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1. Introduction

Wireless sensor networks are typically comprised of inex-
pensive, small-sized, power-limited terminals. In a variety of
applications, sensor nodes are required to maintain accurate
time synchronization, for example, moving object tracking,
reconnaissance and surveillance, environmental monitoring,
and so forth [1]. This necessitates algorithms that achieve
and maintain global time synchronization at all network
nodes, that is, algorithms that align all nodes to a common
notion of time.

Due to imperfections in low-cost hardware nodes and
the decentralized nature of wireless sensor networks, global
time synchronization has been recognized as a particularly
challenging task. Recently, several distributed time synchro-
nization algorithms have been proposed; one such class
is distributed consensus time synchronization (DCTS) [2].
In the DCTS approach, a global time consensus can be
sufficiently reached within a connected network by averaging
pairwise local time information. In [3], Olfati-Saber et al.
established a theoretical framework for the analysis of con-
sensus synchronization algorithms. Later, a fully distributed,
asynchronous DCTS algorithm was proposed in [4]; this
scheme was designed to reach agreement on time offset
and skew offset between network nodes using media access
control (MAC) layer time-stamped packet exchanges. As

an alternative, a physical layer-based DCTS algorithm was
introduced in [5] by modeling sensor nodes as coupled
discrete time oscillators. Based on our knowledge, the
existing body of literature on the DCTS approach does
not examine the effects of time delay uncertainty between
network nodes. In this paper, we study the convergence of
the DCTS algorithm when uncertain delays impact local
pairwise time information exchange.

In [6], Xiao et al. considered distributed average con-
sensus with additive noise and investigated the design of
network link weights to minimize the mean-square deviation
in steady state. In this paper, we analyze the convergence
characteristics of the DCTS algorithm under Gaussian delay
uncertainties. First, we determine the asymptotic expectation
of the global synchronization error. Our results lead to the
definition of a time delay balanced network, and we claim that
under such network topologies average timing consensus
between nodes can be achieved despite the presence of
random delays. Additionally, we show that the asymptotic
mean square synchronization error is lower and upper
bounded by several values related to network parameters. As
examples, we analyze the global synchronization error of the
DCTS algorithm for several structured networks.

This paper is outlined as follows. Section 2 provides
background and system model for the DCTS algorithm
studied here. Section 3 presents convergence results on
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Figure 1: Physical layer-based time delay model.

the synchronization error of the DCTS algorithm due to
Gaussian random delays between nodes. Section 4 discusses
the convergence characteristics of the global synchronization
error for several structured networks. Simulation results are
presented in Section 5, and we conclude our discussion in
Section 6.

2. Background and SystemModel

2.1. Time Delay for Local Time Information Exchange. The
DCTS algorithm requires local time information exchange
between two or more nodes in a wireless sensor network.
This exchange can occur using either MAC layer time-
stamped packets or via physical layer pulse signals. In either
case, the delay between two network nodes is defined as the
interval between when the time information is generated by
the sender node and when this information is determined by
the receiver node. Furthermore, in either case, this delay can
be comprised of a deterministic and a random portion. In
the following, we discuss the delay sources at the two layers
and argue that, in both cases, a common underlying model
of Gaussian delay uncertainty can be adopted. (We have
separately examined the performance of the DCTS algorithm
considering alternate delay distributions, e.g., exponential
delay distribution [7]. Results show similar performance
bounds as those presented in this paper for the Gaussian
assumption. For this reason, we constrain our discussion
here to the more common Gaussian delay model.)

2.1.1. Physical Layer-Based Time Delay. Sender nodes using
physical layer synchronization algorithms convey local time
information to receiver nodes by transmitting pulse signals
according to their local clocks. The receiver node, however,
estimates the arrival time of the pulse signal as the clock
of the sender node. As shown in Figure 1, there is an offset
between the transmit time of the pulse at the sender and the
arrival time estimate at the receiver.

One source of this lag is Tp, the propagation delay
between the sender and receiver nodes. The propagation
delay is related to the distance between the two nodes such
that Tp = �i j /c, where �i j is the distance between nodes i and
j and c is the speed of light. Once the pulse signal propagates
to the receiver, the receiver node takes some time to reliably
detect the pulse signal and to make an arrival time estimate.
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Reception Rx process
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node i
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Ttp Ta Tp Tr Trp
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Figure 2: MAC layer-based time delay model.

