter only knows

the instantaneous channel capacity Rc, the covariance matrix
of the transmitted vector x at the transmitter is taken to be a
scaled identity matrix P/Nt ·INt . As stated in [27], the mutual
information per MIMO channel use is

I
(
x; y

) = log
∣
∣∣
∣INr +

ρ

Nt
HH†

∣
∣∣
∣. (26)

And as stated in [9, pages 248–250], a channel of bandwidth
Wc can be represented by samples taken 1/2Wc seconds
apart; that is, the channel is used at 2Wc channel uses
per second as a discrete-time channel. Hence, the channel
capacity (bit/second) is

Rc = 2WcI = 2Wc log
∣
∣
∣∣INr +

ρ

Nt
HH†

∣
∣
∣∣. (27)

Substituting (27) into Shannon’s rate-capacity inequality

Rs ≤ Rc, (28)

we get the optimum end-to-end distortion

D∗
(
η
) = Ps

∣
∣
∣∣INr +

ρ

Nt
HH†

∣
∣
∣∣
−2/η

. (29)
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Thereby, the optimum expected end-to-end distortion is

ED∗(η
) = PsEH

∣
∣∣
∣INr +

ρ

Nt
HH†

∣
∣∣
∣
−2/η

, (30)

whose form is analogous to the moment generating function
of capacity in [30]. By the mathematical results given by
Chiani et al. [30] for the expectation over an uncorrelated
MIMO Gaussian channel H, we have

ED∗
unc

(
η
) = PsK

∣
∣U
(
η
)∣∣, (31)

where U(η) is an Nmin × Nmin Hankel matrix with (i, j)th
entry given by

ui j
(
η
) =

∫∞

0
xNmax−Nmin+ j+i−2e−x

(
1 +

ρ

Nt
x
)−2/η

dx, (32)

K = 1
∏Nmin

k=1 Γ(Nmax − k + 1)Γ(Nmin − k + 1)
. (33)

By the integral solution (14), (32) can be written in the
analytic form

ui j
(
η
) =

(
ρ

Nt

)−di j
Γ
(
di j
)
Ψ

(

di j ,di j + 1− 2
η

;
Nt

ρ

)

. (34)

This concludes the proof of the theorem.

Theorem 1 tells us that the analytical expression of ED∗
unc

is a polynomial in ρ−1. Therefore, for high SNR, the optimum
asymptotic expected end-to-end distortion is of the form

ED∗
asy,unc = μ∗unc

(
η
)
ρ−Δ

∗
unc(η), (35)

where Δ∗unc(η) is the optimum distortion exponent satisfying

Δ∗unc

(
η
) = − lim

ρ→∞
log ED∗

unc

(
η
)

log ρ
, (36)

and μ∗unc is the accompanying optimum distortion factor
satisfying

lim
ρ→∞

logμ∗unc

(
η
)

log ρ
= 0. (37)

Since ED∗
unc is concave in the log-log scale and monotonically

decreasing with SNR and ED∗
asy,unc is the tangent of the curve

ED∗
unc at the point where SNR is infinitely high, we see that

the asymptotic tangent line ED∗
asy,unc is always above the

curve ED∗
unc; that is, ED∗

asy,unc is always worse than ED∗
unc.

The closed-form expressions of Δ∗unc(η) and μ∗unc(η) are
given as follows.

Theorem 2 (Optimum Distortion Exponent over an Uncor-
related MIMO Channel). The optimum distortion exponent
is

Δ∗unc

(
η
) =

Nmin∑

k=1

min

{
2
η

, 2k − 1 + |Nt −Nr|
}

. (38)

Proof. This optimum distortion exponent appeared already
in [23, 25]. However, a different proof is provided here.

Consider ui j(η) in Theorem 1. When ρ is large, Nt/ρ is
small. We thus refer to Table 1 and see that, for high SNR,
ui j(η) approaches ei j(η)ρ−Δi j (η) with

Δi j
(
η
) = min

{
2
η

, i + j − 1 + |Nt −Nr|
}

,

lim
ρ→∞

log ei j
(
η
)

log ρ
= 0.

(39)

Straightforwardly, in the regime of high SNR, the asymptotic
form of |U(η)| can be represented by |E(η)|ρ−Δ∗unc(η) with

lim
ρ→∞

log
∣
∣E
(
η
)∣∣

log ρ
= 0. (40)

By Lemma 1, we obtain that

Δ∗unc

(
η
) =

Nmin∑

k=1

min

{
2
η

, 2k − 1 + |Nt −Nr|
}

. (41)

This concludes the proof of this theorem.

Theorem 3 (Optimum Distortion Factor over an Uncor-
related MIMO Channel). Define two four-tuple functions
κl(β, t,m,n) and κh(β, t,m,n) for β ∈ R+ and t ∈ {0,Z+}
as in (42).

κl
(
β, t,m,n

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ(β)−1Γ(n−m + 1)Γ
(
β − n + m− 1

)

×
t∏

k=2

Γ(k)Γ(n−m + k)

×
t∏

k=2

Γ
(
β − n + m− 2k + 2

)

×
t∏

k=2

Γ
(
β − n + m− 2k + 1

)

×
t∏

k=2

Γ
(
β − n + m− k + 1

)−1

×
t∏

k=2

Γ
(
β − k + 1

)−1, t > 1,

Γ
(
β
)−1

Γ(n−m + 1)Γ
(
β − n + m− 1

)
, t = 1,

1 t = 0,

κh
(
β, t,m,n

)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t∏

k=1

Γ(k)Γ
(
n−m− β + k

)
, t > 0,

1, t = 0.

(42)

The optimum distortion factor μ∗unc(η) is given as follows.
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(1) For 2/η ∈ (0, |Nt − Nr| + 1), referred to as the high
SCBR regime (HSCBR), the optimum distortion factor is

μ∗unc

(
η
)

= PsNt
Δ∗unc

κh
(
2/η,Nmin,Nmin,Nmax

)

∏Nmin
k=1 Γ(Nmax − k + 1)Γ(Nmin − k + 1)

.
(43)

It decreases monotonically with Nmax.
(2) For 2/η ∈ (Nt + Nr − 1, +∞), referred to as the low

SCBR regime (LSCBR), the optimum distortion factor is

μ∗unc

(
η
)

= PsNt
Δ∗unc

κl
(
2/η,Nmin,Nmin,Nmax

)

∏Nmin
k=1 Γ(Nmax − k + 1)Γ(Nmin − k + 1)

.
(44)

(3) For 2/η ∈ [|Nt − Nr| + 1,Nt + Nr − 1], referred to as
the moderate SCBR regime (MSCBR), the optimum distortion
factor is

μ∗unc

(
η
)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

κl

(
2
η

, l,Nmin,Nmax

)

A, B /= 0,

κl

(
2
η

, l − 1,Nmin,Nmax

)

log ρA, B = 0

(45)

where

A = PsNt
Δ∗uncκh

(
2/η − 2l,Nmin − l,Nmin,Nmax

)

∏Nmin
k=1 Γ(Nmax − k + 1)Γ(Nmin − k + 1)

,

B = mod

{
2
η

+ 1− |Nt −Nr|, 2

}

,

l =
⌊

2/η + 1− |Nt −Nr|
2

⌋
.

(46)

Proof. See Appendix I.

