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This contribution deals with phase noise estimation from pilot symbols. The phase noise process is approximated by an expansion
of discrete cosine transform (DCT) basis functions containing only a few terms.We propose a feedforward algorithm that estimates
the DCT coefficients without requiring detailed knowledge about the phase noise statistics. We demonstrate that the resulting
(linearized) mean-square phase estimation error consists of two contributions: a contribution from the additive noise, that equals
the Cramer-Rao lower bound, and a noise independent contribution, that results from the phase noise modeling error. We
investigate the effect of the symbol sequence length, the pilot symbol positions, the number of pilot symbols, and the number
of estimated DCT coefficients on the estimation accuracy and on the corresponding bit error rate (BER). We propose a pilot
symbol configuration allowing to estimate any number of DCT coefficients not exceeding the number of pilot symbols, providing
a considerable performance improvement as compared to other pilot symbol configurations. For large block sizes, the DCT-based
estimation algorithm substantially outperforms algorithms that estimate only the time-average or the linear trend of the carrier
phase.
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1. Introduction

Phase noise refers to random perturbations in the carrier
phase, caused by imperfections in both transmitter and
receiver oscillators. Compensation of this phase noise is
critical since these disturbances can considerably degrade the
system performance. The phase noise process typically has a
low-pass spectrum [1]. A description of the characteristics
of oscillator phase noise is given in [2]. Discrete-time
processes that have a bandwidth which is considerably less
than the sampling frequency can often be modeled as an
expansion of suitable basis functions, that contains only
a few terms. Such a basis expansion has been successfully
applied in the context of channel estimation and equalization
in wireless communications, where the coefficients of the
channel impulse response are low-pass processes with a
bandwidth that is limited by the Doppler frequency [3–5].
Several methods trying to tackle the phase noise problem
exist.

(i) Designing oscillators operating at low-phase noise
reduces the need of accurate phase noise compensation
algorithms. This, however, leads to expensive oscillators
which are difficult to integrate on chip [6–8].

(ii) Phase noise can be tracked by means of a feedback
algorithm that operates according to the principle of the
phase-locked loop (PLL). As feedback algorithms give rise to
rather long acquisition transients, they are not well suited to
burst transmission systems [9, 10].

(iii) The observation interval is divided into subintervals
and a feedforward algorithm is used to estimate within each
subinterval the local time-average (or the linear trend) of
the phase [9–11]. This corresponds to approximating the
phase noise by a function that is constant (or linear) within
each subinterval. Such algorithms avoid the long acquisition
transients encountered with feedback algorithms. However,
in order that the piecewise constant (or linear) approxima-
tion of the phase noise be accurate, the subintervals should
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be short, in which case a high sensitivity to additive noise
occurs.

(iv) Recently, iterative joint estimation and decod-
ing/detection algorithms have been proposed that make use
of the a priori statistics of the phase noise process. A factor
graph approach for the estimation of the Markov-type phase
noise has been presented in [12, 13], while in [14, 15]
sequential Monte Carlo methods combined with Kalman
filtering are used to perform detection in the presence of
phase noise. These algorithms are computationally rather
complex, prevent the use of off-the-shelf decoders, and
assume detailed knowledge about the phase noise statistics
at the receiver. Less complex iterative phase noise estimation
algorithms based on Wiener filtering have been presented
in [16], but still require knowledge about the phase noise
autocorrelation function at the receiver.

In this contribution, we apply the basis expansion model
to the problem of phase noise estimation from pilot symbols
only, using the orthogonal basis functions from the discrete
cosine transform (DCT). In contrast to the case of channel
estimation, the phase noise does not enter the observa-
tion model in a linear way. Section 2 presents the system
description which includes the observation model and a
general phase noise model. Also, the phase noise estimation
algorithm, based on the estimation of only a few DCT
coefficients, is derived. Section 3 contains the performance
analysis of the proposed algorithm in terms of the mean-
square error (MSE) of the phase estimate. The behavior of
the linearized model in the frequency domain is examined
in Section 4. Analysis results are confirmed by computer
simulations in Section 5, which consider both the mean-
square phase estimation error and the associated bit error
rate (BER) degradation. Section 6 gives a complexity analysis
of our algorithm. Conclusions are drawn in Section 7.

