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Achievable rates and resource allocation strategies for imperfectly known fading relay channels are studied. It is assumed that
communication starts with the network training phase in which the receivers estimate the fading coefficients. Achievable rate
expressions for amplify-and-forward and decode-and-forward relaying schemes with different degrees of cooperation are obtained.
We identify efficient strategies in three resource allocation problems: (1) power allocation between data and training symbols, (2)
time/bandwidth allocation to the relay, and (3) power allocation between the source and relay in the presence of total power
constraints. It is noted that unless the source-relay channel quality is high, cooperation is not beneficial and noncooperative direct
transmission should be preferred at high signal-to-noise ratio (SNR) values when amplify-and-forward or decode-and-forward
with repetition coding is employed as the cooperation strategy. On the other hand, relaying is shown to generally improve the
performance at low SNRs. Additionally, transmission schemes in which the relay and source transmit in nonoverlapping intervals
are seen to perform better in the low-SNR regime. Finally, it is noted that care should be exercised when operating at very low SNR
levels, as energy efficiency significantly degrades below a certain SNR threshold value.
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1. Introduction

In wireless communications, deterioration in performance
is experienced due to various impediments such as interfer-
ence, fluctuations in power due to reflections and attenua-
tion, and randomly-varying channel conditions caused by
mobility and changing environment. Recently, cooperative
wireless communication has attracted much interest as a
technique that can mitigate these degradations and provide
higher rates or improve the reliability through diversity
gains. The relay channel was first introduced by van der
Meulen in [1], and initial research was primarily conducted
to understand the rates achieved in relay channels [2, 3].
More recently, diversity gains of cooperative transmission
techniques have been studied in [4–7]. In [6], several
cooperative protocols have been proposed, with amplify-
and-forward (AF) and decode-and-forward (DF) being the
two basic relaying schemes. The performance of these
protocols are characterized in terms of outage events and
outage probabilities. In [8], three different time-division

AF and DF cooperative protocols with different degrees
of broadcasting and receive collision are studied. Resource
allocation for relay channel and networks has been addressed
in several studies (see, e.g., [9–14]). In [9], upper and
lower bounds on the outage and ergodic capacities of relay
channels are obtained under the assumption that the channel
side information (CSI) is available at both the transmitter
and receiver. Power allocation strategies are explored in the
presence of a total power constraint on the source and relay.
In [10], under again the assumption of the availability of CSI
at the receiver and transmitter, optimal dynamic resource
allocation methods in relay channels are identified under
total average power constraints and delay limitations by
considering delay-limited capacities and outage probabilities
as performance metrics. In [11], resource allocation schemes
in relay channels are studied in the low-power regime when
only the receiver has perfect CSI. Liang et al. in [12] inves-
tigated resource allocation strategies under separate power
constraints at the source and relay nodes and showed that
the optimal strategies differ depending on the channel statics
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and the values of the power constraints. Recently, the impact
of channel state information (CSI) and power allocation on
rates of transmission over fading relay channels are studied
in [14] by Ng and Goldsmith. The authors analyzed the cases
of full CSI and receiver only CSI, considered the optimum
or equal power allocation between the source and relay
nodes, and identified the best strategies in different cases. In
general, the area has seen an explosive growth in the number
of studies (see additionally, e.g., [15–17], and references
therein). An excellent review of cooperative strategies from
both rate and diversity improvement perspectives is provided
in [18] in which the impacts of cooperative schemes on
device architecture and higher-layer wireless networking
protocols are also addressed. Recently, a special issue has
been dedicated to models, theory, and codes for relaying and
cooperation in communication networks in [19].

As noted above, studies on relaying and cooperation
are numerous. However, most work has assumed that the
channel conditions are perfectly known at the receiver and/or
transmitter sides. Especially in mobile applications, this
assumption is unwarranted as randomly varying channel
conditions can be learned by the receivers only imperfectly.
Moreover, the performance analysis of cooperative schemes
in such scenarios is especially interesting and called for
because relaying introduces additional channels and hence
increases the uncertainty in the model if the channels
are known only imperfectly. Recently, Wang et al. in [20]
considered pilot-assisted transmission over wireless sensory
relay networks and analyzed scaling laws achieved by the
amplify-and-forward scheme in the asymptotic regimes of
large nodes, large block length, and small signal-to-noise
ratio (SNR) values. In this study, the channel conditions
are being learned only by the relay nodes. In [21, 22],
estimation of the overall source-relay-destination channel
is addressed for amplify-and-forward relay channels. In
[21], Gao et al. considered both the least squares (LSs)
and minimum-mean-square error (MMSE) estimators and
provided optimization formulations and guidelines for the
design of training sequences and linear precoding matrices.
In [22], under the assumption of fixed power allocation
between data transmission and training, Patel and Stüber
analyzed the performance of linear MMSE estimation in
relay channels. In [21, 22], the training design is studied in
an estimation-theoretic framework, and mean-square errors
and bit error rates, rather than the achievable rates, are
considered as performance metrics. To the best of our knowl-
edge, performance analysis and resource allocation strategies
have still not been sufficiently addressed for imperfectly-
known relay channels in an information-theoretic context
by considering rate expressions. We note that Avestimehr
and Tse in [23] studied the outage capacity of slow fading
relay channels. They showed that Bursty Amplify-Forward
strategy achieves the outage capacity in the low-SNR and low
outage probability regime. Interestingly, they further proved
that the optimality of Bursty AF is preserved even if the
receivers do not have prior knowledge of the channels.

In this paper, we study the imperfectly-known fading
relay channels. We assume that transmission takes place in
two phases: network training phase and data transmission
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Figure 1: Three-node relay network model.

phase. In the network training phase, a priori unknown
fading coefficients are estimated at the receivers with the
assistance of pilot symbols. Following the training phase,
AF and DF relaying techniques are employed in the data
transmission. Our contributions in this paper are the
following.

(1) We obtain achievable rate expressions for AF and DF
relaying protocols with different degrees of coopera-
tion, ranging from noncooperative communications
to full cooperation. We provide a unified analysis
that applies to both overlapped and nonoverlapped
transmissions of the source and relay. We note that
achievable rates are obtained by considering the
ergodic scenario in which the transmitted codewords
are assumed to be sufficiently long to span many
fading realizations.

(2) We identify resource allocation strategies that maxi-
mize the achievable rates. We consider three types of
resource allocation problems:

(a) power allocation between data and training
symbols,

(b) time/bandwidth allocation to the relay,

(c) power allocation between the source and relay
if there is a total power constraint in the system.

