Hindawi Publishing Corporation

EURASIP Journal on Wireless Communications and Networking
Volume 2009, Article ID 617818, 15 pages
doi:10.1155/2009/617818

Research Article

Cross-Layer Explicit Link Status Notification to Improve
TCP Performance in Wireless Networks

Ji-Hoon Yun

Wireless Systems Lab., Samsung Electronics, 156-777 Suwon, South Korea

Correspondence should be addressed to Ji-Hoon Yun, ideakid@gmail.com

Received 17 January 2009; Accepted 28 April 2009

Recommended by Lawrence Yeung

To alleviate the performance degradation of conventional TCP in wireless networks, many schemes have been proposed so far.
One category of such schemes is the Explicit Loss Notification (ELN) scheme in which TCP senders are notified of wireless losses
so as to avoid congestion control against those losses. Thus the key design factor of the ELN scheme is how to detect wireless
losses accurately and rapidly. This paper proposes a new ELN scheme, in which wireless losses are detected by monitoring the
operation of the wireless link layer. By exploiting such cross-layer design, the proposed scheme can detect wireless losses without
additional transmission over the wireless link and thus achieves accurate detection with minimum delay. The proposed scheme
additionally sends new information, that is, Explicit Retransmission Start Notification, in order to prevent spurious timeouts of
the TCP senders. Furthermore, in order to handle packet reordering and avoid successive shrinking of a congestion window due to
multiple packet drops, a new TCP modification is proposed. Through intensive simulations, it is demonstrated that the proposed
scheme outperforms the other ELN schemes, and yields the throughput performance of more than 400% of TCP-Reno and 150%
of Snoop in the considered environments.

Copyright © 2009 Ji-Hoon Yun. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In recent years, wireless networks become more common in
real life and many services such as e-mail, web browsing, e-
commerce, and so fourth are available in the current wireless
networks. In the near future, wireless networks will provide
more services that are provided in the wired Internet, and
will gradually carry the traffic similar to that of the wired
networks. In the current wired networks, the majority of
traffic relies on the Transmission Control Protocol (TCP)
[1], which implies that the majority of traffic in the future
wireless networks may also use TCP for the same services.

TCP is the prevailing transport layer protocol that
provides the connection-oriented service and reliable trans-
mission by acknowledgment (ACK). It also has a delicate
congestion control mechanism [2] to deal with network
congestion in a distributed manner. However, it is reported
that TCP suffers from severe performance degradation in
wireless networks [3].

TCP was originally designed for the use in the wired
networks comprising reliable wired links and stationary

hosts. It assumes that packet losses and unusual delays result
from congestion in the network. Thus a TCP sender reduces
its congestion window size to alleviate the congestion when
it identifies the loss of a packet either by the arrival of several
duplicate ACKs or the absence of an ACK for the packet
within a timeout interval. However, wireless links can also
suffer from packet losses due to high Bit Error Rate (BER),
collisions in random access channels and handoffs in mobile
networks. We refer to such packet losses as wireless losses to
differentiate them from congestion losses. Although a packet
is lost in the wireless link, not by congestion, the TCP sender
reduces its congestion window size because the packet loss
assumes that it is due to congestion in the network. Such
TCP behavior results in significant throughput degradation
and high interactive delay.

Recently, many schemes have been proposed to improve
the end-to-end throughput of TCP in wireless networks. In
this paper, we refer to these sort of schemes to improve
the TCP performance against wireless losses as wireless
TCP as a whole. Wireless TCP can be classified into three
basic categories [4]: end-to-end schemes, split-connection

2 EURASIP Journal on Wireless Communications and Networking

schemes, and link-layer schemes. The end-to-end schemes
mostly use three techniques, that is, selective acknowledg-
ments [5], Explicit Loss Notification (ELN) [6-10], and
Bandwidth Estimation (BWE) [11-15]. (We do not consider
the split-connection schemes in this paper because they
violate the end-to-end semantics of a transport layer protocol
considerably and put much overhead on the base station.)