2. SystemDescription

We consider the transmission of a block of K data symbols
over an AWGN channel that is affected by phase noise. The
resulting received signal is represented as

r(k) = a(k)e jθ(k) + w(k) for k = 0, . . . ,K − 1, (1)

where the index k refers to the kth symbol interval of
length T , {a(k)} is a sequence of data symbols with symbol
energy E[|a(k)|2] = Es, the additive noise {w(k)} is a
sequence of i.i.d. zero-mean circularly symmetric complex-
valued Gaussian random variables with E[|w(k)|2] = N0,
and θ(k) is a time-varying phase noise process with K× K
correlation matrix Rθ . The symbol sequence {a(k)} contains
KP known pilot symbols at positions ki, i = 0, . . . ,KP − 1,
with constant magnitude |a(ki)|2 = Es. From the observation
of the received signal at the pilot symbol positions ki,

an estimate ̂θ(k) of the time-varying phase θ(k) is to be
produced. This phase estimate will be used to rotate the
received signal before data detection, that is, the detection of

the data symbols is based on {z(k)} = {r(k)exp(− j ̂θ(k))}.
The detector is designed under the assumption of perfect

carrier synchronization, that is, ̂θ(k) = θ(k). For uncoded

transmission, the detection algorithm reduces to symbol-by-
symbol detection:

â(k) = arg min
a∈A

∣

∣z(k)− a
∣

∣

2
, k /∈

{

ki, i = 0, . . . ,KP − 1
}

(2)

with A denoting the symbol constellation. The phase θ(k)
can be represented as a weighed sum of K basis functions
over the interval [0,K − 1]:

θ(k) =
K−1
∑

n=0

xnψn(k), k = 0, . . . ,K − 1. (3)

As θ(k) is essentially a low-pass process, it can be well
approximated by the weighed sum of a limited number N(�
K) of suitable basis functions:

θ(k) ≈
N−1
∑

n=0

xnψn(k), k = 0, . . . ,K − 1. (4)

In this contribution, we make use of the orthonormal
discrete cosine transform (DCT) basis functions, that are
defined as
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(5)

Hence, from (3), xn is the nth DCT coefficient of θ(k).
As ψn(k) has its energy concentrated near the frequencies
n/2KT and−n/2KT , the DCT basis functions are well suited
to represent a low-pass process by means of a small number
of basis functions.

In the following, we produce from the observation
{r(ki)} at the pilot symbol positions ki, with i = 0, . . . ,KP−1,
an estimate x̂n of the coefficients xn, with n = 0, . . . ,N − 1,
using the phase model (4) with equality. The final estimate
̂θ(k) is obtained by computing the inverse DCT of {x̂n}:

̂θ(k) =
N−1
∑

n=0

x̂nψn(k) for k = 0, . . . ,K − 1. (6)

However, as (4) is not an exact model of the true phase
θ(k), the phase estimate is affected not only by the additive
noise contained in the observation, but also by a phase noise
modeling error. Considering the observations (1) at instants
ki, and assuming that (4) holds with equality, we obtain

rP = D(x)aP + wP , (7)

where for i = 0, . . . ,KP − 1; (rP)i = r(ki), (wP)i =
w(ki), (aP)i = a(ki), and D(x) is a KP × KP diagonal matrix
with

(

D(x)
)

i = e j(ΨPx)i (8)

and (ΨP)i,n = ψn(ki), (x)n = xn, n = 0, . . . ,N − 1 with
N ≤ KP . The KP × 1 vectors rP, aP, and wP can be viewed
as resulting from subsampling {r(k)}, {a(k)}, and {w(k)} at
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the instants ki that correspond to the pilot symbol positions.
Similarly, the nth column of the KP × N matrix ΨP is
obtained by subsampling the n th DCT basis function ψn(k).
Maximum likelihood estimation of x from rP results in

x̂ML = arg min
x

∣

∣rP −D(x)aP
∣

∣

2
. (9)

As x enters the observation rP in a nonlinear way, the ML
estimate is not easily obtained. Therefore, we resort to a
suboptimum ad hoc estimation of x, which is based on
the argument (angle) of the complex-valued observations.
However, as the function arg(z) reduces the argument of z
to an interval [−π,π], taking arg(r(ki)) might give rise to
phase wrapping, especially when the time-average of θ(k) is
close to −π or π. In order to reduce the probability of phase
wrapping, we first rotate the observation r over an angle θavg

that is close to the time-average of θ(k), then we estimate the
DCT coefficients of the fluctuation θ(k)− θavg and finally we

compute the phase estimate ̂θ(k). We select

θavg = arg

(KP−1
∑

i=0

r
(

ki
)

)

(10)

and construct r′ with

(r′)i = r′
(

ki
)

= arg
(

r(ki
)

a∗
(

ki
)

exp
(− jθavg

))

for i = 0, . . . ,KP − 1.