(3) We investigate the energy efficiency in imperfectly-
known relay channels by finding the bit energy
requirements in the low-SNR regime.

The organization of the rest of the paper is as follows. In
Section 2, we describe the channel model. Network training
and data transmission phases are explained in Section 3. We
obtain the achievable rate expressions in Section 4 and study
the resource allocation strategies in Section 5. We discuss
the energy efficiency in the low-SNR regime in Section 6.
Finally, we provide conclusions in Section 6. The proofs of
the achievable rate expressions are relegated to the appendix.

2. Channel Model

We consider a three-node relay network which consists
of a source, destination, and a relay node. This relay
network model is depicted in Figure 1. Source-destination,
source-relay, and relay-destination channels are modeled
as Rayleigh block-fading channels with fading coefficients
denoted by hsd, hsr, and hrd, respectively, for each channel.
Due to the block-fading assumption, the fading coefficients
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stay constant for a block of m symbols before they assume
independent realizations for the following block. (x ∼
CN (d, σ2) is used to denote a proper complex Gaussian
random variable with mean d and variance σ2.) In this
system, the source node tries to send information to the
destination node with the help of the intermediate relay
node. It is assumed that the source, relay, and destination
nodes do not have prior knowledge of the realizations of
the fading coefficients. The transmission is conducted in
two phases: network training phase in which the fading
coefficients are estimated at the receivers, and data transmis-
sion phase. Overall, the source and relay are subject to the
following power constraints in one block:

∣
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where xs,t and xr,t are the training symbols sent by the source
and relay, respectively, and xs and xr are the corresponding
source and relay data vectors. The pilot symbols enable
the receivers to obtain the minimum mean-square error
(MMSE) estimates of the fading coefficients. Since MMSE
estimates depend only on the total training power but not
on the training duration, transmission of a single pilot
symbol is optimal for average-power limited channels. The
transmission structure in each block is shown in Figure 2.
As observed immediately, the first two symbols are dedicated
to training while data transmission occurs in the remaining
duration of m − 2 symbols. Detailed description of the
network training and data transmission phases is provided
in the following section.

3. Network Training and Data Transmission

3.1. Network Training Phase. Each block transmission starts
with the training phase. In the first symbol period, source
transmits the pilot symbol xs,t to enable the relay and
destination to estimate the channel coefficients hsr and hsd,
respectively. The signals received by the relay and destination
are

yr,t = hsrxs,t + nr , yd,t = hsdxs,t + nd, (3)

respectively. Similarly, in the second symbol period, relay
transmits the pilot symbol xr,t to enable the destination to
estimate the channel coefficient hrd. The signal received by
the destination is

yd,r,t = hrdxr,t + nd,r . (4)

In the above formulations, nr ∼ CN (0,N0), nd ∼
CN (0,N0), and nd,r ∼ CN (0,N0) represent independent
Gaussian random variables. Note that nd and nd,r are
Gaussian noise samples at the destination in different time
intervals, while nr is the Gaussian noise at the relay.

In the training process, it is assumed that the receivers
employ minimum mean-square-error (MMSE) estimation.
We assume that the source allocates δs fraction of its total
power mPs for training while the relay allocates δr fraction
of its total power mPr for training. As described in [24], the
MMSE estimate of hsr is given by

ĥsr = σ2
sr

√

δsmPs
σ2

srδsmPs + N0
yr,t, (5)

where yr,t ∼ CN (0, σ2
srδsmPs + N0). We denote by h̃sr

the estimate error which is a zero-mean complex Gaussian

random variable with variance var(h̃sr) = σ2
srN0/(σ2

srδsmPs +
N0). Similarly, for the fading coefficients hsd and hrd, we have
the following estimates and estimate error variances:
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sd

√

δsmPs
σ2
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)
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(7)

With these estimates, the fading coefficients can now be
expressed as

hsr = ĥsr + h̃sr, hsd = ĥsd + h̃sd, hrd = ĥrd + h̃rd.
(8)

3.2. Data Transmission Phase. As discussed in the previous
section, within a block of m symbols, the first two symbols
are allocated to network training. In the remaining duration
of m−2 symbols, data transmission takes place. Throughout
the paper, we consider several transmission protocols which
can be classified into two categories depending on whether
or not the source and relay simultaneously transmit infor-
mation: nonoverlapped and overlapped transmissions. Since
the practical relay node usually cannot transmit and receive
data simultaneously, we assume that the relay works under
half-duplex constraint. Hence, the relay first listens and then
transmits. We introduce the relay transmission parameter α
and assume that α(m − 2) symbols are allocated for relay
transmission. Hence, α can be seen as the fraction of total
time or bandwidth allocated to the relay. Note that the
parameter α enables us to control the degree of cooperation.
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In nonoverlapped transmission protocol, source and relay
transmit over nonoverlapping intervals. Therefore, source
transmits over a duration of (1 − α)(m − 2) symbols and
becomes silent as the relay transmits. On the other hand,
in overlapped transmission protocol, source transmits all the
time and sends m− 2 symbols in each block.

We assume that the source transmits at a per-symbol
power level of Ps1 when the relay is silent, and Ps2 when
the relay is in transmission. Clearly, in nonoverlapped mode,
Ps2 = 0. On the other hand, in overlapped transmission, we
assume Ps1 = Ps2. Noting that the total power available after
the transmission of the pilot symbol is (1 − δs)mPs, we can
write

(1− α)(m− 2)Ps1 + α(m− 2)Ps2 = (1− δs)mPs. (9)

The above assumptions imply that power for data trans-
mission is equally distributed over the symbols during
the transmission periods. Hence, in nonoverlapped and
overlapped modes, the symbol powers are Ps1 = ((1 −
δs)mPs)/((1−α)(m−2)) and Ps1 = Ps2 = ((1−δs)mPs)/(m−
2), respectively. Furthermore, we assume that the power of
each symbol transmitted by the relay node is Pr1, which
satisfies, similarly as above,

α(m− 2)Pr1 = (1− δr)mPr. (10)

Next, we provide detailed descriptions of nonoverlapped and
overlapped cooperative transmission schemes.