In ELN schemes, the TCP sender is notified of wireless
losses to preserve its congestion window. Although an ELN
scheme is used, the TCP sender may reduce its congestion
window even due to a wireless loss if the corresponding
loss notification arrives too lately or if the detection of
the wireless loss fails. Thus, how accurately and rapidly
wireless losses can be notified is the main concern of ELN
schemes. There have been various proposals which attempt
to achieve this goal. In Balakrishnan et al.’s scheme [6], the
TCP sequence numbers are cached at a Base Station (BS),
and if the packet whose sequence number is cached is lost,
the ELN bit of the ACK packet is set active by BS. In TCP
HACK [7], the TCP sender puts extra header checksum
bits in the options field of the TCP header. If the TCP
receiver receives a data segment of which the data portion
is corrupted while the header is intact, the receiver considers
it to be a wireless loss and sends an ACK with the reserved
bit for ELN set. EWLN [8] and TCP-ELN [9] are based on
the similar idea. LHP [10] tries to improve the detection
probability by fragmentation. In LHP, each data frame is
fragmented before being transmitted over the wireless link
and the first fragment which contains the TCP/IP header
is sent repeatedly prior to the rest of fragments until it is
successfully transmitted or all allocated link time slots for the
frame are exhausted. If the receiver does not receive the whole
frame except the first fragment, the receiver regards it as a
wireless loss and sends an ACK packet with the ELN bit set.

However, the previous ELN schemes have long detection
delay and nonzero detection failure probability. Balakrishnan
et al.’s scheme requires an exchange of additional data and
ACK packets over the wireless link for the detection of a
wireless loss, which adds additional transmission delay to
the detection delay. The delay gets even longer in poor
channel condition due to frequent retransmissions. The
other schemes require that a certain part of a data packet
should be transmitted successfully in order to detect its
wireless loss. However, if the wireless channel condition is
poor, there is the possibility that such a part is also corrupted.
Also, handoff or collision may result in the loss of the whole
packet. In such cases, the TCP receiver will not detect the
wireless loss correctly. Even though the receiver detects the
wireless loss correctly, the ELN ACK should be transmitted
over the wireless link. This takes an additional delay until
loss notification and increases the possibility of notification
failure further.

Meanwhile, a TCP sender can invoke congestion control
due to the acknowledgment timeout of a packet while BS is
still attempting to transmit the packet in the wireless link.
This is called spurious timeout and more likely to occur if BS
has slow loss recovery mechanism (e.g., 80~100 milliseconds
for loss awareness in UMTS Rel’99) [16]. The above schemes
cannot prevent spurious timeout because their notification

process gets started after BS finishes the whole transmission
procedure for a packet.

In this paper, a new ELN scheme, called (Link Layer
originated Explicit Link Status Notification) LL-ELSN, is
proposed. LL-ELSN does not require additional transmission
over a wireless link for loss notification and thus enables
accurate detection with minimum delay. This is achieved
by exploiting cross-layer design. The key idea of LL-ELSN
is to send ELN when a data frame is discarded at the
wireless link layer due to excessive retry. Along with ELN, the
proposed scheme sends a new information, that is, Explicit
Retransmission Start Notification (ERSN), which notifies the
TCP sender of the start of the retransmission process at the
wireless link layer, in order to prevent spurious timeouts at
the TCP sender. The author also proposes an SACK-based
TCP modification, that is, ELN-capable SACK (ESACK),
which can handle ELN messages and packet reordering due
to the immediate retransmission of a lost packet indicated
by ELN. ESACK is designed to avoid consecutive invocation
of congestion control when multiple packets of a congestion
window are dropped due to congestion. ESACK also miti-
gates bandwidth waste due to continuous ELN generation
in a disconnection by appropriately filtering received ELNs
according to their causes.