4.2. Spatially Correlated MIMO Channel

Theorem 4 (Optimum Expected Distortion over a Corre-
lated MIMO Channel). The optimum expected end-to-end
distortion in a system over a spatially correlated MIMO
channel is

ED∗
cor

(
η
)

= Ps
∣
∣G
(
η
)∣∣

∏Nmin
k=1 σ

|Nt−Nr |+1
k Γ(Nmax − k + 1)

∏
1≤m<n≤Nmin

(σn − σm)
,

(47)

where G(η) is an Nmin × Nmin matrix whose (i, j)th entry is
given by

gi j
(
η
) =

(
ρ

Nt

)−dj

Γ
(
dj

)
Ψ

(

dj ,dj + 1− 2
η

;
Nt

σiρ

)

, (48)

dj = |Nt −Nr| + j, σ = {σ1, σ2, . . . , σNmin} with 0 < σ1 < σ2 <
· · · < σNmin denoting the ordered eigenvalues of the correlation
matrix Σ.

Proof. Following the proof of Theorem 1, by the mathemat-
ical results given by Chiani et al. in [30] for a spatially
correlated H, we have

ED∗
cor

(
η
) = PsKΣ

∣
∣G
(
η
)∣∣, (49)

where G(η) is an Nmin×Nmin matrix with (i, j)th entry given
by

gi j
(
η
) =

∫∞

0
x|Nt−Nr |+ j−1e−x/σi

(
1 +

ρ

Nt
x
)−2/η

dx, (50)

KΣ = |Σ|−Nmax

|V2(σ)|∏Nmin
k=1 Γ(Nmax − k + 1)

, (51)

where V2(σ) is a Vandermonde matrix given by

V2(σ) � V1

(
−
{
σ−1

1 , . . . , σ−1
Nmin

})
(52)

with the Vandermonde matrix V1(x) defined as

V1(x) �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 · · · 1

x1 x2 · · · xNmin

...
...

. . .
...

xNmin−1
1 xNmin−1

2 · · · xNmin−1
Nmin

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (53)

In terms of the property of a Vandermonde matrix [31], the
determinant of V2(σ)

|V2(σ)| =
∏

1≤m<n≤Nmin

(
−σ−1

j + σ−1
i

)

=
∏

1≤m<n≤Nmin

σ−1
m σ−1

n (σn − σm)

=
Nmin∏

k=1

σ1−Nmin
k

∏

1≤m<n≤Nmin

(σn − σm)

=
Nmin∏

k=1

σ1−Nmin
k |V1(σ)|.

(54)

Thereby,

KΣ= 1
∏Nmin

k=1 σ
|Nt−Nr |+1
k Γ(Nmax − k + 1)

∏
1≤m<n≤Nmin

(σn − σm)
.

(55)



EURASIP Journal on Wireless Communications and Networking 7

In terms of the integral solution (14), (50) can be written in
the analytic form

gi j
(
η
) =

(
ρ

Nt

)−dj

Γ
(
dj

)
Ψ

(

dj ,dj + 1− 2
η

;
Nt

σiρ

)

. (56)

This concludes the proof of this theorem.

Theorem 5 (Optimum Distortion Exponent over a Cor-
related MIMO Channel). The optimum distortion exponent
Δ∗cor in the case of spatially correlated MIMO channel is the
same as the optimum distortion exponent Δ∗unc in the case of
uncorrelated MIMO channel, that is,

Δ∗cor

(
η
) = Δ∗unc

(
η
) =

Nmin∑

k=1

min

{
2
η

, 2k − 1 + |Nt −Nr|
}

.

(57)

Proof. See Appendix J.

Theorem 6 (Optimum Distortion Factor over a Correlated
MIMO Channel). The optimum distortion factor μ∗cor(η) is
given as follows.

(1) For 2/η ∈ (0, |Nt − Nr| + 1) (HSCBR), the optimum
distortion factor is

μ∗cor

(
η
) =

Nmin∏

k=1

σ
−2/η
k μ∗unc

(
η
)
. (58)

(2) For 2/η ∈ (Nt + Nr − 1, +∞) (LSCBR), the optimum
distortion factor is

μ∗cor

(
η
) =

Nmin∏

k=1

σ−Nmax
k μ∗unc

(
η
)
. (59)

(3) For 2/η ∈ [|Nt −Nr| + 1,Nt + Nr − 1] (MSCBR), the
optimum distortion factor is

μ∗cor

(
η
) = (−1)l(l−1)/2|V3(σ)|

∏Nmin
k=1 σ

|Nt−Nr |+1
k

∏
1≤m<n≤Nmin

(σn − σm)

×
Nmin−l∏

k=1

(k)l(|Nt −Nr| − 2/η + l + k
)
l

μ∗unc

(
η
)
,

(60)

where l = 	2/η + 1− |Nr −Nt|/2
 and each entry of V3(σ) is

v3,i j = σ
−min{ j−1,2/η−dj}
i . (61)

Proof. See Appendix K.

Theorem 7 (Convergence). As the correlation degree goes to
zero, the value of the optimum distortion factor in the setting
of correlated channel converges to the value of the optimum
distortion factor in the setting of uncorrelated channel,

lim
Σ→ I

μ∗cor

(
η
) = μ∗unc

(
η
)
. (62)

Proof. See Appendix L.

5. Numerical Analysis and Discussion

In this section, the examples in various settings are provided.
The simulation and numerical results illustrate the foregoing
results.

5.1. An Example in the HSCBR Regime over an Uncorrelated
MIMO Channel. Figure 3 shows the numerical and simula-
tion results on the optimum expected end-to-end distortions
in the outage-free MIMO systems over uncorrelated block-
fading MIMO channels in the high SCBR regime and at the
high SNR, ρ = 30 dB. The number of antennas on one side
(either the transmitter side or the receiver side) is fixed to
five and the number of antennas on the other side is varying.
ED∗

unc,sim, represented by circles in Figure 3(b) denotes the
ED∗

unc corresponding to (30), evaluated by 10 000 realizations
of H.

From Figure 3(b), we see that ED∗
unc,sim monotonically

decreases with the number of antennas on one side, which
agrees with our intuition. There is an excellent agree-
ment between ED∗

unc,asy, represented by the dash lines, and
ED∗

unc,sim, which indicates that, in the setting when SNR is
30 dB, the behavior of ED∗

unc at a high SNR can be explained
by studying ED∗

unc,asy.

In Figure 3(a), in terms of Theorem 2, the optimum
distortion exponent Δ∗unc, represented by the solid line with
circles, increases with Nmin and then remains constant when
Nmin stops increasing, though the number of antennas on
one side is increasing. In Figure 3(b), in terms of Theorem 3,
μ∗unc, represented by the dot-dash lines, is monotonically
decreasing with Nmax. Therefore, when Nmin ≤ 5, ED∗

unc is
decreasing because Δ∗unc is increasing; although the optimum
distortion factor μ∗unc is increasing, the increase of Δ∗unc
dominates the tendency of ED∗

unc since the SNR is high.
When the Nmin is fixed to 5, ED∗

unc is decreasing because
μ∗unc is decreasing, though Δ∗unc keeps constant. In a word,
we see that, for high SNR, the decrease of ED∗

unc with
the number of antennas is due to either the increase of
the optimum distortion exponent or the decrease of the
optimum distortion factor.