(11)

We obtain an estimate x̂′ of the DCT coefficients of the
fluctuation θ(k) − θavg through a least-squares fit x̂′ =
arg minx|r′ −ΨPx|2, yielding

x̂′ = (ΨP
TΨP

)−1
ΨP

Tr′. (12)

In order that (ΨP
TΨP)

−1
exists, we need N ≤ KP . Finally, the

phase estimate is given by

̂θ = θavg1K + ΨKx̂′

= θavg1K + Mr′,
(13)

where M = ΨK(ΨP
TΨP)

−1
ΨP

T and (̂θ)k = ̂θ(k), (1K)k =
1, (ΨK)k,n = ψn(k), k = 0, . . . , K − 1; n = 0, . . . ,N − 1.
Note from (13) that the estimation algorithm does not need
specific knowledge about the phase noise process. As r′(ki)
from (11) can be viewed as a noisy version of θ(ki) − θavg,

the phase estimate ̂θ from (13), or, equivalently, the phase

estimate ̂θ(k) from (6), can be interpreted as an interpolated
version of the subsampled noisy phase trajectory. The
estimation of the phase trajectory involves the inversion of
the N×N matrix ΨP

TΨP, which depends on the pilot symbol
positions {ki, i = 0, . . . ,KP − 1}. Now, we point out that the
pilot symbol positions can be selected such that ΨP

TΨP is
diagonal, or, equivalently, that the N columns of the KP ×N
matrix ΨP are orthogonal. Such selection of {ki} avoids the
need for matrix inversion in (12). Denoting by φn(i) the

orthonormal DCT basis functions of length KP , it is easily
verified that selecting {ki} such that

ki = iK

KP
+
K − KP

2KP
, i = 0, . . . ,KP − 1 (14)

gives rise to

ψn
(

ki
) =

√

KP

K
φn(i) for n = 0, . . . ,KP − 1, (15)

so that

ΨP
TΨP = KP

K
IN (16)

with IN denoting the N × N identity matrix. Equations (12)
and (13) then reduce to

x̂′ = K

KP
ΨP

Tr′, (17)

̂θ = θavg1K +
K

KP
ΨKΨP

Tr′. (18)

In order that all ki from (14) be integer, K must be an odd
multiple of KP , that is, K = (2d + 1)KP , yielding ki =
(2d+1)i+d. The resulting pilot symbol configuration is suited
for estimating any number of DCT coefficients not exceeding
KP . WhenK is not an odd multiple ofKP , rounding the right-
hand side of (14) to the nearest integer gives rise to pilot
symbol positions that still yield an essentially diagonal matrix
ΨP

TΨP in which case the simplified equations (17) and (18)
can still be used.

3. Performance Analysis

As the observation vector rP is a nonlinear function of the
carrier phase, an exact analytical performance analysis is
not feasible. Instead, we will resort to a linearization of
the argument function in (11) in order to obtain tractable
results.

Linearization of the argument function yields

r′(i) = arg
(

r
(

ki
)

a∗
(

ki
)

e− jθavg
)

= arg
(

e j(θ(ki)−θavg)(Es + a∗
(

ki
)

w
(

ki
)

e− jθ(ki)
))

≈ θ
(

ki
)− θavg + nP(i)

(19)

for i = 0, . . . ,KP − 1, where {nP(i)} is a sequence of i.i.d.
zero-mean Gaussian random variables with variance N0/2Es.
Note that (19) incorporates the true phase θ(ki) instead of
the approximate model (4), so that our performance analysis
will take the modeling error into account. In order that the
linearization in (19) be valid, we need |θ(ki) − θavg| < π

(because |arg(z)| < π) and |w(ki)|2 � Es; hence, the phase
noise fluctuations should not cause phase wrapping and
Es/N0 should be sufficiently large. Substituting (19) into (13)
yields

̂θ =M
(

θP + nP
) =MSθ + MnP , (20)
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where (nP)i = nP(i), (θP)i = θ(ki), and the KP × K matrix S
is such that its ith row has a 1 at the kith column and zeroes
elsewhere (i = 0, . . . ,KP − 1). The estimation error resulting
from (20) is given by

̂θ − θ = (MS− IK
)

θ + MnP , (21)

where IK denotes the K ×K identity matrix. If the model (4)
was exact, we would have θ = ΨKx and θP = ΨPx, yielding

̂θ = θ + MnP , (22)

in which case the estimation error would be caused only by
the additive noise.