We assume the arrival time estimation procedure at the
receiver will automatically compensate for this detection and
estimation delay. However, since the pulse signal is received
in noise (and may additionally experience fading over the
wireless link), the actual arrival time estimate produced at
the receiver will have an associated error. It is known from
parameter estimation theory that any maximum likelihood
(ML) estimator is asymptotically unbiased, and an ML
estimate is asymptotically Gaussian distributed [8]. Thus, if
an ML arrival time estimator is employed at the receiver, the
arrival time estimation error can be modeled as a Gaussian
random variable, νPHY, with zero mean and variance σ2

PHY
(the variance of arrival time estimator). In the physical layer
delay model used here, we assume such an estimation error
and write the total delay between the transmit time and
estimated arrival time of a pulse signal as

TPHY-delay = Tp + νPHY. (1)

2.1.2. MAC Layer-Based Time Delay. At the MAC layer,
local time information at a sender node is clocked and
incorporated into a packet during packet formation. The
overall delay between two nodes exchanging such time-
stamped packets is, therefore, the time interval between
when the sender time is clocked and when the receiver
node decodes this time information from its received packet
[9]. The sources of delay during this interval are shown in
Figure 2.

The major sources of random delay at the MAC layer
are Ttp, the transmission processing time; Ta, the channel
access time; and Trp, the receiver processing time. The
delay in processing a packet (at either the transmitter or
receiver) depends on several factors such as the protocol
processing time, the CPU load, and delays in the operating
system. Ta, on the other hand, is the time the sender node
that must wait to access the transmit channel, which is
determined by the MAC protocol in use as well as the
current network traffic. Here, we assume the overall delay,
Ttp + Ta + Trp results from the additive effect of delays
introduced by several independent random processes (e.g.,
the instantaneous workload on the sender/receiver CPU,
packet generation processes at other network nodes, etc.).
Using the central limit theorem, we model this delay as
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a Gaussian random variable with mean μMAC = E(Ttp) +
E(Ta) + E(Trp) and variance σ2

MAC = Var(Ttp) + Var(Ta) +
Var(Trp). Additionally, the packet experiences a propagation
delay of Tp; the overall MAC layer delay is therefore given as

TMAC-delay = Tp + νMAC. (2)

In the following, we use a general delay model that
incorporates the two delay calculations for the physical and
MAC layers, that is, we assume

Tdelay = Tc + Tp + ν, (3)

where Tc is a constant equal to zero for physical layer-based
schemes and μMAC for MAC layer-based schemes; and ν is a
zero mean Gaussian random variable. The variance of ν, σ2,
is equal to σ2

PHY for physical layer schemes and to σ2
MAC for

MAC layer-based schemes.

2.2. DCTS Algorithm With Gaussian Delay. In each iteration
of the DCTS algorithm, each node processes and decodes the
time-stamped message from its neighbors in the MAC layer-
based approach or estimates the arrival time of its neighbors’
pulse signals in the physical layer scheme. Each node then
updates its local clock time using the weighted average of
the time differences with its neighbor nodes. It is well known
that in a connected network with nonrandom delay between
nodes, this DCTS algorithm can reach average consensus [10];
that is, all nodes converge to the average of the initial timing
differences between the nodes.

Our study focuses on the operation of the DCTS
algorithm when there are both deterministic and random
(Gaussian) delays during local time information exchange,
as described above. In this case, the timing update rule of the
DCTS algorithm at each node i is given as

ti(k + 1) = ti(k) + ε
∑

j∈Ni

[
t̂ j(k)− ti(k)

]
, (4)

where ti(k) is the local time at node i during iteration k; Ni is
the set of neighboring nodes that can communicate reliably
with node i; t̂ j(k) = t j(k)+Tdelay = t j(k)+Tc+�i j /c+vj(k); Tc

is the constant delay defined above; ε is the constant step size
for each iteration; vj(k) are i.i.d Gaussian random variables,
with zero mean and variance σ2. Local time information
exchange between nodes i and j under this delay model is
shown in Figure 3.

The DCTS algorithm in (4) can be rearranged as

ti(k + 1) = ti(k) + ε
∑

j∈Ni

[
t j(k)− ti(k)

]
+ ni(k), (5)

where ni(k) = ε
∑

j∈Ni
[Tc + �i j /c + vj(k)]. It should be noted

that ni(k) and nj(k) might not be independent between
nodes i and j since the two nodes might have identical noise
coming from some potentially overlapping neighbors.

2.3. NetworkModel and Some Preliminaries. In the following,
we model a wireless sensor network as an undirected graph

t̂ j(k)

t j(k)

ti(k + 1)

t̂i(k + 1)

Tc + Tp + vi(k) Tc + Tp + vi(k + 1)

Node i

Node j

Figure 3: DCTS algorithm with Gaussian delay during local time
information exchange.