3.2.1. Nonoverlapped Transmission. We first consider the two
simplest cooperative protocols: nonoverlapped AF where the
relay amplifies the received signal and forwards it to the
destination, and nonoverlapped DF with repetition coding
where the relay decodes the message, reencodes it using
the same codebook as the source, and forwards it. In these
protocols, since the relay either amplifies the received signal
or decodes it but uses the same codebook as the source
when forwarding, source and relay should be allocated
equal time slots in the cooperation phase. Therefore, before
cooperation starts, we initially have direct transmission from
the source to the destination without any aid from the
relay over a duration of (1 − 2α)(m − 2) symbols. In this
phase, source sends the (1 − 2α)(m − 2)-dimensional data
vector xs1 and the received signal at the destination is given
by

yd1 = hsdxs1 + nd1. (11)

Subsequently, cooperative transmission starts. At first, the
source transmits the α(m − 2)-dimensional data vector
xs2 which is received at the the relay and the destination,
respectively, as

yr = hsrxs2 + nr , yd2 = hsdxs2 + nd2. (12)

In (11) and (12), nd1 and nd2 are independent Gaussian noise
vectors composed of independent and identically distributed
(i.i.d.), circularly symmetric, zero-mean complex Gaussian
random variables with variance N0, modeling the additive
background noise at the transmitter in different transmission

phases. Similarly, nr is a Gaussian noise vector at the relay,
whose components are i.i.d. zero-mean Gaussian random
variables with variance N0. For compact representation, we
denote the overall source data vector by xs = [xTs1 xTs2]T and
the signal received at the destination directly from the source
by yd = [yTd1 yTd2]T where T denotes the transpose operation.
After completing its transmission, the source becomes silent,
and the relay transmits an α(m − 2)-dimensional symbol
vector xr which is generated from the previously received yr
[6, 7]. Now, the destination receives

yd,r = hrdxr + nd,r . (13)

After substituting the estimate expressions in (8) into (11)–
(13), we have

yd1 = ĥsdxs1 + h̃sdxs1 + nd1,

yr = ĥsrxs2 + h̃srxs2 + nr ,

yd2 = ĥsdxs2 + h̃sdxs2 + nd2,

(14)

yd,r = ĥrdxr + h̃rdxr + nd,r . (15)

Note that we have 0 < α ≤ 1/2 for AF and repetition coding
DF. Therefore, α = 1/2 models full cooperation while we
have noncooperative communications as α → 0. It should
also be noted that α should in general be chosen such that
α(m− 2) is an integer. The transmission structure and order
in the data transmission phase of nonoverlapped AF and
repetition DF are depicted in Figure 3(a), together with the
notation used for the data symbols sent by the source and
relay.

For nonoverlapped transmission, we also consider DF
with parallel channel coding, in which the relay uses a different
codebook to encode the message. In this case, the source
and relay do not have to be allocated the same duration in
the cooperation phase. Therefore, source transmits over a
duration of (1− α)(m− 2) symbols while the relay transmits
in the remaining duration of α(m − 2) symbols. Clearly,
the range of α is now 0 < α < 1. In this case, the input-
output relations are given by (12) and (13). Since there is no
separate direct transmission, xs2 = xs and yd2 = yd in (12).
Moreover, the dimensions of the vectors xs, yd, and yr are
now (1−α)(m−2), while xr and yd,r are vectors of dimension
α(m − 2). Figure 3(b) provides a graphical description
of the transmission order for nonoverlapped parallel DF
scheme.

3.2.2. Overlapped Transmission. In this category, we consider
a more general and complicated scenario in which the
source transmits all the time. We study AF and repetition
DF, in which we, similarly as in the nonoverlapped model,
have unaided direct transmission from the source to the
destination in the initial duration of (1−2α)(m−2) symbols.
Cooperative transmission takes place in the remaining
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Figure 3: Transmission structure and order in the data transmis-
sion phase for different cooperation schemes.

duration of 2α(m − 2) symbols. Again, we have 0 < α ≤ 1/2
in this setting. In these protocols, the input-output relations
are expressed as follows:

yd1 = hsdxs1 + nd1,

yr = hsrxs2 + nr ,

yd2 = hsdxs2 + nd2,

yd,r = hsdx′s2 + hrdxr + nd,r .

(16)

Above, xs1, xs2, and x′s2, which have respective dimensions of
(1−2α)(m−2), α(m−2), and α(m−2), represent the source
data vectors sent in direct transmission, cooperative trans-
mission when relay is listening, and cooperative transmission
when relay is transmitting, respectively. Note again that the
source transmits all the time. xr is the relay’s data vector with
dimension α(m− 2). yd1, yd2, and yd,r are the corresponding
received vectors at the destination, and yr is the received
vector at the relay. The input vector xs now is defined as
xs = [xTs1, xTs2, x

′T
s2 ]T and we again denote yd = [yTd1 yTd2]T .

If we express the fading coefficients as h = ĥ + h̃ in (16), we
obtain the following input-output relations:

yd1 = ĥsdxs1 + h̃sdxs1 + nd1,

yr = ĥsrxs2 + h̃srxs2 + nr ,

yd2 = ĥsdxs2 + h̃sdxs2 + nd2,

(17)

yd,r = ĥsdx′s2 + ĥrdxr + h̃sdx′s2 + h̃rdxr + nd,r . (18)

A graphical depiction of the transmission order for over-
lapped AF and repetition DF is given in Figure 3(c).

Finally, the list of notations used throughout the paper is
given in Table 1.

4. Achievable Rates

In this section, we provide achievable rate expressions for
AF and DF relaying in both nonoverlapped and overlapped
transmission scenarios in a unified fashion. Achievable rate
expressions are obtained by considering the estimate errors
as additional sources of Gaussian noise. Since Gaussian noise
is the worst uncorrelated additive noise for a Gaussian model
[25, Appendix], [26], achievable rates given in this section
can be regarded as worst-case rates.

We first consider AF relaying scheme. The capacity of
the AF relay channel is the maximum mutual information
between the transmitted signal xs and received signals yd and

yd,r given the estimates ĥsr, ĥsd, and ĥrd:

CAF = sup
pxs (·)

1
m
I
(

xs; yd, yd,r | ĥsr, ĥsd, ĥrd

)

. (19)

Note that this formulation presupposes that the destination

has the knowledge of ĥsr. Hence, we assume that the value of

ĥsr is forwarded reliably from the relay to the destination over
low-rate control links. In general, solving the optimization
problem in (19) and obtaining the AF capacity is a difficult
task. Therefore, we concentrate on finding a lower bound
on the capacity. A lower bound is obtained by replacing the
product of the estimate error and the transmitted signal in
the input-output relations with the worst-case noise with the
same correlation. Therefore, we consider in the overlapped
AF scheme

zd1 = h̃sdxs1 + nd1,

zr = h̃srxs2 + nr ,

zd2 = h̃sdxs2 + nd2,

zd,r = h̃sdx′s2 + h̃rdxr + nd,r ,

(20)
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Table 1: List of notations.