As a performance measure of the estimation algorithm,
we consider the mean-square error (MSE), defined as

MSE = 1
K
E
[

trace((̂θ − θ)(̂θ − θ)T)
]

. (23)

Substituting (21) into (23) yields

MSE = 1
K

N0

2Es
trace

((

ΨP
TΨP

)−1)
+ MSE∞, (24)

where

MSE∞ = 1
K

trace
((

MS− IK
)

Rθ
(

MS− IK
)T)

. (25)

The first term in (24) denotes the contribution from the
additive noise, whereas the second term in (24) constitutes
an MSE floor, caused by the phase noise modeling error.
The phase noise statistics affect the MSE floor through the
autocorrelation matrix Rθ . The MSE floor decreases with
increasing N (because the modeling error is reduced when
more DCT coefficients are taken into account), whereas the
additive noise contribution to the MSE increases with N
(because N parameters need to be estimated). Hence, there
is an optimum value of N that minimizes the MSE.

From the nonlinear observation model (7), which
assumes that (4) holds with equality, we compute the
Cramer-Rao lower bound on the MSE (23) resulting from
any unbiased estimate x̂ of the DCT coefficients of θ(k):

MSE ≥ 1
K

trace
(

J−1). (26)

In (26), J denotes the Fisher information matrix related to
the estimation of x from (7), which is found to be

(J)n,n′ =
2Es
N0

((

ΨP
TΨP

)−1)

n,n′ . (27)

Combining (26) with (27) yields the following performance
bound:

MSE ≥ 1
K

N0

2Es
trace

((

ΨP
TΨP

)−1)
. (28)

Comparison of (24) and (28) indicates that our ad hoc algo-
rithm (13) yields the minimum possible (over all unbiased
estimates) noise contribution to the MSE (assuming that the
linearization of the observation model is valid).

When the pilot symbol positions {ki} are selected
according to (14), the Cramer-Rao bound (28) reduces to

MSE ≥ N0

2Es

N

KP
, (29)

which indicates that the sensitivity to additive noise increases
with the number (N) of estimated DCT coefficients.

4. Frequency-Domain Analysis

After linearization, (20) relates the phase estimate ̂θ to the
actual phase θ and the additive noise nP . In the absence of
additive noise, the estimator can be viewed as a linear system

that transforms θ into ̂θ by means of the transfer matrix MS.
In order to analyze this system in the frequency domain, we
consider an input θn with (θn)k = exp( j2πkn/K), that is, θn
contains only the frequency n/K . We investigate the mean-
square error MSEn between the input θn and the output
̂θ =MSθn; MSEn is given by (25), with Rθ replaced by θnθ

H
n ,

where the superscript H indicates conjugate transpose.
As θn is periodic in n with period K , the same periodicity

holds for MSEn. Assuming the pilot symbol positions are
according to (14) with K = 105 and Kp = 15, Figure 1
shows MSEn as a function of n/K , with n/K in the interval
[−1/2, 1/2] and N = 7. The behavior of MSEn is explained by
noting that subsampling θn at the instants ki (with spacing
KP) gives rise to aliasing. Frequencies n/K and (n + KP)/K
yield the same subsampled phase trajectory. In the following
discussion, the intervals IKP and IN are defined as [−(KP −
1)/(2K), (KP−1)/(2K)] and [−(N−1)/(2K), (N−1)/(2K)],
respectively; note that IN ⊂ IKP .

(i) As the first N basis functions of the DCT transform
cover the frequency interval IN , we get ̂θn ≈ θn and
MSEn ≈ 0 when n/K is in IN .

(ii) When n/K is in the interval IKP , but outside IN , we get
̂θn ≈ 0 and MSEn ≈ 1.

(iii) Suppose n = mKP + n′, with m /= 0, |m| < K/(2KP)
and n′ in IKP , because of aliasing, θn is interpreted as
θn′exp( jφm) with φm = 2πm(K − KP)/(2K). When

n′ is in the interval IN , we get ̂θn ≈ θn′exp( jφm). The
resulting estimation error is the sum of two complex
exponentials with frequencies n/K and n′/K , yielding

MSEn ≈ 2. When n′ is not in IN , we get ̂θn ≈ 0 and
MSEn ≈ 1.

It follows from Figure 1 that the estimator can be viewed
as a low-pass system with bandwidth B = (N − 1)/(2K).
Basically, the frequency components n/K of θ with |n/K| < B
are tracked by the estimator, whereas the components with
|n/K| > B contribute to the MSE.