G = (V,E), consisting of a set of n nodes V = {1, 2, . . . ,n}
and a set of edges E . (The convergence properties presented
here can be easily extended for a directed graph. We omit
this extension here.) Each edge is denoted as e = (i, j) ∈ E
where i ∈ V and j ∈ V are two nodes connected by edge e.
We assume that the presence of an edge (i, j) indicates that
nodes i and j can communicate with each other reliably. We
assume here a connected graph; that is, there exists a path
connecting any pair of distinct nodes in the network.

Given this network model, we denote A as the adjacency
matrix of G such that

A
(
i, j
) =

⎧
⎨
⎩

1,
(
i, j
) ∈ E ,

0, otherwise.
(6)

Next, we let L be the graph Laplacian matrix of G which
is defined as

L = D − A, (7)

where D = diag(d1,d2, . . . ,dn) is the degree matrix of G.
Specifically, di is equal to the number of neighbors of node
i with which it can communicate reliably, that is, di = |Ni|.
Given this matrix L, we can show that L1 = 0 and 1TL = 0T,
where 1 = [1, 1, . . . , 1]T and 0 = [0, 0, . . . , 0]T. Additionally,
L is a symmetric positive semidefinite matrix (implying its
eigenvalues are all nonnegative), and for a connected graph,
the rank of L is n − 1 and its eigenvalues can be arranged in
increasing order as 0 = λ1(L) < λ2(L) ≤ · · · ≤ λn(L) [11].
We now define vectors t(k) = [t1(k), t2(k), . . . , tn(k)]T and
n(k) = [n1(k),n2(k), . . . ,nn(k)]T. Based on these definitions,
the evolution of DCTS algorithm in (5) can be written as

t(k + 1) = Ht(k) + n(k), (8)

where H = In − εL is called a Perron matrix of a graph
with parameter ε [3]. Here, In denotes the n × n identity
matrix. The eigenvalues of H are λi(H) = 1 − ελi(L)
and can be ordered in decreasing order: 1 = λ1(H) >
λ1(H) ≥ · · · ≥ λn(H). It is worth mentioning that the
constant step size εopt which minimizes convergence time
is given as 2/[λ2(L) + λn(L)] [12]. (Note that the optimal ε
is generally difficult to obtain as it involves computing the
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eigenvalues of the Laplacian matrix L. However, in practical
applications, a numerical solution can be obtained offline
based on node deployment within a given wireless sensor
network, and this εopt can then be flooded to all nodes
before they run the DCTS algorithm.) Let us define v(k) =
[v1(k), v2(k), . . . , vn(k)]T and u = [u1,u2, . . . ,un]T, where
ui =

∑
j∈Ni

(Tc + �i j /c). Then the noise vector in (8) is given
as n(k) = ε[u + Av(k)].

When there is no Gaussian delay between nodes, it can be
shown that [10, 12], for a time-invariant, connected, undi-
rected network, when ε ∈ (0, 2/λn(L)), average consensus can
be asymptotically achieved by the DCTS algorithm, that is,
limk→∞Hk = (1/n)11T. In our discussion, we also assume
an undirected, connected network with a constant step size
0 < ε < 2/λn(L) unless otherwise stated.

In the following analysis, we use the following matrices:
K = (1/n)11T, P = H − K and Q = In − K . For matrices P
and Q, it is straightforward to show that (1) the eigenvalues
of P agree with those of H except that λ1(H) = 1 is replaced
by λ1(P) = 0; (2)Pk = Hk−K such that limk→∞Pk = 0n; and
(3)QPkQ = Pk and Qk = Q.

3. Convergence Analysis of DCTS Algorithm
with Gaussian Delay

Let us define the average value in each iteration as m(k) =
(1/n)1Tt(k). Then, mean of the average value m(k) in each
iteration of the DCTS algorithm is m(0) + kε/n

∑n
i=1 ui, and

the variance of the average value is kε2σ2/n2
∑n

i=1 d
2
i . It can be

seen that as iteration time increases, both mean and variance
increase linearly with the time index k. Furthermore, the
variance of m(k) increases linearly with the variance of the
random Gaussian delay, σ2.

3.1. Expectation and Second Central Moment of Disagreement
Vector. We now define the disagreement vector as δ(k) =
t(k) − Kt(k); that is, δ(k) is the difference between the
updated times and the actual average times of the network
nodes. Then, the disagreement vector evolves as δ(k) =
Pδ(k − 1) + Qn(k − 1).