Moreover, from Figure 3, it is seen that the commutation
between the numbers of transmit and receive antennas
impacts ED∗

unc. This impact comes from the effect on
the optimum distortion factor μ∗unc. As indicated by the
expressions in Theorem 3 and shown in Figure 3(b), between
a couple of commutative antenna allocation schemes, (Nt =
Nmin,Nr = Nmax) and (Nt = Nmax,Nr = Nmin), the
former scheme whose number of transmit antennas is the
smaller between the two numbers of antennas suffers less
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Figure 3: Uncorrelated channel, one of (Nt ,Nr) is fixed to 5, η = 4,
high SCBR.

distortion than the other. This is reasonable since under
a certain total transmit power constraint, the scheme with
fewer transmit antennas achieves higher average transmit
power per transmit antenna.

5.2. An Example in the MSCBR Regime over an Uncorre-
lated MIMO Channel. In [15, 16], assuming a N (0, 1) -
distributed source and the system bandwidth is normalized
to unity, Zoffoli et al. studied the characteristics of the
distortions in 2 × 2 MIMO systems with different space-
time coding strategies. In particular, in [16], assuming that
the transmitter knows the instantaneous channel capacity
and thus the system is free of outage, they compared

the strategies with respect to expected distortion and the
cumulative density function of distortion. They exhibited
that, among REP (repetition), ALM (Alamouti), and SM
(spatial multiplexing) strategies, the expected distortion of
the ALM strategy is very close to that of the SM strategy.

As Zoffoli et al. derived [16], the expected distortion of
the ALM strategy is

EDALM = 2
3
· ρ
[(
ρ − 4

)
ρ − 4

]
+ 4e2/ρ

(
3ρ + 2

)
Γ
(
0, 2/ρ

)

ρ5

(63)

and the expected distortion of the SM strategy is

EDSM

= 16ρ−6
[
ρ − (ρ + 2

)
e2/ρΓ(0, 2/ρ)

]2

+ 8ρ−6
(
ρ− 2e2/ρΓ

(
0, 2/ρ

))

×
[
ρ
(
ρ + 2

)− 4
(
ρ + 1

)
e2/ρΓ

(
0, 2/ρ

)]
.

(64)

Note that Γ(a, x) denotes the upper incomplete gamma
function, Γ(a, x) = ∫∞x ta−1e−tdt. As given in [16], Figure 4(a)
shows the difference between the expected distortions of the
two strategies in log-lin scale. In log-lin scale, the expected
distortion of the ALM strategy is very close to that of the SM
strategy in the high SNR regime; that is, EDALM − EDSM is
very small.

According to the assumption in [16], the SCBR of the
systems is one, that is, η = 1. As Nt = Nr = 2, it is seen
that, for the systems considered,

|Nt −Nr| + 1 <
2
η
< Nt + Nr − 1, (65)

and thus the systems are in the moderate SCBR regime. From
the description of SM strategy, it is seen that the expected
distortion achieved by SM strategy is the optimum expected
distortion for a 2 × 2 MIMO system with η = 1, that is,
EDSM = ED∗

unc. Regarding the asymptotic characteristics,
from (63) and (64), we have

EDasy,ALM = 2
3
ρ−2,

EDasy,SM = ED∗
asy,unc = 8ρ−3.

(66)

The ratio EDALM/EDSM is an alternative metric revealing
the difference between EDALM and EDSM, illustrated by
Figure 4(b) in log-log scale. We see that in the high SNR
regime, although EDALM approaches EDSM in the linear scale
as Figure 4(a) shows, the ratio EDALM/EDSM becomes larger
and larger as Figure 4(b) shows. It can also be seen that
the expected distortions of the ALM and SM strategies are
determined by their asymptotic expressions when the SNR’s
are greater than 13 dB and 20 dB, respectively.

5.3. An Example in the LSCBR Regime over an Uncorre-
lated MIMO Channel. Figure 5 presents an example when
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Figure 4: ALM versus SM, uncorrelated channel, Nt = Nr = 2, η = 1, moderate SCBR.
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Figure 5: Uncorrelated channel, Nt = 1, Nr = 2, η = 0.99, low
SCBR.

Nt = 1, Nr = 2 and η = 0.99. The red circles represent
the results of Monte Carlo simulations which are carried out
by generating 10 000 realizations of H and evaluating (30).
The blue dash line represents ED∗

asy,unc. The green solid line
represents the analytical expression of ED∗

unc in Theorem 1.
It can be seen that the simulated results agree well with our
analytical results. The gap between the asymptotic tangent

line and the curve of ED∗
unc implies that, for the systems in

the LSCBR regime, more terms in the polynomial of ED∗
unc

are to be analyzed, which is much more complicated than
analyzing the asymptotic expression. It is a subject for future
research.

5.4. Examples in HSCBR and LSCBR Regimes over a Spatially
Correlated MIMO Channel. The analytical framework we
derived is general and valid for all correlated cases with
distinct (unrepeated) eigenvalues of the correlation matrix
Σ. To give an example, we consider a well-known correlation
model as in [30]: the exponential correlation with Σ =
{r|i− j|}i, j=1,...,Nr

and r ∈ (0, 1) [32].
Figure 6 illustrates the optimum expected end-to-end

distortion ED∗ on a power-one white Gaussian source
transmitted in different correlation scenarios. Red circles
represent the results of Monte Carlo simulations which are
carried out by generating 10 000 realizations of H and eval-
uating (30). Green lines represent the analytical expressions
of ED∗

cor in Theorem 4 and ED∗
unc in Theorem 1. Blue dashed

lines represent the optimum asymptotic expected end-to-end
distortion ED∗

asy:

ED∗
asy =

⎧
⎨

⎩

μ∗uncρ
−Δ∗unc , r = 0,

μ∗corρ
−Δ∗cor , r > 0.

(67)

In Figure 6(a), we see that there is an agreement between
ED∗ and ED∗

asy in the high SNR regime. Corresponding
to Theorems 5 and 6, in the high SNR regime, due to
the same optimum SNR distortion exponent, the optimum
distortions of the systems in different correlation scenarios
have the same descendent slopes; the difference comes from
different distortion factors which depend on the correlation
coefficients. The optimum distortion is increasing with r
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Figure 6: Expected distortions of uncorrelated and correlated channels.

and the line of the uncorrelated case (r = 0) is the lowest.
For reaching the same optimum expected distortion, there
is about 8 dB difference of SNR between the cases of r =
0.99 and r = 0. This agrees with our intuition that spatial
correlation decreases channel capacity.

The impact of correlation can also be seen in Figure 6(b)
by the example in the low SCBR regime. There are gaps
between the asymptotic lines and the optimum expected
distortions for the same reason as for the example in
Section 5.3, that more terms in the polynomials are to be
analyzed.

6. Conclusion and FutureWork

6.1. Conclusion. In this paper, considering transmitting a
white Gaussian source s(t) over a MIMO channel in an
outage-free system, we have derived the analytical expression
of the optimum expected end-to-end distortion valid for any
SNR (see Theorems 1 and 4) and the closed-form asymptotic
expression of the optimum asymptotic expected end-to-
end distortion (see Theorems 2, 3, 5, and 6) comprised
of the optimum distortion exponent and the multiplicative
optimum distortion factor. By the results on the optimum
asymptotic expected end-to-end distortion, we have analyzed
the joint impact of the numbers of antennas, source-to-
channel bandwidth ratio (SCBR) and spatial correlation on
the optimum expected end-to-end distortion. Straightfor-
wardly, our results are bounds for outage-suffered systems
and could be the performance objectives for analog-source
transmission systems. To some extend, they are instructive
for system design.