5. Simulation Results

In this section, we assess the performance of the proposed
technique in terms of the MSE of the phase estimate
and the resulting BER degradation by means of computer
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simulations. In our simulations, we will consider two types of
phase noise, that is, Wiener phase noise and first-order phase
noise. The (discrete time) first-order phase noise process θ(k)
can be viewed as the output of a one-pole filter driven by
white Gaussian noise:

θ(k + 1) = (1− α)θ(k) + Δ(k), (30)

where {Δ(k)} is a sequence of i.i.d. zero-mean Gaussian
random variables with variance σ2

Δ. The corresponding phase
noise power spectrum and phase noise variance are given by

S1st-order
θ

(

e j2π f T
) = σ2

Δ
∣

∣exp( j2π f T)− 1 + α
∣

∣

2

≈ σ2
Δ

| j2π f T + α|2 ,

(31)

σ2
θ =

σ2
Δ

α(2− α)
≈ σ2

Δ

2α
. (32)

The approximations in (31) and (32) hold for f T � 1/2
and α � 1. It follows from (31) that α/2πT is the 3 dB
frequency of the power spectrum. The first-order phase noise
models the phase instabilities of an oscillator signal that
results from a phase-locked loop (PLL) circuit. The (discrete-
time) Wiener phase noise θ(k) is described by the following
system equation:

θ(k + 1) = θ(k) + Δ(k), k = 0, . . . ,K − 2, (33)

where the initial phase noise value θ(0) is uniformly
distributed in [−π,π] and Δ(k) has the same meaning as
in (30). Hence, θ(k) can be viewed as the output of an
integrator with a white noise input. From (33), it follows
that the variance of the Wiener phase noise increases linearly
with the time index k, which indicates that the process is
nonstationary.

Comparing (33) and (30), it follows that the Wiener
phase noise can be interpreted as a limiting case of first-order
phase noise, in the limit for α → 0. Hence, one can formally
define the Wiener phase noise spectrum as the limit of the
first-order spectrum (31); for α → 0,

SWiener
θ

(

e j2π f T
) = σ2

Δ
∣

∣exp( j2π f T)− 1
∣

∣

2 ≈
σ2
Δ

4π2 f 2T2
, (34)

where the approximation in (34) holds for | f T| � 1/2. Note
that the Wiener phase noise spectrum becomes unbounded
at f = 0, which is a consequence of the variance increasing
linearly with time. In contrast, the complex envelope exp( jθ)
of the oscillator signal can be shown to be a stationary
process (with [1, the Lorentzian power spectrum]). The
Wiener phase noise model is often used to describe the phase
noise process of a free-running oscillator, although also more
elaborate models exist, involving a phase noise spectrum that
consists of a sum of terms of the form Am f −m, m = 0, . . . , 4
[10, 17–19]. In order to reduce the strong low-frequency
components of the phase noise resulting from a free-running
oscillator, the oscillator is often incorporated in a PLL circuit;
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Figure 1: MSE as a function of n/K for K = 105, KP = 15, and
N = 7.
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a first-order PLL gives rise to the first-order phase noise
process (30) [17].

Figure 2 shows the first-order phase noise power spec-
trum, normalized by its value S0 at f = 0, as a function
of the normalized frequency f / f3 dB, with f3 dB = α/(2πT);
also displayed is the Wiener phase noise power spectrum
(normalized by the same S0). As for both types of phase
noise, the same value of σ2

Δ has been used, both spectra have
the same high-frequency content.

In the following simulations, Wiener phase noise is
assumed, unless noted otherwise. First, we assume trans-
mission of a block of length K = 105 symbols, consisting
of KD = 90 uncoded QPSK data symbols and KP = 15
constant-energy pilot symbols that are inserted into the
sequence according to (14).

(i) Figure 3 shows the MSE of the phase estimate in the
absence of phase noise as a function of Es/N0 when N = 1, 4
and 10 DCT coefficients are estimated; in addition, these
simulation results are compared to the corresponding CRB
(29). We observe that the CRB is achieved for sufficiently
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Figure 3: MSE in the absence of phase noise compared to the
corresponding CRB. K = 105, KP = 15.

high values of Es/N0. For small Es/N0, the MSE exceeds
the CRB, which is in agreement with the fact that the
linearized observation model from (19) is no longer accurate
in the low-SNR region. Furthermore, it is confirmed that
the contribution from the additive noise to the MSE is
proportional to the number of estimated coefficients N .