To investigate the performance improvement of the pro-
posed scheme, we perform simulation using ns-2 [17] and
compare various wireless TCP schemes. Through simulation,
it is shown that the combination of the proposed ELN
scheme and ESACK achieves goodput performance of more
than 400% compared to TCP-Reno and 150% to Snoop
[18]. Consequently, we demonstrate that the proposed
scheme, when combined with the Link Layer Automatic
Repeat Request (LL-ARQ) using a small retry limit, achieves
consistently good performance against both uniform and
bursty channel errors. Moreover, considering that many
wireless TCP proposals compare their schemes only with
TCP Reno or a few other schemes, our simulation results
provide a comprehensive performance comparison of the
various schemes on a single simulation platform.

We only consider last-hop wireless networks, that is, only
the link between BS and user equipments is wireless, such
as cellular networks and infrastructure Wireless Local Area
Networks (WLANS).

The rest of this paper is organized as follows. Section 2
briefly describes recent wireless TCP schemes and analyzes
their pros and cons. In Section 3, we describe the implemen-
tation details of LL-ELSN and compare it with other ELN
schemes. Section 4 explains ESACK, and Section 5 presents
the simulation results and their analysis. We conclude this
paper in Section 6.

2. Related Work

In this section, we review the wireless TCP schemes that have
been proposed recently. The wireless TCP schemes consid-
ered in this paper are ELN and BWE schemes as well as SACK
[5], Snoop [18], and TCP-DCR [19]. In the following, we
briefly describe each of them and analyze their pros and cons.

EURASIP Journal on Wireless Communications and Networking 3

2.1. Explicit Loss Notification Schemes. ELN schemes attempt
to detect wireless losses and notify the TCP sender of
their occurrences by marking the reserved bit of TCP ACK
or sending a newly defined message. Accordingly, how to
accurately detect wireless losses and how to rapidly notify
them are important design factors in ELN schemes.

In TCP HACK [7], the TCP sender puts extra header
checksum bits in the options field of the TCP header. If
the TCP receiver receives a data segment of which the data
portion is corrupted while the header is okay, the receiver
considers it as a wireless loss and sends an ACK with the
reserved bit for ELN set to one. HACK assumes that SACK
is used basically and the sender, upon reception of the ACK
with the ELN bit set, immediately retransmits the lost packet
without triggering congestion control. However, in HACK, if
the wireless channel condition is poor, there is the possibility
that the header is also corrupted. Also, handoff or channel
contention may result in the loss of the whole packet. In
such cases, the TCP receiver cannot judge the wireless link
error correctly. So, the TCP sender of HACK can reduce
its congestion window even due to a wireless loss. Even
though the receiver detects the wireless loss correctly, the
ELN ACK should be transmitted over the wireless link. This
takes an additional delay until loss notification and increases
the possibility of notification failure further.

LHP [10] tries to improve the detection probability
by fragmentation. In LHP, each data frame is fragmented
before being transmitted over the wireless link and the
first fragment that contains the TCP/IP header is sent
repeatedly prior to the rest of the fragments until it is
successfully transmitted or all allocated link time slots for
the frame are exhausted. When the receiver does not receive
the whole frame except the first fragment, the receiver
regards it as a wireless loss and sends an ACK packet
with the ELN bit set. By fragmentation, LHP can increase
the transmission probability of the TCP/IP header portion,
which after all improves the detection probability. LHP also
utilizes selective acknowledgement and the packet list which
manages congestion control by keeping the unacknowledged
packets in the sending order. However, the first fragment
has to be transmitted successfully, which increases detection
delay. Moreover, the first fragment can still be lost. Also,
ACK packets that notify the wireless loss should go through
wireless medium and this increases the detection failure
probability and the notification delay further. The packet
list works poorly with detection failures because the sender
retransmits packets redundantly and invokes congestion
control if the notification fails. If SMART [20] is used for
LHP, whenever an ACK is lost, congestion control is invoked
because the SMART ACK only contains the information of
the single packet which has been successfully received and
has triggered the ACK. In addition, fragmentation increases
header overhead considerably, especially in 802.11 [21].