6.2. FutureWork. (i) As we have shown in Figures 5 and 6(b),
for a system in the low SCBR regime, there is an apparent gap
between ED∗

asy and ED∗ in the practical high SNR regime.
The reason that the gap exists is the effect of the other
terms in the polynomial expansion of ED∗. Therefore, if the
closed-form expression with more terms in the polynomial
expansion of ED∗ could be derived, the analysis on the
behavior of ED∗ would be more precise.

(ii) Let us provide an insight into Theorem 2. Define a
nonnegative integer m as

m =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nmin, 0 <
2
η
< |Nt −Nr| + 1;

Nmin −
⌊

2/η + 1− |Nt −Nr|
2

⌋
,

|Nt −Nr| + 1 ≤ 2
η
≤ Nt + Nr − 1;

0,
2
η
> Nt + Nr − 1.

(68)

Then, (38) can be written in the form

Δ∗
(
η
) = (Nt −m)(Nr −m) +

2m
η

, (69)

which looks analogous to the formula of the Diversity-
Multiplexing Tradeoff (DMT) [20] and to the expression
of the distortion exponent (3) in tandem source-channel
coding systems [19]. Note that (69) has nothing to do
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with outage since the instantaneous channel capacity is
assumed to be known at the transmitter. This intriguing
similarity induces us to conjecture that there may be a hidden
connection to be explored.

Appendices

A. Some Properties ofΨ(a, c; x)

(i) If c is not an integer,

Ψ(a, c; x) = Γ(1− c)
Γ(a− c + 1)

Φ(a, c; x)

+
Γ(c − 1)
Γ(a)

x1−cΦ(a− c + 1, 2− c; x),

(A.1)

where Φ(a, c; x) is another confluent hypergeometric func-
tion:

Φ(a, c; x) =
∞∑

r=0

(a)r
(c)r

xr

r!
. (A.2)

Note that (a)n = Γ(a + n)/Γ(a).
(ii) If c is a positive integer,

Ψ(a, c; x)

= (−1)n−1

n!Γ(a− n)

⎡

⎣Φ(a,n + 1; x) log x +
∞∑

r=0

(a)r
(n + 1)r

×(ψ(a + r)− ψ(1 + r)− ψ(1 + n + r)
)xr

r!

⎤

⎦

+
(n− 1)!
Γ(a)

n−1∑

r=0

(a− n)r
(1− n)r

xr−n

r!
n = 0, 1, 2, . . . .

(A.3)

The last sum is to be omitted if n = 0:
(iii)

Ψ(a, c; x) = x1−cΨ(a− c + 1, 2− c; x). (A.4)

Thus, when c is a nonpositive integer, we can obtain the form
of Ψ(a, c; x) from (A.3) and (A.4):

Ψ(a, c; x)

= (−1)−c

(1− c)!Γ(a)

[

Φ(a + 1− c, 2− c; x)x1−c log x

+
∞∑

r=0

(a + 1− c)r
(2− c)r

(
ψ(a + 1−c+r)− ψ(1 + r)

−ψ(2−c+r)
)xr+1−c

r!

]

+
Γ(1−c)

Γ(a+1−c)
−c∑

r=0

(a)r
(c)r

xr

r!
.

(A.5)

B. Proof of Lemma 1

We will prove this lemma recursively.
Define p(n) = min{a,n}, subject to a ∈ R+ and n ∈ Z+.

If m1 −m2 = n1 − n2, m1 > n1, and m2 > n2, then

p(m1)− p(m2) ≤ p(n1)− p(n2). (B.1)

In the case that m = 2, by definition,

W2(x) =
⎛

⎝
c11xp(2) c12xp(3)

c21xp(3) c22xp(4)

⎞

⎠. (B.2)

Then

|W2(x)| = c11c22x
p(2)+p(4) − c12c

2
21x

2p(3). (B.3)

By (B.1),

p(2) + p(4) ≤ 2p(3). (B.4)

Consequently, when m = 2,

lim
x→ 0

log|W2(x)|
log x

= p(2) + p(4) =
2∑

i=1

min{a, 2i}. (B.5)

Suppose when m = k − 1, k ∈ Z+ ∩ [3, +∞),

lim
x→ 0

log|Wk−1(x)|
log x

=
k−1∑

i=1

min{a, 2i}. (B.6)

When m = k, Wk(x) can be written as
⎛

⎝
Wk−1(x) bk(x)

bTk (x) ckkxp(2k)

⎞

⎠, (B.7)

where the column vector is

bk(x) =

⎛

⎜
⎜
⎜
⎜
⎝

c1kxp(k+1)

...

ck−1,kxp(2k−1)

⎞

⎟
⎟
⎟
⎟
⎠
. (B.8)

Hence, in terms of Schur determinant formula [31],

lim
x→ 0

log|Wk(x)|
log x

= lim
x→ 0

log
[
|Wk−1(x)|

∣
∣
∣W∗

k−1(x)
∣
∣
∣
]

log x

= lim
x→ 0

log|Wk−1(x)|
log x

+ lim
x→ 0

log detW∗
k−1(x)

log x
,

(B.9)

where W∗
k−1(x) is the Schur complement of Wk−1(x),

W∗
k−1(x) = c2kx

p(2k) − bTk (x)W−1
k−1(x)bk(x). (B.10)

Since Wk−1(x)W−1
k−1(x) = I, W−1

k−1(x) is of the form
⎛

⎜
⎜
⎜
⎜
⎝

c′11x
−p(2) · · · c′1kx

−p(k)

...
. . .

...

c′k1x
−p(k) · · · c′k−1,k−1x

−p(2k−2)

⎞

⎟
⎟
⎟
⎟
⎠
. (B.11)
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Consequently,

lim
x→ 0

log
[
bTk (x)W−1

k−1(x)bk(x)
]

log x

= min
{
p(2k − 1)− p(k) + p(k + 1),

p(2k − 1)− p(k + 1) + p(k + 2), . . . ,

p(2k − 1)− p(2k − 2) + p(2k − 1)
}

(a)= p(2k − 1)− p(2k − 2) + p(2k − 1)

(b)≥ p(2k),

(B.12)

where both steps (a) and (b) follow the inequality (B.1).
Therefore, by (B.9) and (B.10),

lim
x→ 0

log|W(x)|
log x

=
k∑

i=1

min{a, 2i}, (B.13)

which concludes this proof.

C. Proof of Lemma 2

Each summand in |W(x)|, which is a product of the entries
w1 j1 , . . . ,wmjm , can be written as

x
∑m

k=1(k+ jk)
m∏

k=1

ck+ jk , (C.1)

where the numbers { j1, j2, . . . , jm} is a permutation of
{1, 2, . . . ,m}. Then, each summand has the same degree
m(m + 1), which concludes the proof.

D. Proof of Lemma 3

By definition,

W =

⎛

⎜
⎜
⎜
⎜
⎝

Γ(a + 1) · · · Γ(a + m)

...
. . .

...