(ii) Figure 4 shows the MSE as a function of Es/N0 for
N = 1, 4 and 10, but this time in the presence of Wiener
phase noise with σ2

Δ = 0.0027 rad2 (which corresponds to
“strong” phase noise, with σΔ= 3◦). We observe an MSE
floor in the high-Es/N0 region, which can be reduced by
increasing the number N of estimated coefficients. Figure 4
also confirms that for low Es/N0, the MSE increases when N
increases. This high-Es/N0 and low-Es/N0behaviors indicate
that for given K , KP , and Es/N0, the MSE can be minimized
by proper selection of N .

(iii) Figure 5 shows the bit error rate (BER) as a function
of Eb/N0 (Eb is the energy per transmitted bit, Es = 2(1−η)Eb
for QPSK) for N = 1, 4, and 10. The reference BER curve
corresponds to a system with perfect synchronization and no
pilot symbols (η = 0). We observe that for low Eb/N0, it is
sufficient to estimate only the time-average of the phase (i.e.,
N = 1). Estimating a higher number of DCT coefficients can
lead to a worse BER performance for low Eb/N0 because the
MSE of the phase estimate due to additive noise increases
with N . At high Eb/N0, a BER floor occurs which decreases
with increasing N , so in this region it becomes beneficial
to estimate more than just one DCT coefficient. Hence, the
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Figure 4: MSE when Wiener phase noise with σΔ= 3◦ is present
K = 105, KP = 15.

optimal number of estimated coefficients Nopt will depend
on the operating Eb/N0.

(iv) Figure 6 compares the BER degradations at
BERref= 10−4 resulting from Wiener phase noise and first-
order phase noise; the value of σ2

Δ is the same for both
phase noise processes, such that the Wiener phase noise
spectrum and first-order phase noise spectrum are the
same for large f . (The BER degradation caused by some
impairment is characterized by the increase (in dB) of Eb/N0

(as compared to the case of no impairment) needed to
maintain the BER at a specified reference level.) As the 3 dB
frequency α/(2πT) of the first-order phase noise is less than
BT , the frequency contents of the Wiener phase noise and
the first-order phase noise outside the estimator bandwidth
are essentially the same, and the corresponding BER curves
are nearly coincident; this is in agreement with the analysis
from Section 4, where we showed that the low-frequency
components of the phase noise practically do not contribute
to the phase error. It is also confirmed that there is an
optimum value of N that minimizes the BER degradation;
this optimum N increases with σΔ.

Next, we study the influence of the pilot symbol positions
in the symbol sequence, assuming Wiener phase noise
with σΔ= 3◦. The following scenarios are considered (see
Figure 7), with KP = 15.

(i) The pilot symbols are inserted according to (14)
(SCEN1).
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(ii) All pilot symbols are located in the middle of the
sequence (SCEN2).

(iii) 
KP/2� pilot symbols are inserted at the beginning of
the sequence, the remaining �KP/2� pilot symbols are
placed at the end (SCEN3).

(iv) The KP pilot symbols are placed equidistantly at
positions {0,K/KP , ..., (KP − 1)K/KP} (SCEN4).

(v) We divide the total number of 15 pilot symbols into
3 clusters of 5 consecutive pilot symbols each. The
3 clusters are centered at the positions (14) that
correspond to KP = 3 (SCEN5).

(vi) We divide the total number of 15 pilot symbols into
5 clusters of 3 consecutive pilot symbols each. The
5 clusters are centered at the positions (14) that
correspond to KP = 5 (SCEN6).

Figure 8 shows the BER for each scenario with N =
4. We observe that SCEN2 and SCEN3 lead to essentially
the same BER performance, that turns out to be very
poor. The BER resulting from SCEN5 is slightly better, but
still poor. Much better BER performance is obtained for
SCEN1, SCEN4, and SCEN6, with SCEN1 yielding the best
performance. The poor performance resulting from SCEN2,
SCEN3, and SCEN5 comes from the poor conditioning
of the 15 × 4 matrix ΨP, yielding very large values when
computing the inverse ofΨP

TΨP. As the DCT basis functions
ψ0(k), . . . ,ψ3(k) change only slowly with k, SCEN2 yields a
matrix ΨP with nearly identical rows, so it behaves like a
matrix of rank 1. Similarly, the matrices ΨP that correspond
to SCEN3 and SCEN5 behave like matrices of ranks 2 and
3, respectively. Hence, when the pilot symbols are placed in
a number of clusters that are less than the number (N) of
DCT coefficients to be estimated, poor performance results.
For SCEN1, SCEN4, and SCEN6, the number of pilot symbol
clusters exceeds N ; the corresponding matrices ΨP are full-
rank (rank = 4), and good performance results. Note that
SCEN1 and SCEN4 can cope with values of N up to KP ,
whereas SCEN6 cannot handle values of N in excess of 5.