Lemma 1. For the DCTS algorithm in (8), the expectation of
disagreement vector is

E[δ(k)] = Pkδ(0) + ε
k−1∑

l=0

PlQu. (9)

The proof of this lemma is straightforward and thus
omitted from the paper. Let us define the second central
moment of disagreement vector as κδ(k) = E{(δ(k) −
E[δ(k)])T(δ(k)− E[δ(k)])}. We next note the following.

Lemma 2. For the DCTS algorithm in (8), the second central
moment of disagreement vector is given as

κδ(k) = δ(0)TP2kδ(0) + ε2σ2tr

⎛
⎝Q

k−1∑

l=0

P2lQA2

⎞
⎠, (10)

where tr(·) denotes the trace of a matrix.

Proof. Please see Appendix.

3.2. Asymptotic Expectation of Global Synchronization Error.
Using Lemma 1, we see that the steady state of expectation of
disagreement vector is

μ(∞)
.= lim

k→∞
E[δ(k)] = ε(In − P)−1Qu. (11)

Let us define W1 = (In − P)−1; then the eigenvalues of W1

are λ1(W1) = 1 and λi(W1) = 1/[ελi(L)], i = 2, . . . ,n. For
this μ(∞), we can show that.

Theorem1. In a network with fixed, connected topology, μ(∞)
in (11) is a constant vector independent of the constant value
of ε.

Proof. Let us denote the eigenvectors of W1 as ωi. It is easy
to check that the eigenvector corresponding to λ1(W1) = 1 is
ω1 = 1. μ(∞) in (11) can thus be written as

μ(∞) = ε11TQu +

⎡
⎣

n∑

i=2

1
ελi(L)

ωiω
T
i

⎤
⎦Qεu

= (L + K)−1Qu.

(12)

Thus, μ(∞) does not depend on ε.

Thus, for a constant step size ε, the steady state of
expectation of disagreement vector is a constant vector
regardless of ε. In other words, in a network with fixed
topology, the expectation of global synchronization error is
the same regardless of the speed of synchronization.

In general, we see that the DCTS algorithm with Gaussian
delay cannot achieve average consensus since μ(∞) is a linear
function of u (is not equal to 0). This global synchronization
error can be viewed as the accuracy of time synchronization
algorithm. If this synchronization error is tolerable or small
compared to time resolution of the system, we say that this
DCTS algorithm still achieves the average consensus but
with “tolerable synchronization error”. Let us now define the
asymptotic expectation of pairwise synchronization error as

Δti, j = lim
k→∞

E
[
ti(k)− t j(k)

]
= μi(∞)− μj(∞), i, j ∈ V.

(13)

Hence, the maximum asymptotic expectation of global
synchronization error between any two nodes is Δtmax =
max{|Δti, j|}. It is worth mentioning that, under certain net-
work topologies (e.g., the ring network studied in Section 4),
average consensus can still be asymptotically achieved when
using the DCTS approach under Gaussian delays.

Recall that μ(∞) = (L + K)−1Qu. In this equation, Qu =
u − Ku is the disagreement vector of u. When u = Ku, we
see that

∑
j∈Ni

(Tc + �i j /c) =
∑

m∈Nk
(Tc + �km/c), for (i, j) ∈

E and (k,m) ∈ E . More specifically, when di = dj and
�i j = �km, then μ(∞) = 0 and Δtmax = 0, implying that the
DCTS algorithm achieves average consensus asymptotically.
The condition above indicates that the time delay between
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nodes can be canceled if each node receives the same amount
of time delay from all neighbors; networks that meet this
condition are defined as follows.

Definition 1. A network is called “time delay balanced
network” if

∑
j∈Ni

(Tc + �i j /c) = ∑
m∈Nk

(Tc + �km/c), for
(i, j) ∈ E and (k,m) ∈ E , or equivalently, Δtmax = 0.

Otherwise we refer to the network as “time delay unbal-
anced”. It is worth mentioning that a similar definition of
“equal delay networks” was discussed in [13] for continuous
time network synchronization. Based on the definition
above, we see that time delay balance may be readily (but not
exclusively) achieved in well-structured networks.

3.3. Asymptotic Mean Square Synchronization Error. Using
Lemma 2, the steady state of second central moment of
disagreement vector is

κδ(∞)
.= lim

k→∞
κδ(k) = ε2σ2tr

{[(
In − P2)−1

+ Q − In
]
A2
}
.