Γ(a + m) · · · Γ(a + 2m− 1)

⎞

⎟
⎟
⎟
⎟
⎠
. (D.1)

For calculating the determinant of W, we do Gaussian
elimination by elementary row operations from bottom to
top for obtaining the equivalent upper triangular L [33].
Below-diagonal entries are eliminated from the first column
to the last column.

Let Wl denote the matrix after the below-diagonal entries
of the lth column are eliminated. Then the (i, j)th entry ofWl

subject to i ≥ j > l is of the form

wl,i, j = θl,i, jΓ
(
a + i + j − 1− l

)
. (D.2)

Hence, after below-diagonal entries of the (l − 1)th column
are eliminated, for the entries subject to i > l and j = l,

wl−1,i−1,l = θl−1,i−1,lΓ(a + i− 1),

wl−1,i,l = θl−1,i,lΓ(a + i).
(D.3)

Consequently, for eliminating the (i, l)th multiplied entry
of Wl−1 to obtain Wl, the factor for the row operation in the
Gaussian elimination on the ith row

cl,i = − θl−1,i,l

θl−1,i−1,l
(a + i− 1). (D.4)

That is, wl,i, j is obtained as follows:

wl,i, j = wl−1,i, j + cl,iwl−1,i−1, j

=
[

θl−1,i, j
(
a + i + j − l − 1

)

−θl−1,i−1, j
θl−1,i,l

θl−1,i−1,l
(a + i− 1)

]

× Γ
(
a + i + j − l − 1

)
.

(D.5)

Comparing the RHS of the above equation to (D.2), we get

θl,i, j = θl−1,i, j
(
a + i + j − l − 1

)

− θl−1,i−1, j
θl−1,i,l

θl−1,i−1,l
(a + i− 1).

(D.6)

Before doing any operation on W, θ0,i, j = 1. Then, by
(D.6), we obtain θ1,i, j = j − 1 and θ2,i, j = Γ( j)/Γ( j − 2).
Supposing

θl,i, j = Γ
(
j
)

Γ
(
j − l

) , (D.7)

then by (D.6) we have

θl+1,i, j = Γ
(
j
)

Γ
(
j − l − 1

) . (D.8)

Therefore, our conjecture is right. Hence,

θi−1,i,i = Γ(i), (D.9)

and the ith diagonal entry of L is

wi−1,i,i = Γ(i)Γ(a + i). (D.10)

Consequently,

|Wm| =
m∏

k=1

Γ(k)Γ(a + k), (D.11)

which concludes this proof.

E. Proof of Lemma 4

This proof is similar to Appendix D.
By definition,

W = A · B (E.1)
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where · denotes Hadamard product,

A =

⎛

⎜
⎜
⎜
⎜
⎝

Γ(a + 1) · · · Γ(a + m)

...
. . .

...

Γ(a + m) · · · Γ(a + 2m− 1)

⎞

⎟
⎟
⎟
⎟
⎠

,

B =

⎛

⎜
⎜
⎜
⎜
⎝

Γ(b − 1) · · · Γ(b −m)

...
. . .

...

Γ(b −m) · · · Γ(b − 2m + 1)

⎞

⎟
⎟
⎟
⎟
⎠
.

(E.2)

The (i, j)th entry of Wl subject to i ≥ j > l is of the form

wl,i, j = θl,i, jΓ
(
a + i + j − 1− l

)
Γ
(
b − i− j + 1

)
. (E.3)

Consequently, the multiplied factor is

cl,i = − θl−1,i,l(a + i− 1)
θl−1,i−1,l(b − i− l + 1)

,

wl,i, j = wl−1,i, j + cl,i wl−1,i−1, j

=
[

θl−1,i, j
(
a + i + j − l − 1

)

−θl−1,i−1, j θl−1,i,l(a + i− 1)
(
b − i− j + 1

)

θl−1,i−1,l(b− i− l + 1)

]

× Γ
(
a + i + j − l − 1

)
Γ
(
b− i− j + 1

)
.

(E.4)

Comparing the RHS of the above expression to (E.3), we get

θl,i, j = θl−1,i, j
(
a + i + j − l − 1

)− θl−1,i−1, j

× θl−1,i,l (a + i− 1)
(
b− i− j + 1

)

θl−1,i−1,l(b− i− l + 1)
.

(E.5)

Before doing any operation on W, θ0,i, j = 1. Then, by
(E.5), we obtain

θ1,i, j =
(
j − 1

)
(a + b − 1)

(b − i)
,

θ2,i, j =
(
j − 1

)(
j − 2

)
(a + b− 1)(a + b− 2)

(b− i)(b− i− 1)
.

(E.6)

Supposing

θl,i, j =
l∏

k=1

(
j − k

)
(a + b− k)

(b− i− l + k)
, (E.7)

then by (E.5) we have

θl+1,i, j =
l+1∏

k=1

(
j − k

)
(a + b − k)

(b− i− l + k)
. (E.8)

Therefore, our conjecture is right. Hence, for i ≥ 2, the ith
diagonal entry of the equivalent upper triangular L,

wi−1,i,i = Γ(a + b)Γ(i)Γ(a + i)

× Γ(b − 2i + 2)Γ(b− 2i + 1)
Γ(a + b − i + 1)Γ(b − i + 1)

.
(E.9)

Consequently,

|W| = Γ(a + 1)Γ(b− 1)Γm−1(a + b)

×
m∏

k=2

Γ(k)Γ(a + k)
Γ(b− 2k + 2)Γ(b− 2k + 1)
Γ(a + b− k + 1)Γ(b − k + 1)

,

(E.10)

which concludes this proof.

F. Proof of Lemma 5

The derivation of Lemma 5 is analogous to Appendix D.
However, for deriving Lemma 5, we use Gaussian elimi-
nation by column operations from the right to the left,
instead of row operations from the bottom to the top in
Appendix D. After the Gaussian elimination, the left upper-
diagonal triangle-matrix becomes a zero triangle-matrix.
Consequently, the determinant of W is

|W| = (−1)m(m−1)/2
m∏

k=1

Γ(k)Γ(a + k −m). (F.1)

G. Proof of Lemma 6

f (n) can be written as

f (n) = Γ(n− a)
Γ(n)

· · · Γ(n−m + 1− a)
Γ(n−m + 1)

. (G.1)

We thus have

f (n + 1)− f (n) =
(
n− a

n
· · · n−m + 1− a

n−m + 1
− 1

)
f (n).

(G.2)

It is seen that (n− a)/n · · · (n−m + 1− a)/(n−m + 1) < 1
and f (n) > 0. Hence, f (n + 1) − f (n) < 0; that is, f (n) is
monotonically decreasing.

For g(n),

g(n + 1)− g(n)

=
(

(n + 1)am
n− a

n
· · · n−m + 1− a

n−m + 1
− nam

)
f (n)

≤
[

(n + 1)am
(
n− a

n

)m
− nam

]
f (n).