In the following, we investigate the influence of the
number of pilot symbols on the MSE and the BER. The
constant-energy pilot symbols are inserted into the data
sequence according to (14). For (14) to hold, the block length
K should be an odd multiple of the number of pilot symbols
KP . We assume a total block length K = 105 and simulate
the BER and MSE for KP = 7, 15, and 35. Figure 9 shows the
BER degradation at BER= 10−4 with respect to the reference
system, for a fixed ratio η = KP/K = 20% and various values
of the block length K . The BER degradation −10 log(1 − η)
due to the insertion of pilot symbols (which amounts to
0.97 dB for η = 0.2) is included. The following observation
can be made.

(i) For given block size K , there is an optimum number
Nopt of DCT coefficients to be estimated that minimizes the
BER degradation. This is consistent with the observation that
the MSE of the phase estimate can be minimized by a suitable
choice of N .

(ii) For very small K , Nopt = 1. The optimum value Nopt

increases with increasing K because more DCT coefficients
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Figure 5: BER when Wiener phase noise with σΔ= 3◦ is present.
K = 105, KP = 15.
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Figure 7: Pilot symbol insertion schemes.
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Figure 8: BER for different pilot symbol placement scenarios. K =
105, KP = 15, N = 4.

are needed to model the phase fluctuations when K gets
larger. Keeping N = 1 yields very large degradations when
K increases.

(iii) The BER degradation that corresponds to N = Nopt

exhibits a (broad) minimum as a function of K . As long as
the fluctuation of θ(k) about its time-average is small, so
that linearization of the argument function in (11) applies,
the degradation decreases with increasing K because the
number KP of noisy observations of the phase noise increases
when the ratio KP/K is fixed. However, for too large K ,
the fluctuation of the Wiener phase noise is so large that
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Figure 9: BER degradation for BER = 10−4 as function of N for
various K and fixed pilot symbol ratio η = KP/K = 20% and
σΔ= 3◦.

linearization is no longer valid (for Wiener phase noise, we
need Kσ2

Δ � 1 for the linearization to be accurate) and the
resulting degradation increases with increasing K .

For the considered scenario, the minimum degradation
occurs at (Kopt,Nopt) ≈ (400, 20) and amounts to about
2.1 dB. When the actual block size K exceeds Kopt, the
degradation can be limited by dividing the block in subblocks
of at most Kopt symbols, and estimating the phase trajectory
for each subblock separately.

Figure 10 shows the BER degradation when (1) η = 20%
and σΔ= 3◦ and (2) η = 10% and σΔ= 2◦, for the following
phase noise estimation algorithms.

(i) The proposed DCT-based algorithm with pilot sym-
bol placement according to SCEN1 (14) and selection
of the optimum N .

(ii) Estimation of only the time-average of the phase
noise, with the pilot symbols arranged according to
SCEN3.

(iii) The method from Luise et al. [11], with the pilot
symbols arranged according to SCEN3. The phase
noise over the total symbol block is approximated as a
linear interpolation between the average phase values
over the first and the second pilot symbol clusters .

We observe that estimating only the time-average or the
linear trend of the phase noise yields poor BER performance,
except for small K . For K = 10, the DCT-based algorithm
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Figure 10: Comparison of BER degradation for BER = 10−4 as
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also estimates the time-average only (because N = 1 is
optimum for K = 10); we observe that SCEN3 (with pilot
symbols at positions 0 and 9) performs slightly better than
the DCT-based algorithm (with pilot symbols at positions
2 and 7) for K = 10. However, when the block length is
increased, the DCT algorithm that estimates multiple DCT
coefficients outperforms both SCEN3 and Luise et al. and
leads to a BER degradation that decreases with increasing K
until an optimal value for K is reached.

6. Complexity Analysis

In order to assess the complexity of the proposed algo-
rithm, we determine the number of complex multiplications
required per symbol interval. The calculation of the second
term in (18) requires the highest number of computations.
This term can be evaluated in the following ways.