2.2. Bandwidth Estimation Schemes. BWE schemes keep on
estimating the available bandwidth to monitor the network
state. If a packet loss occurs in a noncongestive state based
on the estimated bandwidth, the TCP sender does not
invoke congestion control or reduces a congestion window

conservatively. However, as BWE schemes infer the network
state from indirect information, they have high probability
of misjudgement.

TCP Westwood [11] estimates the available bandwidth
from a low-pass filtered ACK reception rate. Its slow start
and congestion avoidance phases are the same as those of
TCP Reno. If n duplicate ACKs are received (n is typically
3), the sender sets the ssthresh and cwnd as the estimated
bandwidth. When a timeout occurs, the sender sets the
ssthresh as the estimated bandwidth and the cwnd as one.
In this way, it can maintain a proper sending rate even with
wireless losses. However, the low pass filter incurs additional
processing overhead due to its complexity. The filter also has
the parameters whose optimal configuration may be different
network by network. If ACKs are lost, the sender reduces
its estimated bandwidth. For a timeout, it reduces the cwnd
to one. Therefore, with wireless links having poor channel
condition, TCP Westwood will underestimate the available
bandwidth and have degraded performance since TCP ACKs
can be also lost.

TCP Veno [12] adopts the measurement technique of
Vegas [22] to estimate the network state. Veno does not
change much of Reno. In the congestion avoidance phase,
if the estimated backlogged segments N from the Vegas
measurement is smaller than the threshold S, it assumes that
the available bandwidth is not fully utilized and increases
cwnd by 1/cwnd when each new ACK is received as in TCP
Reno. If N = f3, it increases cwnd by 1/cwnd when every
other new ACK is received, so as to reach the maximum
achievable bandwidth rather slowly. When n duplicate ACKs
are received, if N < f, Veno assumes a wireless loss and
reduces the ssthresh and cwnd by a small amount. Otherwise
it behaves as TCP Reno. Veno has only two network states:
congestion (N = f3) or noncongestion (N < f). In the
congestion state, every packet loss is assumed to be a wireless
loss. Therefore, Veno cannot appropriately handle wireless
losses when the network is in congestion.

TCP-Santa Cruz [23] also uses the measurement tech-
nique of Vegas to estimate the number of backlogged
segments N in the network. It updates a three-state machine
based on the changes of N. Within the state machine, an
increase of N during two consecutive intervals leads to the
transition to the congestion state. TCP-Santa Cruz classifies
a packet loss as a congestion loss and invokes congestion
control against it only in the congestion state. However, TCP
Santa Cruz has the same problem as TCP Veno has.

TCP-Jersey [13] is similar to TCP Westwood. It estimates
the available bandwidth also from the ACK reception rate,
but it filters the rate with the simpler filter than TCP
Westwood’s, which also needs less parameters. Contrary
to the other schemes, TCP-Jersey’s congestion event totally
depends on Explicit Congestion Notification (ECN) [24].
If the sender receives a new ACK or n duplicate ACKs
with the congestion warning (CW) bit set in a congestion
avoidance phase, it invokes the rate control, in which ssthresh
and cwnd are set to the estimated available bandwidth.
Otherwise, it maintains its ssthresh and cwnd, assuming that
the network is underutilized. The weakness of TCP-Jersey is
that it requires ECN-capable routers without probabilistic

4 EURASIP Journal on Wireless Communications and Networking

marking, which increases the network cost and processing
overhead on the routers. Although it has less parameters
than TCP Westwood, it still requires some parameters whose
optimum values are hard to be decided because of their
high dependence on network states. Also, it has no solution
against timeouts due to wireless losses.