(G.3)

If

(n + 1)a · n− a

n
< na, (G.4)

then we have g(n + 1)− g(n) < 0.
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Define a function h(x):

h(x) = (x − a)(x + 1)a − xa+1

= (x + 1)a+1 − xa+1 − (a + 1)(x + 1)a, x > a.
(G.5)

In terms of mean value theory [34], for φ(x) = xa+1, there
exists ξ which lets

φ′(ξ) = (x + 1)a+1 − xa+1, x < ξ < x + 1. (G.6)

where φ′(ξ) is the first derivative.
As

φ′′(x) = a(a + 1)xa−1 > 0, (G.7)

φ′(x) is monotonically increasing and thus

φ′(ξ) < φ′(x + 1). (G.8)

So, h(x) < 0.
Then, we have

x − a

x
<
(

x

x + 1

)a
. (G.9)

When x = n,

(n + 1)a
n− a

n
< na. (G.10)

Consequently, g(n + 1) − g(n) < 0, that is, g(n) is
monotonically decreasing.

H. Proof of Lemma 7

In terms of Euler’s reflection formula

Γ(1− x)Γ(x) = π

sin(πx)
,

Γ(a + n + 1)Γ(−a− n) = π

sin(π(a + n + 1))
,

Γ(a + 1)Γ(−a) = π

sin(π(a + 1))
.

(H.1)

Straightforwardly,

Γ(a + n + 1)
Γ(a + 1)

= (−1)n
Γ(−a)

Γ(−a− n)
, (H.2)

that is,

(a + 1)n = (−1)n(−a− n)n. (H.3)

I. Proof of Theorem 3

From the proof of Theorem 2, we see that

μ∗unc

(
η
) = Ps

∣
∣E
(
η
)∣∣

∏Nmin
k=1 Γ(Nmax − k + 1)Γ(Nmin − k + 1)

, (I.1)

where E(η) is an Nmin ×Nmin matrix of ei j(η)’s.

(1) When 2/η ∈ (0, |Nt − Nr| + 1), given by (24) and
Table 1, we have

ei j
(
η
) = Nt

2/ηΓ

(

di j − 2
η

)

. (I.2)

By Lemma 3,

∣
∣E
(
η
)∣∣ = N

Δ∗unc
t κh

(
2
η

,Nmin,Nmin,Nmax

)

. (I.3)

In this case, Δ∗unc(η) = 2Nmin/η. Substituting (I.3) into (I.1),
we obtain the optimum distortion factor in this case in the
closed form

μ∗unc

(
η
) = PsNt

Δ∗unc
κh
(
2/η,Nmin,Nmin,Nmax

)

∏Nmin
k=1 Γ(Nmax − k + 1)Γ(Nmin − k + 1)

.

(I.4)

In the light of Lemma 6, it monotonically decreases with
Nmax.

(2) When 2/η ∈ (Nt + Nr − 1,∞), in terms of (24) and
Table 1, we have

ei j
(
η
) = N

dij
t Γ

(
di j
)Γ
(

2/η − di j
)

Γ
((

2/η
)) . (I.5)

In terms of Lemmas 2 and 4, the determinant of E(η) is

∣
∣E
(
η
)∣∣ = N

Δ∗unc
t κl

(
2
η

,Nmin,Nmin,Nmax

)

. (I.6)

In this case, Δ∗unc(η) = NtNr . Substituting (I.6) into (I.1), we
obtain the optimum distortion factor in this case in the form

μ∗unc = PsNt
Δ∗unc

κl
(
2/η,Nmin,Nmin,Nmax

)

∏Nmin
k=1 Γ(Nmax − k + 1)Γ(Nmin − k + 1)

.

(I.7)

(3) When 2/η ∈ [|Nt −Nr|+ 1,Nt +Nr − 1], the analysis
is relatively complex. Define a partition number

l =
⌊

2/η + 1− |Nt −Nr|
2

⌋
(I.8)

and partition the Hankel matrix E(η) in (23) as

E
(
η
) =

⎛

⎝
A B

BT C

⎞

⎠, (I.9)

whereA is the l×l submatrix andC is the (Nmin−l)×(Nmin−l)
submatrix.

At high SNR, in terms of Table 1, when mod (2/η + 1 −
|Nt −Nr|, 2) /= 0, the entries of A and C approximate

ãi j = N
dij
t Γ

(
di j
)Γ
(

2/η − di j
)

Γ
(
2/η
) ρ−di j , (I.10)

c̃i j = N
2/η
t Γ

(

di j − 2
η

)

ρ−2/η; (I.11)
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when mod (2/η + 1− |Nt −Nr|, 2) = 0, the form of c̃i j is the
same as (I.11) whereas the form of ãi j becomes

ãi j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N
dij
t Γ

(
di j
)Γ
(

2/η − di j
)

Γ
(
2/η
) ρ−di j ,

(
i, j
)
/= (l, l);

N
2/η
t log ρρ−2/η,

(
i, j
) = (l, l).

(I.12)

In terms of Schur determinant formula [31],
∣
∣E
(
η
)∣∣ = |A|∣∣C− A∗

∣
∣, (I.13)

where A∗ = BTA−1B. By the method analogous to the
derivation in Appendix B, we know that for high SNR

C− A∗ ∼ C̃, (I.14)

where C̃ is composed of c̃i j ’s. Consequently,
∣
∣E
(
η
)∣∣ ∼

∣
∣∣Ã
∣
∣∣
∣
∣∣C̃
∣
∣∣. (I.15)

Given the preceding derivation for high and low SCBR
regimes, we have

∣
∣
∣Ã
∣
∣
∣ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

κl

(
2
η

, l,Nmin,Nmax

)

C, B /= 0;

κl

(
2
η

, l − 1,Nmin,Nmax

)

log ρC, B = 0,

∣
∣
∣C̃
∣
∣
∣ = κh

(
2
η
− 2l,Nmin − l,Nmin,Nmax

)

D,

(I.16)

where

B = mod

{
2
η

+ 1− |Nt −Nr|, 2

}

,

C =
(
Nt

ρ

)l(l+Nmax−Nmin)

,

D =
(
Nt

ρ

)2(Nmin−l)/η
.

(I.17)

Therefore, in this case,

μ∗unc

(
η
) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

κl

(
2
η

, l,Nmin,Nmax

)

A, B /= 0,

κl

(
2
η

, l − 1,Nmin,Nmax

)

log ρA, B = 0

(I.18)

where

A = PsN
Δ∗unc
t κh

(
2/η − 2l,Nmin − l,Nmin,Nmax

)

∏Nmin
k=1 Γ(Nmax − k + 1)Γ(Nmin − k + 1)

(I.19)

and the optimum distortion exponent is

Δ∗unc

(
η
) = l(l + |Nt −Nr|) +

2(Nmin − l)
η

. (I.20)

This concludes the proof of this theorem.

J. Proof of Theorem 5

Let G̃ denote the asymptotic form of G for high SNR. Since
gi j is a polynomial in ρ−1 given by (48) and the preliminaries

in Section 3, in terms of Table 1, |G̃| can be written as∑M
m=1 |G̃m| where

∣∣
∣G̃m

∣∣
∣ = umρ

−Δ∗cor , (J.1)

that is, they have the same degree over ρ−1. Each entry of G̃m

is a monomial of ρ−1 denoted by g̃m,i j . In terms of Table 1 and
the preliminaries in Section 3, we learn that g̃m,i j ’s form is one

of σ
−rm, j

i a( j, rm, j)ρ−(dj+rm, j ) (Form 1) and σ
dj−2/η
i c j logερρ−2/η

(Form 2), where rm, j is a nonnegative integer, ε = 0, 1, and

a
(
j, rm, j

)
= N

dj+rm, j

t

Γ
(

2/η − dj

)
Γ
(
dj + rm, j

)

Γ
(
2/η
)
Γ
(
rm, j + 1

)(
dj + 1− 2/η

)

rm, j

,

(J.2)

cj = N
2/η
t Γ

(

dj − 2
η

)

. (J.3)

If the entries of first l columns of G̃m are of Form 1 and other
entries are of Form 2, G̃m can be partitioned as

G̃m =
(
G̃m,1 G̃m,2

)
, (J.4)

where G̃m,1 is of size Nmin×l and G̃m,2 is of size Nmin×(Nmin−
l). Since G̃m is a full-rank matrix, G̃m,1 and G̃m,2 ought to
be full rank as well. Apparently, G̃m,2 is a full-rank matrix;
whereas, for G̃m,1, if there exist rm, j1 = rm, j2 for j1 /= j2, G̃m,1

would not be full rank, because in that case, its submatrix
constructed by the two columns with individual indices j1
and j2 would be rank-one. Thus, each rm, j must be distinct.