hsd Source-destination channel fading coefficient

hsr Relay-destination channel fading coefficient

hrd Relay-destination channel fading coefficient

ĥ· Estimate of the fading coefficient h·
h̃· Error in the estimate of the fading coefficient h·
σ2 Variance of random variables

N0 Variance of Gaussian random variables due to thermal noise

m Number of symbols in each block

mPs Total average power of the source in each block of m symbols

mPr Total average power of the relay in each block of m symbols

δs Fraction of total power allocated to training by the source

δr Fraction of total power allocated to training by the relay

xs,t Pilot symbol sent by the source

xr,t Pilot symbol sent by the relay

nd Additive Gaussian noise at the destination in the interval in which the source pilot symbol is sent

nr Additive Gaussian noise at the relay in the interval in which the source pilot symbol is sent

nd,r Additive Gaussian noise at the destination in the interval in which the relay pilot symbol is sent

yd,t Received signal at the destination in the interval in which the source pilot symbol is sent

yd,t Received signal at the relay in the interval in which the source pilot symbol is sent

yd,r,t Received signal at the destination in the interval in which the relay pilot symbol is sent

Ps1 Power of each source symbol sent in the interval in which the relay is not transmitting

Ps2 Power of each source symbol sent in the interval in which the relay is transmitting

Pr1 Power of each relay symbol

α Fraction of time/bandwidth allocated to the relay

xs1 (1− 2α)(m− 2)-dimensional data vector sent by the source in the noncooperative transmission mode

xs2
Data vector sent by the source when the relay is listening. The dimension is α(m− 2) for AF and repetition DF, and
(1− α)(m− 2) for parallel DF

x′s2 α(m− 2)-dimensional data vector sent by the source when the relay is transmitting

xr α(m− 2)-dimensional data vector sent by the relay

nd1 (1− 2α)(m− 2)-dimensional noise vector at the destination in the noncooperative transmission mode

nd2
Noise vector at the destination in the interval when the relay is listening. The dimension is α(m− 2) for AF and repetition DF,
and (1− α)(m− 2) for parallel DF

nd,r α(m− 2)-dimensional noise vector at the destination in the interval when the relay is transmitting

nr Noise vector at the relay. The dimension is α(m− 2) for AF and repetition DF, and (1− α)(m− 2) for parallel DF

yd1 (1− 2α)(m− 2)-dimensional received vector at the destination in the noncooperative transmission mode

yd2
Received vector at the destination in the interval when the relay is listening. The dimension is α(m− 2) for AF and repetition
DF, and (1− α)(m− 2) for parallel DF

yd,r α(m− 2)-dimensional received vector at the destination in the interval when the relay is transmitting

yr Received vector at the relay. The dimension is α(m− 2) for AF and repetition DF, and (1− α)(m− 2) for parallel DF

as noise vectors with covariance matrices

E
{

zd1z
†
d1

}

= σ2
zd1
I = σ2

h̃sd
E
{

xs1x
†
s1

}

+ N0I,

E
{

zrz†r
}

= σ2
zr I = σ2

h̃sr
E
{

xs2x
†
s2

}

+ N0I,
(21)

E
{

zd2z
†
d2

}

= σ2
zd2
I = σ2

h̃sd
E
{

xs2x
†
s2

}

+ N0I,

E
{

zd,rz
†
d,r

}

= σ2
zd,r
I = σ2

h̃sd
E
{

x′s2x
′†
s2

}

+ σ2
h̃rd
E
{

xrx†r
}

+ N0I.

(22)

Above, x† denotes the conjugate transpose of the vector x.
Note that the expressions for the nonoverlapped AF scheme

can be obtained as a special case of (20)–(22) by setting
x′s2 = 0.

An achievable rate expression RAF is obtained by solving
the following optimization problem which requires finding
the worst-case noise:

CAF � RAF

= inf
pzd1

(·),pzr (·),pzd2
(·),pzd,r

(·)

× sup
pxs (·)

1
m
I
(

xs; yd, yd,r | ĥsr, ĥsd, ĥrd

)

.

(23)
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The following results provide a general formula for RAF,
which applies to both nonoverlapped and overlapped trans-
mission scenarios.

Theorem 1. An achievable rate for AF transmission scheme is
given by

RAF

= 1
m
Ewsd,wrd,wsr

×

⎧
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(24)

where f (·) and q(·) are defined as f (x, y) = xy/(1 + x + y)
and q(a, b, c,d) = ((1 + a)b(1 + c))/(1 + c + d). Furthermore,
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(25)
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where X denotes Ps2σ
2
sdN0(σ2

rdδrmPr + N0) + Pr1σ
2
rdN0

× (σ2
sdδsmPs + N0) + N0(σ2

sdδsmPs + N0)(σ2
rdδrmPr + N0). In

the above equations and henceforth, wsr ∼ CN (0, 1), wsd ∼
CN (0, 1), and wrd ∼ CN (0, 1) denote independent, standard
Gaussian random variables. The above formulation applies to
both overlapped and nonoverlapped cases. Recalling (9), if one
assumes in (24)–(28) that

Ps1 = (1− δs)mPs
(m− 2)(1− α)

, Ps2 = 0, (29)

one obtains the achievable rate expression for the nonover-
lapped AF scheme. Note that if Ps2 = 0, the function
q(·, ·, ·, ·) = 0 in (24). For overlapped AF, one has

Ps1 = Ps2 = (1− δs)mPs
m− 2

. (30)

Moreover, one knows from (10) that

Pr1 = (1− δr)mPr
(m− 2)α

. (31)

Proof. See Appendix A.

Next, we consider DF relaying scheme. In DF, there
are two different coding approaches [7], namely, repetition
coding and parallel channel coding. We first consider repeti-
tion channel coding scheme. The following result provides
achievable rate expressions for both nonoverlapped and
overlapped transmission scenarios.

Theorem 2. An achievable rate expression for DF with
repetition channel coding transmission scheme is given by
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2
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),(Ps1|ĥsd|

2
)/(σ2
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2
)/(σ2

zr ), (Ps2|ĥsd|
2
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), (Pr1

∣
∣
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∣
∣
∣

2
)/(σ2

zd,r
) have the same expressions as in (25)–

(28). Ps1,Ps2, and Pr1 are given in (29)–(31).

Proof. See Appendix B.

Finally, we consider DF with parallel channel coding and
assume that nonoverlapped transmission scheme is adopted.
From [13, Equation ( 6)], we note that an achievable rate
expression is given by

min
{

(1− α)I
(

xs; yr | ĥsr

)

,

(1− α)I
(

xs; yd | ĥsd

)

+ αI
(

xr ; yd,r | ĥrd

)}

.
(35)
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Figure 4: δr versus σrd for different values of Pr when m = 50.