(14)

Let us define W2 = (In−P2)−1 +Q−In. Thus, the eigenvalues
of W2 are λ1(W2) = 0 and λi(W2) = 1/[2ελi(L) −
ε2λ2

i (L)], i = 2, . . . ,n. We now define the asymptotic mean
square time synchronization error as

σ2
Δt = lim

k→∞

n∑

i=1

E
[
|ti(k)−m(k)|2

]
, (15)

which indicates the amount of error by which the updated
time at each node differs from the average value over all n
nodes. We see that

σ2
Δt = uTQ(L + K)−2Qu + ε2σ2tr

(
W2A

2). (16)

Theorem 2. For a connected, time delay unbalanced network,
σ2
Δt in (15) is bounded by

σ2
Δt ≥

uTQu
ξ1

+ εσ2λmin
(
A2)

n∑

i=2

λi,

σ2
Δt≤

‖u‖2

ξ2
+εσ2 min

⎧
⎨
⎩Dn max{λi}, λmax

(
A2)

n∑

i=2

λi

⎫
⎬
⎭,

(17)

where ξ1 = λ2
n(L), ξ2 = min{λ2

2(L), 1}, λi = 1/[2λi(L) −
ελ2

i (L)], i = 2, . . . ,n, Dn =
∑n

i=1 di is the total degree in the
networks, and ‖ · ‖ denotes the �2 norm of a vector.

Proof. Please see the Appendix.

Based on this result, it can be seen that the lower and
upper bounds of σ2

Δt are determined by several values related
to network parameters: eigenvalues of L and A2, total degree
of network, step size, and delay time vector.

4. DCTS Algorithmwith Gaussian Delay in
Structured Networks

In this section, we apply the DCTS algorithm under Gaussian
delay for several structured networks. In particular, we study

the structured networks as they are analytically tractable,
provide some valuable insights, and can be used to validate
our analytical findings. (Typical sensor network deployments
may in fact have a random topology. We study how our
results extend to such random network scenarios using
simulation in Section 5.) Specifically, we analyze at the
impact of Gaussian delay when using DCTS in the following
networks.

Definition 2 (A Ring Network with Equal Distance (Rn)). A
ring network is a network that consists of a single cycle. The
ring network with equal distance is a ring network that has n
nodes, n edges, and �c = �i j = �km for (i, j) ∈ E and (k,m)
∈ E .

Definition 3 (A Star Network with Equal Distance (Sn)). A
star network is a network that consists of edge set {(i,n), 1 ≤
i < n}. The star network with equal distance is a star network
that has n nodes, n−1 edges, and �c = �i j = �km for (i, j) ∈ E
and (k,m) ∈ E .

Definition 4 (A Hypercube Network with Equal Distance
Degree (Hn)). A hypercube network with equal distance
degree is a hypercube network that has n nodes, n log2n edges
and

∑
j∈Ni

�i j =
∑

i∈N j
� ji.

Figure 4 illustrates several examples of such networks. In
the following, we simply present convergence results for these
structured networks without proof.

4.1. Convergence Properties for Ring Networks. For a ring
network Rn, the DCTS algorithm in (8) produces a global
synchronization error with the following properties:

Δtmax = 0,

σ2
Δt ≥

εσ2

2

[
1 + cos

(
4π�(n + 1)/4	

n

)]n−1∑

i=1

λi,

σ2
Δt ≤ εσ2 min

⎧
⎨
⎩max

{
nλi
2

}
,
n−1∑

i=1

λi

⎫
⎬
⎭,

(18)

where λi = 1/[1 − ε + (2ε − 1) cos(2πi/n) − εcos2(2πi/n)],
i = 1, . . . ,n−1. Since Δtmax = 0, we see that the ring network
Rn is a time delay balanced network.

4.2. Convergence Properties for Star Networks. For a star
network Sn, the DCTS algorithm in (8) produces a global
synchronization error with the following properties:

σ2
Δt ≥

uTQu
n2

,

σ2
Δt ≤ ‖u‖2 + (n− 1)εσ2

·min{max{2λ1, 2λ2}, (n− 2)λ1 + λ2},

(19)

where λ1 = 1/(2− ε) and λ2 = 1/(2n− εn2).
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(a) (b) (c)

Figure 4: Structured networks: (a) R8, (b) S8, and (c) H8.

The star network Sn is time delay unbalanced. Further-
more, it should be noted that when operating the DCTS
algorithm with εopt, we get that κδ(∞) = (n− 1)σ2/n. This is
because W2 can be simplified in this case to ((n + 1)2/4n)Q.
As a result, we see that as n becomes large, κδ(∞) ≈ σ2.