Jitter-based TCP (JTCP) [14] utilizes another metric, the
jitter of data transmission time used in Real-time Transport
Protocol (RTP) [25]. From the jitter reported by the receiver,
it estimates the fraction of queued TCP segments in the
network. If the number of queued segments estimated is
more than a threshold, it behaves just like TCP Reno, except
that it enters the fast retransmit phase only when n duplicate
ACKs have been received over several Round-Trip Time
(RTT). Otherwise it maintains ssthresh and cwnd for n
duplicate ACKs or halves ssthresh and cwnd for a timeout.
To calculate the jitter, the TCP sender has to store the sending
time of each segment and the receiver has to report the
segment receiving time in each ACK to the sender.

TCP TIBET [15] provides unbiased bandwidth estima-
tion by filtering the interdeparture time of packets and
the estimated bandwidth based on the core stateless fair
queueing (CSFQ) algorithm. TCP TIBET uses the minimum
RTT, denoted as RT Ty, to calculate the available bandwidth
accurately without depending on the coarse clock granularity
of TCP. So, TCP TIBET has an RT T, updating algorithm,
in which RTTp, is multiplied by a reducing factor less
than one. However, since the RTT i, updating algorithm
is invoked whenever a congestion event occurs, RTTpmin
goes eventually to zero in congested networks. This makes
ssthresh small, and hence the corresponding connection
remain in the congestion avoidance phase.

TCP NewReno-FF [26] discriminates packet losses based
on RTT variation. It uses the flip flop filter technique [27] to
estimate RTT. The flip flop filter exploits two exponentially
weighted moving average (EWMA) filters where one of them,
called agile filter, gives more weight to recent RTT samples.
The agile filter is used prior to the other one when the
deviation of the measured RTT sample is within a certain
limit. If more than # RTT samples among the last [samples
exceed the limit, a packet loss is classified as a congestion loss
assuming that RTT will vary much in congestion. Otherwise
it is classified as a wireless loss. As the other BWE schemes, it
also has several parameters for configuring the filters and loss
discrimination criterion. Moreover, it cannot detect wireless
losses under congestion since it has only two network states
as TCP Veno.

2.3. Another End-to-End Schemes. There are the end-to-end
schemes which do not use the three techniques. TCP-DCR
[19] is one of them. TCP-DCR delays a response to conges-
tion by one RTT after the first duplicate ACK is received so
that it gives time for LL-ARQ of the wireless link to recover a
possible wireless error. If a new ACK arrives before the timer
of one RTT expires, it switches to the normal operation.
Otherwise it assumes that the loss is due to congestion and
triggers the fast retransmissions and recovery operations.
With TCP-Casablanca [28], the TCP sender marks
packets with two different discard priorities and intermediate

routers drop the packets of the lower priority first in
congestion. Thus the probability distribution of congestion
losses will be different for the two types of packets while
that of wireless losses may be similar for both of them
assuming the uniform distribution of wireless losses. The
TCP sender exploits such a difference when determining the
cause of a packet loss. However, TCP-Casablanca requires
the change of every router in networks and this makes
it hard to be deployed. It discriminates the cause of a
packet loss in a stochastic manner, therefore has higher
detection failure probability of wireless losses than ELN
schemes. Furthermore, under heavy congestion or bursty-
loss wireless channel condition, the probability distribution
of packet losses may not follow the presumed one and thus
the detection failure probability will increase.

3. Link Layer Originated Explicit Link
Status Notification

In this section, we describe the detailed operation of the
proposed ELN scheme, that is, LL-ELSN, and analyze its
behavior in the aspects of detection delay, accuracy, and
bandwidth overhead.

3.1. Notification Operation. LL-ELSN assumes that the link
layer protocol of a wireless link adopts an acknowledged ser-
vice. The assumption is practical as many link layer protocols
for wireless communication such as IEEE 802.11 Medium
Access Control (MAC) [29] and Radio Link Protocol (RLP)
[30] for cellular networks provide acknowledged services
with ARQ. In such link layer protocols, when the number of
retransmission attempts of a frame exceeds a limit, the link
layer discards the frame and begins to transmit the next one.
The discard of the frame results in the wireless loss of the
corresponding TCP packet. In LL-ELSN, those discard events
are monitored by BS or a wireless station. Here, BS indicates
the network element which is responsible for reliable trans-
mission over a wireless link in downlink communication, for
example, Radio Network Controller (RNC) in UMTS [31]
and Access Point (AP) in IEEE 802.11 WLAN:Ss.