Now let us figure out l. Define a distortion exponent
function as

γ(n) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n∑

k=1

dk +
n−1∑

k=0

k +
2(Nmin − n)

η
, n ∈ Z∩ (0,Nmin];

2Nmin

η
, n = 0.

(J.5)

Apparently, γ(n) is on the curve of the two-order function
f (x),

f (x) = x2 +

(

|Nt −Nr| − 2
η

)

x +
2Nmin

η
, (J.6)

which is a symmetric convex function and whose minimum
value is given by x = (2/η − |Nt −Nr|)/2.

Since n = l gives the minimum γ(n), when 2/η ∈
(0, |Nt − Nr| + 1), l = 0, Δcor(η) = γ(0) = 2Nmin/η; when
2/η ∈ (Nt+Nr−1, +∞), l = Nmin, Δcor(η) = γ(Nmin) = NtNr .

When η ∈ [|Nt −Nr| + 1,Nt + Nr − 1], we should have

γ(l) ≤ γ(l − 1),

γ(l) ≤ γ(l + 1),
(J.7)
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which gives

2
η
− 1− |Nt −Nr| ≤ 2l ≤ 2

η
+ 1− |Nt −Nr|. (J.8)

Hence, for η ∈ [|Nt −Nr| + 1,Nt + Nr − 1],

l =
⌊

2/η + 1− |Nt −Nr|
2

⌋

or
⌈

2/η − 1− |Nt −Nr|
2

⌉
,

Δ∗cor

(
η
) = γ(l)

= l(l + |Nr −Nt|) +
2(Nmin − l)

η

=
Nmin∑

k=1

min

{
2
η

, 2k − 1 + |Nt −Nr|
}

.

(J.9)

Note that γ(	(2/η+ 1−|Nt −Nr|)/2
) = γ((2/η− 1−|Nt −
Nr|)/2�).

This concludes the proof of this theorem.

K. Proof of Theorem 6

From the proofs of Theorems 4 and 5, we have

μ∗cor =
Ps|Σ|−Nmax

∑M
m=1 um∏Nmin

k=1 Γ(Nmax − k + 1)|V2(σ)| , (K.1)

where um is defined in (J.1).
(1) Consider the case of 2/η ∈ (0, |Nt−Nr|+ 1). We have

M = 1 and

g̃1,i j = σ
dj−2/η
i c jρ

−2/η, i = 1, . . . ,Nmin, j = 1, . . . ,Nmin

(K.2)

where dj is defined in Theorem 4 and uj is defined in (J.3).
Thereby,

u1 = N
2Nmin/η
t |V1(σ)|

Nmin∏

j=1

Γ

(

dj − 2
η

)Nmin∏

i=1

σ
|Nt−Nr |+1−2/η
i .

(K.3)

So, in this case,

μ∗cor

(
η
) = |Σ|−Nmax |V1(σ)|∏Nmin

i=1 σ
|Nt−Nr |+1−(2/η)
i

|V2(σ)|

×
PsN

2Nmin/η
t

∏Nmin
j=1 Γ

(
dj − 2/η

)

∏Nmin
k=1 Γ(Nmax − k + 1)

=
Nmin∏

k=1

σ
−2/η
k μ∗unc

(
η
)
.

(K.4)

Note that V1(σ) and V2(σ) are Vandermonde matrices
defined by (53) and (52), respectively, in the proof of
Theorem 4.

(2) Consider the case of 2/η ∈ (Nt +Nr−1, +∞). We have
M = Nmin! and

g̃m,i j = σ
−rm, j

i a
(
j, rm, j

)
ρ−dj−rm, j ,

m = 1, . . . ,M, i = 1, . . . ,Nmin, j = 1, . . . ,Nmin,
(K.5)

where

a
(
j, rm, j

)
= N

dj+rm, j

t

Γ
(
dj

)
Γ
(

2/η − dj

)(
dj

)

rm, j

Γ
(
2/η
)
Γ
(
rm, j + 1

)(
dj + 1− 2/η

)

rm, j

= N
dj+rm, j

t

Γ
(

2/η − dj

)
Γ
(
dj + rm, j

)

Γ
(
2/η
)
Γ
(
rm, j + 1

)(
dj + 1− 2/η

)

rm, j

.

(K.6)

By Lemma 5,
(

dj + 1− 2
η

)

rm, j

= (−1)rm, j

(
2
η
− dj − rm, j

)

rm, j

. (K.7)

Substituting (K.7) to (K.6), we have

a
(
j, rm, j

)
= (−1)rm, j N

dj+rm, j

t

×
Γ
(
dj + rm, j

)
Γ
(

2/η − dj − rm, j

)

Γ
(
2/η
)
Γ
(
rm, j + 1

) .
(K.8)

Hence,

um = (−1)
∑

j rm, j sgn(rm)|V2(σ)|
Nmin∏

j=1

a
(
j, rm, j

)

= sgn(rm)|V2(σ)|

×
Nmin∏

j=1

N
dj+rm, j

t

Γ
(
dj + rm, j

)
Γ
(

2/η − dj − rm, j

)

Γ
(
2/η
)
Γ
(
rm, j + 1

) .

(K.9)

Note that rm is a permutation of {0, 1, . . . ,Nmin − 1} and
sgn(rm) denotes the signature of the permutation rm: +1
if rm is an even permutation and −1 if rm is an odd
permutation.

Consequently, in the light of Leibniz formula [31],

M∑

m=1

um = |V2(σ)|
∏Nmin

k=1 Γ(k)
|Q|, (K.10)

where each entry of Q is

qi j = N
dij
t Γ

(
di j
)Γ
(

2/η − di j
)

Γ
(
2/η
) . (K.11)

Note that di j is defined in the description of Theorem 1.
Comparing (K.11) to (I.5), we find that qi j and ei j are
identical. Therefore,

μ∗cor

(
η
) =

Nmin∏

k=1

σ−Nmax
k μ∗unc

(
η
)
. (K.12)



EURASIP Journal on Wireless Communications and Networking 17

(3) Consider the case of 2/η ∈ [|Nt−Nr|−1,Nt +Nr +1].
In terms of the proof of Theorem 5 and the preliminaries in
Section 3, when mod{2/η + 1− |Nt −Nr|, 2} /= 0, M = l!,

g̃m,i j =
⎧
⎪⎨

⎪⎩

σ
−rm, j

i a
(
j, rm, j

)
ρ−dj−rm, j , j ≤ l;

σ
dj−2/η
i c jρ−2/η, j ≥ l + 1;

(K.13)

when mod{2/η + 1− |Nt −Nr|, 2} = 0, M = (l − 1)!,

g̃m,i j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

σ
−rm, j

i a
(
j, rm, j

)
ρ−dj−rm, j , j ≤ l − 1;

σ−l+1
i (−1)l−1 N

2/η
t

Γ(l)
log ρρ−2/η, j = l;

σ
dj−2/η
i c jρ−2/η, j ≥ l + 1.