4.3. Convergence Properties for Hypercube Networks. For a
hypercube network Hn, the DCTS algorithm in (8) produces
a global synchronization error with the following properties:

Δtmax = 0,

σ2
Δt ≥

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, when ϑn is even,

εσ2
ϑn∑

i=1

(
ϑn
i

)
λi, when ϑn is odd,

σ2
Δt ≤ εσ2ϑn min

⎧
⎨
⎩max{nλi}, ϑn

ϑn∑

i=1

(
ϑn
i

)
λi

⎫
⎬
⎭,

(20)

where ϑn = log2n and λi = 1/(4i − 4εi2), i = 1, . . . , ϑn.
Since Δtmax = 0, the hypercube network is also time delay
balanced.

5. Simulation Results

The simulation parameters are described as follows: initial
time phase of node i is (i − 1/2)T/n, i = 1, . . . ,n, where
T = 1000μs, and the standard deviation of delay variance
is σ = 1μs. The simulation results are based on 5000 runs.
(Trends similar to the ones noted below were observed when
initial time offsets between nodes were arbitrary (e.g., when
they were uniformly distributed over [0,T]). We use this
fixed offset assumption here for comparison purposes.)

5.1. Structured Networks. In our simulations of structured
networks, we assume ucp = Tc + �c/c = 10μs and the
optimal constant step size is εopt. The simulation results
and asymptotic mean square time synchronization errors
for structured networks with 16 nodes are shown in
Figure 5. The asymptotic mean square (steady-state) time
synchronization errors σ2

Δt are calculated from (16). It can
be seen that as the time index increases, the mean square
time synchronization errors approach their respective steady
state values when using DCTS with Gaussian delay. As
expected, DCTS algorithm in a hypercube network achieves

100

101

102

103

104

105

106

107

σ
2 Δ
t

0 50 100 150
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Figure 5: σ2
Δt as a function of the iteration time index for the DCTS

algorithm in structured networks with Gaussian delay between
network nodes.
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Figure 6: Random network with 16 nodes.

the smallest variance of synchronization error and the
fastest convergence among those structured networks. This
is primarily due to the high degree of connectivity in the
hypercube network, which also results in the smallest value
of εopt.

5.2. Random Networks. We also present here simulation
results for a random network comprised of n nodes that
were randomly generated with uniform distribution over a
unit square kilometer; two nodes were assumed connected
if the distance between them was less than η, a predefined
threshold. One realization of such a network with 16 nodes
is shown in Figure 6. We assume that the average distance
between two nodes is 0.5 km.
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Figure 7: Disagreement evolution of the DCTS algorithm in a
random network with Gaussian delay.

Figure 7 shows the simulation results of E[δi(k)] in a
particular realization of the random network. We choose εopt

for this simulation. It can be seen that, asymptotically, there
exists global synchronization error between some pairs of
nodes, and Δtmax = 26.4130μs for this random network.
If we specify a threshold ΔtTh to be greater than or equal
to this Δtmax, we call this network as “average consensus
achievable with tolerable synchronization error” as described
in Section 3.2.

As mentioned above, the generation of random networks
depends on two parameters: the number of users n and
the predefined threshold η. In order to better understand
the performance of DCTS algorithm with Gaussian delay
in such networks, we show the asymptotic values of σ2

Δt

and Δtmax in random networks as functions of n and η in
Figures 8 and 9. For a given value of n and η, the presented
asymptotic values were averaged over 1000 realizations of the
random network, where we excluded disconnected network
realizations. From the plots, we see that with the same
threshold η, the asymptotic values of σ2

Δt and Δtmax decrease
as the number of nodes increases. Similarly, with the same
number of nodes in the networks, σ2

Δt and Δtmax decrease
as threshold η increases. This is primarily due to the fact
that when the number of nodes or threshold increases, the
random network behaves more like a “time delay balanced
network”.

6. Conclusions

In this paper, we present theoretical results on the conver-
gence of the DCTS algorithm for wireless sensor networks
with general Gaussian delay between nodes. Specifically, we
compute the asymptotic expectation and mean square of
the global synchronization error of the DCTS algorithm.
The results lead to the definition of a time delay balanced
network in which average timing consensus between nodes
can be achieved despite random delays. Furthermore, several
structured network architectures are studied as examples,
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Figure 8: σ2
Δt as a function of the number of nodes and threshold η

for the DCTS algorithm in random networks with Gaussian delay.
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Figure 9: Δtmax as a function of the number of nodes and threshold
η for the DCTS algorithm in random networks with Gaussian delay.

and their associated simulation results are used to validate
analytical findings. In the future, we intend to investigate the
effects of skew, link failure, and other practical conditions
when utilizing the DCTS algorithm in wireless sensor
networks.