Figure 1(a) shows the detailed LL-ELSN procedure for a
single TCP packet in downlink communication with a stop-
and-wait LL-ARQ. When the wireless link layer of BS fails in
the first transmission attempt of the packet 1 (Layer-2 ACK
timeout), the wireless link layer retransmits the packet and,
simultaneously, BS sends the Explicit Retransmission Start
Notification (ERSN) to the remote TCP sender. Upon recep-
tion of ERSN, the TCP sender neither invokes congestion
control due to the packet 1 nor retransmits it. Therefore,
spurious timeout can be avoided. If the packet 1 fails in
transmission until the retry limit of LL-ARQ, BS sends an
appropriate ELN message to the TCP sender. Upon receiving
the ELN, the TCP sender immediately retransmits the
packet 1 without any congestion control. (In this paper, the
retry limit indicates the maximum number of transmission
attempts permitted for a data frame at a link layer. It counts
the first transmission attempt as defined in the IEEE 802.11.)

The ERSN and ELN messages are newly defined ones,
which have the same message format as the TCP ACK. Their

EURASIP Journal on Wireless Communications and Networking 5

TCP receiver TCP sender TCP iender BS
1 4 A
y TCP layer Link layer
Corruption D Queueing Packet 1
é—”*’// L2 ACK timeout Queueing C Corruption
CRC error e"’”’ﬁ?e’t;‘/’ ERsy L2 ACK timeout C
(no L2 ACK . ERSN 1
t
transmission) Stretry CRC error
No congestion (no L2 ACK
m D L2 ACK timeout control for transmission)
packet 1
\ L2 ACK timeout CWN
1
y (No delay) ELN
Packet 1
N -
e Y
Wireless link Wired network Wireless link

(L2 transmission)

(a)

(b)

FIGURE 1: Behavior of the LL-ELSN scheme for (a) downlink communication, and (b) uplink communication.

TasLE 1: Comparison of ELN schemes.

Balakrishnan et al.’s HACK, EWLN, TCP-ELN LHP LL-ELSN
ELN delay (downlink) Tyl 4 s 4 v s+ wed T 4 wrd v
ELN delay (uplink) Tyl 4 T o wrd o 4 2w o 421 0
Prob. of detection failure 0 Pf header Py frag 0

(Flow information,
sequence number)
of retransmitted or

discarded frame
Easties ELSN agent "~~7 ERSN/ELN
! | to TCP sender
! T
: TCP i
I
: I
1
| I
: P |
i 1
: IP packet with |
! (flow information, |
! sequence number) :
Wireless link layer Wired link layer

—> Traffic path
--> ERSN/ELN signaling path

F1GURE 2: Internal behavior of BS for ERSN and ELN generation for
downlink connections.

destination IP address and port number are those of the
TCP sender. To indicate the message type, that is, ERSN,
ELN or legacy TCP ACK, two bits of the reserved field of

the TCP header are used. The internal traffic and signaling
paths of BS for ERSN and ELN construction are depicted in
Figure 2 for downlink communication. BS reads the TCP/IP
header of an incoming packet from the wired network and
sends the packet down to the wireless link layer with its
flow information and TCP sequence number. When the
first retransmission (excessive retry) occurs, the wireless link
layer informs the ELSN agent of the flow information and
sequence number of the retransmitted (discarded) packet.
Then, the ELSN agent constructs the ERSN (ELN) message
based on the information and sends it to the corresponding
TCP sender.

For uplink communication shown in Figure 1(b), the
link layer directly informs the upper TCP stack which packet
enters a retransmission process and which packet is dropped
because the monitored link layer and the TCP stack are
within the same station. The behavior of the TCP sender
against ERSN and ELN is the same as that in downlink
communication. If a TCP packet is fragmented into several
frames at the wireless link layer, ERSN is generated only for
the first retransmission of a fragment while ELN is generated
for the discard of the whole fragments.