Note that we do not have separate direct transmission in
this relaying scheme. Using similar methods as in the proofs
of Theorems 1 and 2, we obtain the following result. The
proof is omitted to avoid repetition.

Theorem 3. An achievable rate of nonoverlapped DF with
parallel channel coding scheme is given by

RDFp = min
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where (Ps1
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) are given in (25)–(27) with Ps1 and Pr1 defined in (29)

and (31).

5. Resource Allocation Strategies

Having obtained achievable rate expressions in Section 4,
we now identify resource allocation strategies that maximize
these rates. We consider three resource allocation problems:
(1) power allocation between training and data symbols,
(2) time/bandwidth allocation to the relay, and (3) power
allocation between the source and relay under a total power
constraint.

We first study how much power should be allocated
for channel training. In nonoverlapped AF, it can be seen
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Figure 5: Overlapped AF achievable rates versus δs and δr when
Ps = Pr = 50.

that δr appears only in (Pr1
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2
)/(σ2

zd,r
) in the achievable

rate expression (24). Since f (x, y) = xy/(1 + x + y) is
a monotonically increasing function of y for fixed x, (24)

is maximized by maximizing (Pr1
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). We can

maximize (Pr1
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)/(σ2
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) by maximizing the coefficient

of the random variable |wrd|2 in (27), and the optimal δr is
given as follows:

δ
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−mPrσ
2
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mPrσ
2
rd(−1 + αm− 2α)

, (37)

where P denotes (m2Prσ
2
rdαN0 + m2P2

r σ
4
rd + αmN2

0 +
mPrσ

2
rdN0−2mPrσ

2
rdαN0−2N0α). Optimizing δs in nonover-

lapped AF is more complicated as it is related to all the terms
in (24), and hence obtaining an analytical solution is unlikely.

A suboptimal solution is to maximize (Ps1
∣
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) and

(Ps1
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zr ) separately and obtain two solutions δ
subopt
s,1

and δ
subopt
s,2 , respectively. Note that expressions for δ

subopt
s,1 and

δ
subopt
s,2 are exactly the same as that in (37) with Pr and α

replaced by Ps and (1 − α), and σrd replaced by σsd in δ
subopt
s,1

and replaced by σsr in δ
subopt
s,2 . When the source-relay channel

is better than the source-destination channel and the fraction
of time over which direct transmission is performed is small,

(Ps1
∣
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∣ĥsr

∣
∣
∣

2
)/(σ2

zr ) is a more dominant factor and δ
subopt
s,2 is

a good choice for training power allocation. Otherwise,

δ
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s,1 might be preferred. Note that in nonoverlapped DF

with repetition and parallel coding, (Pr1

∣
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∣
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2
)/(σ2
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) is the

only term that includes δr . Therefore, similar results and
discussions apply. For instance, the optimal δr has the same
expression as that in (37). Figure 4 plots the optimal δr as
a function of σrd for different relay power constraints Pr
when m = 50 and α = 0.5. It is observed in all cases that
the allocated training power monotonically decreases with
improving channel quality and converges to (

√

α(m− 2) −
1)/(αm− 2α− 1) ≈ 0.169 which is independent of Pr .
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Figure 6: Overlapped AF achievable rates versus δs and δr when
Ps = Pr = 0.5

In overlapped transmission schemes, both δs and δr
appear in more than one term in the achievable rate expres-
sions. Therefore, we resort to numerical results to identify the
optimal values. Figures 5 and 6 plot the achievable rates as a
function of δs and δr for overlapped AF. In both figures, we
have assumed that σsd = 1, σsr = 2, σrd = 1,m = 50, and
N0 = 1, α = 0.5. While Figure 5 considers high SNRs
(Ps = 50 and Pr = 50), we assume that Ps = 0.5 and
Pr = 0.5 in Figure 6. In Figure 5, we observe that increasing
δs will increase achievable rate until δs ≈ 0.1. Further increase
in δs decreases the achievable rates. On the other hand,
rates always increase with increasing δr , leaving less and less
power for data transmission by the relay. This indicates that
cooperation is not beneficial in terms of achievable rates
and direct transmission should be preferred. On the other
hand, in the low-power regime considered in Figure 6, the
optimal values of δs and δr are approximately 0.18 and 0.32,
respectively. Hence, the relay in this case helps to improve the
rates.

Next, we analyze the effect of the degree of cooperation
on the performance in AF and repetition DF. Figures 7 and
8 plot the achievable rates as a function of α which gives
the fraction of total time/bandwidth allocated to the relay.
Achievable rates are obtained for different channel qualities
given by the standard deviations σsd, σsr, and σrd of the fading
coefficients. We observe that if the input power is high,
α should be either 0.5 or close to zero depending on the
channel qualities. On the other hand, α = 0.5 always gives
us the best performance at low SNR levels regardless of the
channel qualities. Hence, while cooperation is beneficial in
the low-SNR regime, noncooperative transmissions might
be optimal at high SNRs. We note from Figure 7 in which
Ps = Pr = 50 that cooperation starts being useful as the
source-relay channel variance σ2

sr increases. Similar results
are also observed if overlapped DF with repetition coding
is considered. Hence, the source-relay channel quality is
one of the key factors in determining the usefulness of
cooperation in the high SNR regime. At the same time,
additional numerical analysis has indicated that if SNR is
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Figure 7: Overlapped AF achievable rate versus α when Ps = Pr =
50, δs = δr = 0.1, and m = 50.

further increased, noncooperative direct transmission tends
to outperform cooperative schemes even in the case in which
σsr = 10. Hence, there is a certain relation between the
SNR level and the required source-relay channel quality for
cooperation to be beneficial. The above conclusions apply
to overlapped AF and DF with repetition coding. In con-
trast, numerical analysis of nonoverlapped DF with parallel
coding in the high-SNR regime has shown that cooperative
transmission with this technique provides improvements
over noncooperative direct transmission. A similar result will
be discussed later in this section when the performance is
analyzed under total power constraints.

In Figure 8 in which SNR is low (Ps = Pr = 0.5), we
see that the highest achievable rates are attained when there
is full cooperation (i.e., when α = 0.5). Note that in this
figure, overlapped DF with repetition coding is considered.
If overlapped AF is employed as the cooperation strategy,
we have similar conclusions but it should also be noted that
overlapped AF achieves smaller rates than those attained by
overlapped DF with repetition coding.