Appendices

A. Proof of Lemma 2

Proof. Define δ̃(k) = δ(k)− E[δ(k)]. Then, the dynamics of
this vector is given as follows:

δ̃(k) = Pδ̃(k − 1) + εQAv(k − 1). (A.1)

To prove this lemma, we can consider the evolution of
covariance matrix of disagreement vector Σδ(k) instead since

E
[
δ̃(k)Tδ̃(k)

]
= tr[Σδ(k)] = tr

{
E
[
δ̃(k)δ̃(k)T

]}
. (A.2)
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Then, the proof of the lemma is equivalent to proving the
following statement:

Σδ(k) = Pkδ(0)δ(0)TPk + ε2σ2
k−1∑

l=0

PlQA2QPl, (k ≥ 1).

(A.3)

The statement is obviously true for k = 1. Now let us
assume that the statement is true when k = m, (m > 1), that
is,

Σδ(m) = Pmδ(0)δ(0)TPm + ε2σ2
m−1∑

l=0

PlQA2QPl. (A.4)

When k = m + 1, we have

Σδ(m + 1) = E
{[
Pδ̃(m)+εQAv(m)

][
Pδ̃(m)+εQAv(m)

]T
}

= Pm+1δ(0)δ(0)TPm+1

+ ε2σ2
m∑

l=1

PlQA2QPl + ε2σ2QA2Q

= Pm+1δ(0)δ(0)TPm+1 + ε2σ2
m∑

l=0

PlQA2QPl.

(A.5)

Therefore, Σδ(m + 1) has the exact same form as (A.3)
for k = m + 1. Thus, (10) is valid, and we can conclude the
proof.

B. Proof of Theorem 2

Before proving the theorem, first we present some known
results.

Theorem 3. For any matrix A1 and any symmetric matrix A2,
let A1 = (A1 + AT

1 )/2, then one has [14]
n∑

i=1

λn−i+1

(
A1

)
λi(A2) ≤ tr(A1A2) ≤

n∑

i=1

λi
(
A1

)
λi(A2),

(B.1)

where λi(·) denotes the ith smallest eigenvalue of a matrix. In
particular, if A2 is a positive semidefinite matrix, one has

λ1

(
A1

)
tr(A2) ≤ tr(A1A2) ≤ λn

(
A1

)
tr(A2). (B.2)

If A1 is a positive semidefinite matrix, replacing A1 with
A2 in (B.2), we have [15]

λ1

(
A2

)
tr(A1) ≤ tr(A1A2) ≤ λn

(
A2

)
tr(A1). (B.3)

Combining (B.2) with (B.3), we have the following theorem.

Theorem 4. If A1 and A2 are two positive semidefinite
matrices, one has

max{λ1(A1)tr(A2), λ1(A2)tr(A1)}
≤ tr(A1A2)

≤ min{λn(A1)tr(A2), λn(A2)tr(A1)}.
(B.4)

We can now prove Theorem 2.

Proof. We know that the eigenvalues of (L + K)−2 are 1 and
1/λ2

i (L), i = 2, . . . ,n. Also, λmax(Q) = 1 and λmin(Q) = 0.
Recall that

λi(W2) = 1
2ελi(L)− ε2λ2

i (L)

= 1
2

[
1

ελi(L)
+

1
2− ελi(L)

]
, i = 2, . . . ,n.

(B.5)

Since ε ∈ (0, 2/λn(L)), the eigenvalues ofW2 are nonnegative.
Thus, λmin(W2) = 0. In addition, W2 and A2 are positive
semidefinite matrices with tr(A2) = Dn. For a time delay
unbalanced network, Qu /= 0. Based on (16) and (B.4), σ2

Δt is
upper bounded by

σ2
Δt ≤

‖uQ‖2

min
{
λ2

2(L), 1
} + ε2σ2tr

(
W2A

2)

≤ uTQu
min

{
λ2

2(L), 1
}

+ ε2σ2 min
{
λmax(W2)tr

(
A2), λmax

(
A2)tr(W2)

}

≤ ‖u‖2

min
{
λ2

2(L), 1
}

+ min

⎧
⎨
⎩max

{
εσ2Dn

2λi(L)− ελ2
i (L)

}
,

n∑

i=2

εσ2λmax
(
A2
)

2λi(L)− ελ2
i (L)

⎫
⎬
⎭.