(1) In a first approach, (K/KP)ΨKΨP
Tr′ is calculated

via two matrix multiplications: first ΨP
T (dimension N ×

KP) and r′ (dimension KP × 1) are multiplied and then
(K/KP)ΨK (dimension K × N)and ΨP

Tr′ (dimension N ×
1) are multiplied. The resulting complexity is of the order
O(NKP + KN) ≈ O(KN), with the approximation holding
for K � KP . Hence, the complexity per symbol interval
amounts to O(N).

0

5

10

15

20

25

30

C
om

pu
ta

ti
on

al
co

m
pl

ex
it

y

10 100 1000

Block length K

DCT approach 1
DCT approach 3
Luise et al.

Figure 11: Complexity comparison for the proposed algorithm
(approaches 1 and 3) and for Luise et al. algorithm.

(2) In a second approach, (K/KP)ΨKΨP
Tr′ is calculated

via a single-matrix multiplication: (K/KP)ΨKΨP
T (dimen-

sion K×KP) and r′ (dimension KP×1) are multiplied. Taking
into account that (K/KP)ΨKΨP

T can be computed offline,
the resulting complexity per symbol isO(KP). AsN ≤ KP , the
first approach is to be preferred over the second approach.

(3) The third approach exploits the fact that ΨK and
ΨP are submatrices of K × K and KP × KP DCT transform
matrices, respectively. Hence, the two matrix multiplications
from the first approach can be replaced by an inverse
DCT transform (size KP) followed by a DCT transform
(size K). As K � KP , the complexity of the size-K DCT
dominates. The DCT of a vector {s(0), s(1), . . . , s(K − 1)}
of length K can be obtained by calculating the discrete
Fourier transform (DFT) of its even expansion {s(K −
1), . . . , s(1), s(0), s(0), s(1), . . . , s(K − 1)} (note that the even
expansion has length 2K). As the FFT algorithm used
for calculating the DFT of length M has a computational
complexity O(M log2(M)), the complexity of the size- K
DCT is O(2K log2(2K)), yielding a complexity per symbol
interval of O(log2(4K2)).

The complexity per symbol interval of the phase noise
estimation method used by Benvenuti et al. [11] is about
O(1). Figure 11 shows the order of complexity as a func-
tion of the block length K , for the proposed algorithm
(approaches 1 and 3) and for Luise et al. algorithm;
the result related to the first approach in the proposed
algorithm corresponds to taking for each K the value of
N that is optimum for σΔ= 3◦. Luise et al. algorithm has
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a smaller complexity than the proposed algorithm, but the
latter algorithm outperforms the former, especially when
the phase noise is strong. For the proposed algorithm,
we notice that matrix multiplication according to the first
approach leads to the lowest computational complexity for
K < 400. As K becomes larger than 400, calculation
via FFT (third approach) is less complex. At the point
(Kopt,Nopt) = (400, 20) yielding minimum BER degradation
(see Figure 9), the first and third approaches give rise to the
same complexity.

7. Conclusions and Remarks

In this contribution, we have considered an ad hoc feed-
forward data-aided phase noise estimation algorithm that
is based on the estimation of only a few (N) coefficients
of the DCT basis expansion of the time-varying phase. The
algorithm does not require detailed knowledge about the
phase noise statistics. Linearization of the observation model
has indicated that the mean-square error of the resulting
estimate consists of an additive noise contribution (that
increases with N) and an MSE floor caused by the phase
noise modeling error (that decreases with N). The noise
contribution coincides with the Cramer-Rao lower bound.

These analytical findings have been confirmed by means
of computer simulations. The influence of the position
and number KP of pilot symbols inserted into the sym-
bol sequence has been investigated. Computer simulations
were carried out for several pilot symbol configurations.
Arranging the pilot symbols according to (14), such that
the subsampled DCT basis functions remain orthogonal,
reduces the BER degradation as compared to the case of a
preamble/postamble or midamble pilot symbol arrangement
with estimation of only the time-average; in addition,
the configuration (14) allows to estimate up to KP DCT
coefficients with a reduced computational complexity. The
BER degradation can be minimized by a suitable choice of
block length K , the number KP of pilot symbols, and the
number N of DCT coefficients to be estimated.

The considered DCT-based phase estimation algorithm
makes use of the energy associated with the pilot symbols
only. Further research will involve the incorporation of the
DCT-based algorithm in an iterative phase noise estimation
algorithm that exploits soft decisions about the data symbols,
so that the resulting algorithm benefits from the energy
associated with the data symbols as well. The performance
and complexity of such an iterative algorithm will be
investigated and compared to other iterative algorithms
(such as those from [12–16]).
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