In Figure 9, we plot the achievable rates of DF with
parallel channel coding, derived in Theorem 3, when Ps =
Pr = 0.5. We can see from the figure that the highest rate
is obtained when both the source-relay and relay-destination
channel qualities are higher than of the source-destination
channel (i.e., when σsd = 1, σsr = 4, and σrd = 4).
Additionally, we observe that as the source-relay channel
improves, more resources need to be allocated to the relay
to achieve the maximum rate. We note that significant
improvements with respect to direct transmission (i.e., the
case when α → 0) are obtained. Finally, we can see that
when compared to AF and DF with repetition coding, DF
with parallel channel coding achieves higher rates. On the
other hand, AF and repetition coding DF have advantages
in the implementation. Obviously, the relay, which amplifies



10 EURASIP Journal on Wireless Communications and Networking

0.50.40.30.20.10

α

σsd = 1 σsr = 10 σrd = 2
σsd = 1 σsr = 6 σrd = 3

σsd = 1 σsr = 4 σrd = 4
σsd = 1 σsr = 2 σrd = 1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

A
ch

ie
va

bl
e

ra
te

s
(b

it
s/

sy
m

bo
l)

Figure 8: Overlapped DF with repetition coding achievable rate
versus α when Ps = Pr = 0.5, δs = δr = 0.1, and m = 50.

10.80.60.40.20

α

σsd = 1 σsr = 10 σrd = 2
σsd = 1 σsr = 6 σrd = 3

σsd = 1 σsr = 4 σrd = 4
σsd = 1 σsr = 2 σrd = 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
ch

ie
va

bl
e

ra
te

s
(b

it
s/

sy
m

bo
l)

Figure 9: Nonoverlapped DF parallel coding achievable rate versus
α when Ps = Pr = 0.5, δs = δr = 0.1, and m = 50.

and forwards, has a simpler task than that which decodes
and forwards. Moreover, as pointed out in [18], if AF
or repetition coding DF is employed in the system, the
architecture of the destination node is simplified because the
data arriving from the source and relay can be combined
rather than stored separately.

In certain cases, source and relay are subject to a total
power constraint. Here, we introduce the power allocation
coefficient θ and total power constraint P. Ps and Pr have
the following relations: Ps = θP, Pr = (1 − θ)P, and
hence Ps + Pr = P. Next, we investigate how different values
of θ, and hence different power allocation strategies, affect
the achievable rates. Analytical results for θ that maximizes
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Figure 10: Overlapped AF achievable rate versus θ. P = 100, and
m = 50.

the achievable rates are difficult to obtain. Therefore, we
again resort to numerical analysis. In all numerical results,
we assume that α = 0.5 which provides the maximum
of degree of cooperation. First, we consider the AF. The
fixed parameters we choose are P = 100, N0 = 1, δs =
0.1, and δr = 0.1. Figure 10 plots the achievable rates in
the overlapped AF transmission scenario as a function of θ
for different channel conditions, that is, different values of
σsr, σrd, and σsd. We observe that the best performance is
achieved as θ → 1. Hence, even in the overlapped scenario,
all the power should be allocated to the source and direct
transmission should be preferred at these high SNR levels.
Note that if direct transmission is performed, there is no
need to learn the relay-destination channel. Since the time
allocated to the training for this channel should be allocated
to data transmission, the real rate of direct transmission
is slightly higher than the point that the cooperative rates
converge as θ → 1. For this reason, we also provide the direct
transmission rate separately in Figure 10. Further numerical
analysis has indicated that direct transmission outperforms
nonoverlapped AF, overlapped and nonoverlapped DF with
repetition coding as well at this level of input power. On the
other hand, in Figure 11 which plots the achievable rates of
nonoverlapped DF with parallel coding as a function of θ, we
observe that direct transmission rate, which is the same as
that given in Figure 10, is exceeded if σsr = 10 and hence the
source-relay channel is very strong. The best performance is
achieved when θ ≈ 0.7 and therefore 70% of the power is
allocated to the source.

Figures 12 and 13 plot the nonoverlapped achievable
rates when P = 1. In all cases, we observe that performance
levels higher than those of direct transmission are achieved
unless the qualities of the source-relay and relay-destination
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Figure 11: Nonoverlapped Parallel coding DF rate versus θ. P =
100, and m = 50.
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Figure 12: Nonoverlapped AF achievable rate versus θ. P = 1, and
m = 50.

channels are comparable to those of the source-destination
channel (e.g., σsd = 1, σsr = 2, σrd = 1). Moreover, we note
that the best performances are attained when the source-relay
and relay-destination channels are both considerably better
than the source-destination channel (i.e., when σsd = 1, σsr =
4, σrd = 4). As expected, highest gains are obtained with
parallel coding DF although further numerical analysis has
shown that repetition coding incurs only small losses. Finally,
Figure 14 plots the achievable rates of overlapped AF when
P = 1. Similar conclusions apply also here. However, it is

10.80.60.40.20

θ

σsd = 1, σsr = 10, σrd = 2
σsd = 1, σsr = 6, σrd = 3

σsd = 1, σsr = 4, σrd = 4
σsd = 1, σsr = 2, σrd = 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
ch

ie
va

bl
e

ra
te

s
(b

it
s/

sy
m

bo
l)

Figure 13: Nonoverlapped Parallel coding DF rate versus θ. P = 1,
and m = 50.
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Figure 14: Overlapped AF achievable rate versus θ. P = 1, and m =
50.

interesting to note that overlapped AF rates are smaller than
those achieved by nonoverlapped AF. This behavior is also
observed when DF with repetition coding is considered. Note
that in nonoverlapped transmission, source transmits in a
shorter duration of time with higher power. This signaling
scheme provides better performance as expected because it is
well known that flash signaling achieves the capacity in the
low-SNR regime in imperfectly known channels [27].

Table 2 summarizes the conclusions drawn and insights
gained in this section on the performance of different
cooperation strategies and resource allocation schemes in the
high- and low-SNR regimes.
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Table 2

High-SNR Regime

(i) Cooperation employing overlapped AF or DF with repetition coding is beneficial only if the source-relay
channel quality is high enough. If this is not the case or SNR is very high, noncooperative direct transmission
should be employed.

(ii) Cooperation using nonoverlapped DF with parallel coding provides improvements over the performance of
noncooperative direct transmission and achieves higher rates than those attained by overlapped AF and DF with
repetition coding.

(iii) If the system is operating under total power constraints, all the power should be allocated to the source and
hence direct transmission should be preferred over overlapped and nonoverlapped AF and overlapped and
nonoverlapped DF with repetition coding.

(iv) Under total power constraints, only nonoverlapped DF with parallel coding outperforms noncooperative
direct transmission when the source-relay channel is strong.