(B.6)

From [16], we know that λn(L) ≥ (n/(n− 1)) max{di} >
max{di} > 1, ∀i ∈ V. Then, σ2

Δt is lower bounded by

σ2
Δt ≥

‖uQ‖2

max
{
λ2
n(L), 1

} + ε2σ2tr
(
W2A

2)

≥ uTQu
λ2
n(L)

+ ε2σ2 max
{
λmin(W2)tr

(
A2), λmin

(
A2)tr(W2)

}

= uTQu
λ2
n(L)

+
n∑

i=2

εσ2λmin
(
A2
)

2λi(L)− ελ2
i (L)

.

(B.7)

This completes the proof.

References

[1] D. Culler, D. Estrin, and M. Srivastava, “Overview of sensor
networks,” Computer, vol. 37, no. 8, pp. 41–49, 2004.

[2] A. Scaglione and R. Pagliari, “Non-cooperative versus coop-
erative approaches for distributed network synchronization,”
in Proceedings of the 5th Annual IEEE International Conference
on Pervasive Computing and Communications Workshops (Per-
ComW ’07), pp. 537–541, White Plains, NY, USA, March 2007.

[3] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of
the IEEE, vol. 95, no. 1, pp. 215–233, 2007.



EURASIP Journal on Wireless Communications and Networking 9

[4] L. Schenato and G. Gamba, “A distributed consensus protocol
for clock synchronization in wireless sensor network,” in
Proceedings of the 46th IEEE Conference on Decision and
Control (CDC ’07), pp. 2289–2294, New Orleans, La, USA,
December 2007.

[5] O. Simeone and U. Spagnolini, “Distributed time synchroniza-
tion in wireless sensor networks with coupled discrete-time
oscillators,” EURASIP Journal on Wireless Communications
and Networking, vol. 2007, Article ID 57054, 13 pages, 2007.

[6] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus
with least-mean-square deviation,” Journal of Parallel and
Distributed Computing, vol. 67, no. 1, pp. 33–46, 2007.

[7] H. S. Abdel-Ghaffar, “Analysis of synchronization algorithms
with time-out control over networks with exponentially
symmetric delays,” IEEE Transactions on Communications, vol.
50, no. 10, pp. 1652–1661, 2002.

[8] J. Proakis, Digital Communications, McGraw-Hill, Boston,
Mass, USA, 4th edition, 2000.

[9] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time
synchronization using reference broadcasts,” in Proceedings
of the 5th Symposium on Operating Systems Design and
Implementation (OSDI ’02), pp. 147–163, Boston, Mass, USA,
December 2002.

[10] R. Olfati-Saber and R. M. Murray, “Consensus problems in
networks of agents with switching topology and time-delays,”
IEEE Transactions on Automatic Control, vol. 49, no. 9, pp.
1520–1533, 2004.

[11] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge
University Press, Cambridge, UK, 1985.

[12] L. Xiao and S. Boyd, “Fast linear iterations for distributed
averaging,” in Proceedings of the 42nd IEEE Conference on
Decision and Control (CDC ’03), vol. 5, pp. 4997–5002, Maui,
Hawaii, USA, December 2003.

[13] W. C. Lindsey, F. Ghazvinian, W. C. Hagmann, and K.
Dessouky, “Network synchronization,” Proceedings of the IEEE,
vol. 73, no. 10, pp. 1445–1467, 1985.

[14] J. B. Lasserre, “A trace inequality for matrix product,” IEEE
Transactions on Automatic Control, vol. 40, no. 8, pp. 1500–
1501, 1995.

[15] W. Xing, Q. Zhang, and Q. Wang, “A trace bound for a general
square matrix product,” IEEE Transactions on Automatic
Control, vol. 45, no. 8, pp. 1563–1565, 2000.

[16] B. Mohar, “Some applications of laplace eigenvalues of
graphs,” in Graph Symmetry: Algebraic Methods and Applica-
tions, G. Hahn and G. Sabidussi, Eds., vol. 497 of NATO ASI
Series C, pp. 225–275, 1997.


	1. Introduction
	2. Background and System Model
	3. Convergence Analysis of DCTS Algorithm with Gaussian Delay
	4. DCTS Algorithm with Gaussian Delay in Structured Networks
	5. Simulation Results
	6. Conclusions
	Appendices
	A. Proof of Lemma 2
	B. Proof of Theorem 2

	References