(K.14)

Note that a( j, rm, j) and cj are given by (J.2) and (J.3),
respectively; when mod{2/η + 1 − |Nt − Nr|, 2} /= 0, rm is a
permutation of {0, 1, . . . , l − 1}; when mod{2/η + 1 − |Nt −
Nr|, 2} = 0, rm is a permutation of {0, 1, . . . , l − 2}. Thus,

um =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sgn(rm)|V3(σ)|
l∏

j=1

a
(
j, rm, j

) Nmin∏

j=l+1

N
2/η
t Γ

(

dj − 2
η

)

,

mod
{

2/η + 1− |Nt −Nr|, 2
}
/= 0;

sgn(rm)|V3(σ)|(−1)l−1N
2(Nmin−l+1)/η
t log ρ

×
l−1∏

j=1

a
(
j, rm, j

) Nmin∏

j=l+1

Γ

(

dj − 2
η

)

,

mod

{
2
η

+ 1− |Nt −Nr|, 2

}

= 0,

(K.15)

where each entry of V3(σ),

v3,i j = σ
−min{ j−1,2/η−dj}
i . (K.16)

Comparing to the proof of Theorem 3 for the same case of η,
we have

μ∗cor

(
η
) = (−1)l(l−1)/2|V3(σ)|

∏Nmin
k=1 σ

|Nt−Nr |+1
k

∏
1≤m<n≤Nmin

(σn − σm)

×
Nmin−l∏

k=1

(k)l(|Nt −Nr| −
(
2/η
)

+ l + k
)
l

μ∗unc

(
η
)
.

(K.17)

This concludes the proof.

L. Proof of Theorem 7

When 2/η ∈ (0, |Nt − Nr| + 1) or 2/η ∈ (Nt + Nr − 1, +∞),
in terms of Theorem 6, straightforwardly, limΣ→ Iμ∗cor(η) =
μ∗unc(η).

Consider the case of 2/η ∈ [|Nt − Nr| − 1,Nt + Nr + 1].
By Taylor expansion and Lemma 5, the entries of V3(σ) are

v3,i j =
∞∑

n=0

(
−pj − n + 1

)

n

n!
(σi − 1)n

=
∞∑

n=0

(−1)n
(
pj

)

n

n!
(σi − 1)n,

(L.1)

where pj = min{ j − 1, 2/η − dj}.
Thereby, when σ approaches a vector of ones,

|V3(σ)| =
(Nmin−1)!∑

m=1

∣
∣V3,m(σ)

∣
∣, (L.2)

where the entries of V3,m(σ)

v3,m,i j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, j = 1;

(−1)sm, j
(
pj

)

sm, j

sm, j !
(σi − 1)sm, j , j ≥ 1.

(L.3)

Note that sm = {sm,2, . . . , sm,Nmin} is a permutation of
{1, 2, . . . ,Nmin − 1}.

The determinant of V3,m(σ) is

∣
∣V3,m(σ)

∣
∣ = (−1)n1|V1(σ − 1)| sgn(sm)

×
Nmin∏

k=2

1
Γ
(
pk
)
Γ(k)

Nmin∏

j=2

Γ
(
sm, j + pj

)
,

(L.4)

where n1 = Nmin(Nmin− 1)/2. In the light of Leibniz formula
[31] and

|V1(σ − a)| = |V1(σ)|, a = {a, . . . , a}, (L.5)

|V3(σ)| can be written in the form

|V3(σ)| = (−1)Nmin(Nmin−1)/2|V1(σ)||W|
Nmin∏

k=2

1
Γ
(
pk
)
Γ(k)

,

(L.6)

where W is an (Nmin − 1)× (Nmin − 1) matrix with entries

wij = Γ
(
i + pj+1

)

=

⎧
⎪⎪⎨

⎪⎪⎩

Γ
(
i + j

)
, j ≤ l − 1,

Γ

(
2
η
− |Nt −Nr| − 1 + i− j

)

, j ≥ l.

(L.7)

By partial Gaussian elimination, W can be transformed
to W′ with a (Nmin− l)×(l−1) left-lower submatrix of zeros.
Partition W′ as

W′ =
⎛

⎝
W′

1 W′
2

W′
3 W′

4

⎞

⎠, (L.8)
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where W′
3 is the submatrix of zeros, the entries of W′

1 are

w′1,i j = Γ
(
i + j − 1

)
, 1 ≤ i, j ≤ l − 1, (L.9)

and the entries of W′
4 are

w′4,i j =
(

2
η
− |Nt −Nr| − j − l

)

l−1

×Γ
(

2
η
− |Nt −Nr| − l + i− j

)

,

l ≤ i, j ≤ Nmin − 1.

(L.10)

By Lemma 3,

∣∣W′
1

∣∣ =
l−1∏

k=1

Γ(k)Γ(k + 1). (L.11)

By Lemma 5,

∣∣W′
4

∣∣ = (−1)n2

Nmin−1∏

j=l

(
2
η
− |Nt −Nr| − j − l

)

l−1

×
Nmin−l∏

k=1

Γ(k)Γ

(
2
η
−Nmax + k

)

,

(L.12)

where n2 = (Nmin − l)(Nmin − l − 1)/2.
Consequently, in terms of Theorem 6,

lim
Σ→ I

μ∗cor = (−1)n1+n2+n3

×
Nmin−l∏

k=1

Γ
(
2/η −Nmax + k

)

Γ
(
2/η − |Nt −Nr| − k − 2l + 1

)

× Γ
(|Nt −Nr| −

(
2/η
)

+ l + k
)

Γ
(|Nt −Nr| − 2/η + 2l + k

) μ∗unc,

(L.13)

where n3 = l(l − 1)/2. Since for any function f (x),

Nmin−l∏

k=1

f (a + Nmin − k − l + 1) =
Nmin−l∏

k′=1

f (a + k′), (L.14)

where k′ = Nmin − k − l + 1,

lim
Σ→ I

μ∗cor

(
η
)

= (−1)n1+n2+n3

Nmin−l∏

k=1

((
2/η
)−Nmax + k − l

)
l(

Nmax −
(
2/η
)− k + 1

)
l

μ∗unc

(
η
)
.

(L.15)

By Lemma 5,

(
2
η
−Nmax + k − l

)

l

= (−1)l
(

Nmax − 2
η
− k + 1

)

l

.

(L.16)

Thus,

lim
Σ→ I

μ∗cor

(
η
) = (−1)n1+n2+n3+n4 μ∗unc

(
η
)
, (L.17)

where n4 = l(Nmin − l + 1). As

(−1)n1+n2+n3+n4 = (−1)n1−n2+n3+n4 = 1, (L.18)

we have

lim
Σ→ I

μ∗cor

(
η
) = μ∗unc

(
η
)
. (L.19)

This concludes the proof.
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