Low-SNR Regime

(i) Cooperation is generally beneficial.

(ii) The strengths of both the source-relay and relay-destination channels are important factors.

(iii) Nonoverlapped DF with parallel coding achieves the highest performance levels. In general, nonoverlapped
transmission methods should be preferred. Also, DF provides higher gains over AF.

(iv) Under total power constraints, highest gains over noncooperative direct transmission are attained when
both the source-relay and relay-destination channels are considerably stronger than the source-destination
channel.

(v) Under total power constraints, noncooperative direct transmission should be preferred if the qualities of
both the source-relay and relay-destination channels are comparable to that of the source-destination channel.

6. Energy Efficiency

Our analysis has shown that cooperative relaying is generally
beneficial in the low-power regime, resulting in higher
achievable rates when compared to direct transmission. In
this section, we provide an energy efficiency perspective and
remark that care should be exercised when operating at
very low SNR values. The least amount of energy required
to send one information bit reliably is given by Eb/N0 =
SNR/(C(SNR)) where C(SNR) is the channel capacity in
bits/symbol. (Note that Eb/N0 is the bit energy normalized
by the noise power spectral level N0.) In our setting, the
capacity will be replaced by the achievable rate expressions
and hence the resulting bit energy, denoted by E(b,U)/N0,
provides the least amount of normalized bit energy values
in the worst-case scenario and also serves as an upper bound
on the achievable bit energy levels in the channel.

We note that in finding the bit energy values, we assume
that SNR = P/N0 where P = Pr + Ps is the total power. The
next result provides the asymptotic behavior of the bit energy
as SNR decreases to zero.

Theorem 4. The normalized bit energy in all relaying schemes
grows without bound as the signal-to-noise ratio decreases to
zero, that is,

Eb,U

N0

∣
∣
∣
∣
R=0

= lim
SNR→ 0

SNR
R(SNR)

= 1
Ṙ(0)

= ∞. (38)

Proof. Ṙ(0) is the derivative of R with respect to SNR as SNR
→ 0. The key point to prove this theorem is to show that
when SNR → 0, the mutual information decreases as SNR2,
and hence Ṙ(0) = 0. This can be easily shown because when

P → 0, in all the terms, (Ps1
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in Theorems 1–3, the denominator goes to a constant while
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Figure 15: Nonoverlapped AF Eb,U/N0 versus SNR

the numerator decreases as P2. Hence, these terms diminish
as SNR2. Since log(1 + x) = x + o(x) for small x, where o(x)
satisfies limx→ 0o(x)/x = 0, we conclude that the achievable
rate expressions also decrease as SNR2 as SNR vanishes.

Theorem 4 indicates that it is extremely energy-
inefficient to operate at very low SNR values. We identify the
most energy-efficient operating points in numerical results.
We choose the following numerical values for the fixed
parameters: δs = δr = 0.1, σsd = 1, σsr = 4, σrd =
4, α = 0.5, and θ = 0.6. Figure 15 plots the bit energy
curves as a function of SNR for different values of m in the
nonoverlapped AF case. We can see from the figure that the
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Figure 16: Eb,U/N0 versus m for different transmission scheme

minimum bit energy, which is achieved at a nonzero value of
SNR, decreases with increasing m and is achieved at a lower
SNR value. Figure 16 shows the minimum bit energy for
different relaying schemes with overlapped or nonoverlapped
transmission techniques. We observe that the minimum bit
energy decreases with increasing m in all cases. We realize
that DF is in general much more energy-efficient than AF.
Moreover, we note that employing nonoverlapped rather
than overlapped transmission improves the energy efficiency.
We further remark that the performances of nonoverlapped
DF with repetition coding and parallel coding are very close.

7. Conclusion

In this paper, we have studied the imperfectly-known fading
relay channels. We have assumed that the source-destination,
source-relay, and relay-destination channels are not known
by the corresponding receivers a priori, and transmission
starts with the training phase in which the channel fading
coefficients are learned with the assistance of pilot symbols,
albeit imperfectly. Hence, in this setting, relaying increases
the channel uncertainty in the system, and there is increased
estimation cost associated with cooperation. We have inves-
tigated the performance of relaying by obtaining achievable
rates for AF and DF relaying schemes. We have considered
both nonoverlapped and overlapped transmission scenarios.
We have controlled the degree of cooperation by varying
the parameter α. We have identified resource allocation
strategies that maximize the achievable rate expressions. We
have observed that if the source-relay channel quality is low,
then cooperation is not beneficial and direct transmission
should be preferred at high SNRs when amplify-and-forward
or decode-and-forward with repetition coding is employed
as the cooperation strategy. On the other hand, we have
seen that relaying generally improves the performance at low

SNRs. We have noted that DF with parallel coding provides
the highest rates. Additionally, under total power constraints,
we have studied power allocation between the source and
relay. We have again pointed out that relaying degrades the
performance at high SNRs unless DF with parallel channel
coding is used and the source-relay channel quality is high.
The benefits of relaying is again demonstrated at low SNRs.
We have noted that nonoverlapped transmission is superior
compared to overlapped one in this regime. Finally, we have
considered the energy efficiency in the low-power regime and
proved that the bit energy increases without bound as SNR
diminishes. Hence, operation at very low SNR levels should
be avoided. From the energy efficiency perspective, we have
again observed that nonoverlapped transmission provides
better performance. We have also noted that DF is more
energy efficient than AF.

Appendices

A. Proof of Theorem 1

Note that in AF relaying,

I
(

xs; yd, yd,r | ĥsr, ĥsd, ĥrd

)

= I
(

xs1; yd1 | ĥsd

)

+ I
(

xs2; yd2, yd,r | ĥsr, ĥsd, ĥrd

)

,

(A.1)

where the first mutual expression on the right-hand side of
(A.1) is for the direct transmission and the second is for the
cooperative transmission. In the direct transmission, we have

yd1 = ĥsdxs1 + zd1. (A.2)

In this setting, it is well known that the worst-case noise zd1 is
Gaussian [25, Appendix] and xs1 with independent Gaussian
components achieves

inf
pzd1

(·)
sup
pxs1 (·)

I
(

xs1; yd1 | ĥsd

)

= E

⎧

⎪⎨
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(1− 2α)(m− 2) log
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⎜
⎝1 +

P′s1
∣
∣
∣ĥsd

∣
∣
∣

2

σ2
zd1

⎞

⎟
⎠

⎫

⎪⎬

⎪⎭

.

(A.3)

We now investigate the cooperative phase. Comparing (14)
and (15) with (17) and (18), we see that nonoverlapped
can be obtained as a special case of overlapped AF scheme
by letting x′s2 = 0. Therefore, we concentrate on the
more general case of overlapped transmission. For better
illustration, we rewrite the symbol-wise channel input-
output relationships in the following:

yr[i] = ĥsrxs2[i] + zr[i], yd2[i] = ĥsdxs2[i] + zd2[i]
(A.4)

for i = 1 + (1− 2α)(m− 2), . . . , (1− α)(m− 2), and

yd,r[i] = ĥsdx
′
s2[i] + ĥrdxr[i] + zd,r[i] (A.5)
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for i = (1−α)(m−2)+1, . . . ,m−2. In AF, the signals received
and transmitted by the relay have the following relation:

xr[i] = βyr[i− α(m− 2)],

where β �

√
√
√
√
√
√

E
{

|xr|2
}

∣
∣
∣ĥsr

∣
∣
∣

2
E
{

|xs2|2
}

+ E
{

|zr|2
} .

(A.6)

Now, we can write the channel in the vector form

⎛

⎝
yd2[i]
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(A.7)

where i = 1 + (1 − 2α)(m − 2), ..., (1 − α)(m − 2) and β 	
√

(E{|xr|2})/(
∣
∣
∣ĥsr

∣
∣
∣

2
E{|xs|2} + E{|zr|2}). Note that we have

defined xs = [xTs1, xTs2, x
′T
s2 ]T , and the expression in (A.7) uses

the property that xs2( j) = xs( j+(1−2α)(m−2)) and x′s2( j) =
xs( j + (1 − α)(m − 2)) for j = 1, . . . ,α(m − 2). The input-
output mutual information in the cooperative phase can now
be expressed as

I
(

xs2, x′s2; yd2, yd,r | ĥsr, ĥsd, ĥrd

)

=
(1−α)(m−2)

∑

i=1+(1−2α)(m−2)

I
(

x̌s[i]; y̌d[i] | ĥsr, ĥsd, ĥrd

)

= α(m− 2)I
(

x̌s; y̌d | ĥsrĥsd, ĥrd

)

,

(A.8)

where in (A.8) we removed the dependence on i without
loss of generality. Note that x̌s and y̌d are defined in (A.7).
Now, we can calculate the worst-case capacity by proving that
Gaussian distribution for zr , zd2, and zd,r provides the worst
case. We employ techniques similar to that in [25, Appendix].
Any set of particular distributions for zr , zd2, and zd,r yields
an upper bound on the worst case. Let us choose zr , zd2, and
zd,r to be zero mean complex Gaussian distributed. Then as
in [6, Appendix II],

inf
pzr (·),pzd2

(·),pzd,r
(·)
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pxs2 (·),px′s2 (·)

I
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)

≤ E log det
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B†
)−1

)

,

(A.9)

where the expectation is with respect to the fading esti-
mates. To obtain a lower bound, we compute the mutual
information for the channel in (A.7) assuming that x̌s is

a zero-mean complex Gaussian with variance E{x̌sx̌†s }, but
the distributions of noise components zr , zd2, and zd,r are
arbitrary. In this case, we have

I
(

x̌s; y̌d; | ĥsr, ĥsd, ĥrd

)

= h
(

x̌s | ĥsr, ĥsd, ĥrd

)

− h
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� logπeE
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)

,

(A.10)

where the inequality is due to the fact that Gaussian
distribution provides the largest entropy and hence [28,
Chapter 9]

h
(

x̌s | y̌d, ĥsr, ĥsd, ĥrd

)

≤ logπe var
(

x̌s | y̌d, ĥsr, ĥsd, ĥrd

)

.

(A.11)

Above, h() denotes the differential entropy functional. From
[25, Lemma 1, Appendix], we know that

var
(

x̌s | y̌d, ĥsr, ĥsd, ĥrd

)

� E
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x̌s − ̂̌xs
)(

x̌s − ̂̌xs
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} (A.12)

for ant estimate ̂̌xs given y̌d, ĥsr, ĥsd, and ĥrd. If we substitute
the linear minimum mean-square-error (LMMSE) estimate
̂̌xs = RX̌y̌R

−1
y̌ y̌d, where Rx̆y̆ and Ry̆ are cross-covariance and

covariance matrices respectively, into (A.10) and (A.12), we
obtain
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(A.13)

(Here, we use the property that det(I + AB) = det(I +
BA).) Since the lower bound (A.13) applies for any noise
distribution, we can easily see that
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)

� E log det
(

I +
(

AE
{

x̌sx̌†s
}

A†
)(

BE
{

zz†
}

B†
)−1

)

.

(A.14)

From (A.9) and (A.14), we conclude that
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(A.16)
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In obtaining (A.16), we have used the fact that E{x̌sx̌†s } =(
Ps1 0

0 Ps2

)

. Note also that in (A.16), Ps1,Ps2, and Pr1 are the

powers of source and relay symbols and are given in (29)–
(31). Moreover, σ2

zd2
, σ2

zr , and σ2
zd,r

are the variances of the
noise components defined in (20). Now, combining (23),
(A.1), (A.3), and (A.16), we obtain the achievable rate
expression in (24). Note that (25)–(28) are obtained by using
the expressions for the channel estimates in (5)–(7) and noise
variances in (21) and (22).

B. Proof of Theorem 2

For DF with repetition coding in overlapped transmission,
an achievable rate expression is

I
(

xs1; yd1 | ĥsd

)

+ min
{

I
(

xs2; yr | ĥsr

)

, I
(

xs2, x′s2; yd, yd,r | ĥsd, ĥrd

)}

.

(B.1)

Note that the first and second mutual information expres-
sions in (B.1) are for the direct transmission between the
source and destination, and direct transmission between
the source and relay, respectively. Therefore, as in the
proof of Theorem 1, the worst-case achievable rates can be
immediately seen to be equal to the first term on the right-
hand side of (32) and I1, respectively.

In repetition coding, after successfully decoding the
source information, the relay transmits the same codeword
as the source. As a result, the input-output relation in the
cooperative phase can be expressed as

⎛
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yd,r[i + α(m− 2)]

⎞

⎠

︸ ︷︷ ︸

y̆d[i]

=
⎛

⎝
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,

(B.2)

where β ≤
√

(E{|xr|2})/(E{|xs|2}). From (B.2), it is clear that

the knowledge of ĥsr is not required at the destination. We
can easily see that (B.2) is a simpler expression than (A.7)
in the AF case; therefore we can adopt the same methods as
employed in the proof of Theorem 1 to show that Gaussian
noise is the worst noise and I2 is the worst-case rate.
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