3.2. Comparison to Other ELN Schemes. In this subsection,
we compare LL-ELSN with other ELN schemes in the aspects
of delay and accuracy. We summarize the comparison results

6 EURASIP Journal on Wireless Communications and Networking

in Table 1. For the comparison of notification delay, we
define the following:

(i) the time when a wireless loss for a TCP packet occurs
is the instance for the TCP packet being discarded at
the wireless link layer;

(ii) the ELN delay is the time duration that takes until the
TCP sender receives a notification for a wireless loss
from the loss occurrence.

In the table, T}, and T} are the time that takes to transmit
a TCP data and an ACK packet successfully over a wireless
link, and are obtained as

(g\:iltsa Zdeata (Pdata) (- Pdata) + Tdata:

k=0

(1)

a“élli = ZkTack(Pack) (1 - ack) + Tack,
k=0

where Tgua and To are the required time for a single
transmission attempt of data and ACK packet, respectively,
and Pgua and P,g are the transmission failure probability
of the corresponding packet. T¥™ is the one-way trip time
between BS and the remote TCP node (either sender or
receiver) in the wired network.

As shown in Table 1, the ELN delay of LL-ELSN is
only T"¢ for downlink communication. However, the
other schemes have additional delay plus T""¢ since the
ACK packet corresponding to an ELN message has to be
transmitted over a wireless link. Furthermore, Balakrishnan
et al.’s scheme has another delay component for successful
transmission of the next data packet. On the other hand,
for uplink communication, LL-ELSN has negligible ELN
delay because the TCP sender is notified of wireless losses
by the link layer within the same station. The other schemes
need additional T%™ in uplink communication because the
wireless link and the TCP receiver are located separately.

Although the other schemes (except LL-ELSN) have
less delay than Balakrishnan et al’s scheme, they have the
probability of a detection failure that the TCP sender does
not have any notification for a wireless loss (Pf header is
the probability that the header of the received TCP packet
is corrupted and Py fqg is the probability that the first
fragment fails to be transmitted.). That is because at least the
TCP/IP header and the first fragment have to be transmitted
successfully over the wireless link. In LL-ELSN, there is no
additional transmission over the wireless link and thus it has
no detection failure in uplink communication. LL-ELSN also
has no detection failure in downlink communication if ELN
messages do not suffer from congestion losses on the wired
path from BS to a TCP sender.

Compared to the other ELN schemes, LL-ELSN has
the least delay and detection failure probability for both
downlink and uplink, and also does not need any memory
overhead at BS, which may enable fast handoffs. One disad-
vantage of LL-ELSN is that it violates the layering semantics
because the link layer refers to the TCP/IP header to send
ERSN and ELN messages. However, cross-layer design [32,

33] is a currently popular trend to utilize the restricted
bandwidth of wireless links as much as possible. Thus the
violation of the layering semantics could be acceptable if the
performance is the most important metric.

3.3. Bandwidth Overhead of ERSN and ELN. In order to
investigate the bandwidth overhead of the ERSN and ELN
messages to wired networks in downlink communication,
we conduct a simple mathematical analysis. We consider the
slotted-access wireless system in which a data transmission
and the acknowledgement of its reception (or Layer-2 ACK
timeout) over a wireless link takes a single slot. Denote p as
the frame error probability of the wireless link and I as the
retry limit. Then, the intergeneration time I of ERSN and
ELN is given as

E[RT](1-p" 1)+ (I - 1)p- ' + %, ERSN,

1= (2)
E[RT] (p - 1) +1, ELN,

where E[RT] is the expected number of required slots for
successful transmission of a data frame given that it is
successfully transmitted within the retry limit. E[RT] is
obtained as

! l 1
P (1-p)
; - p, . (3)

E[RT] =
Let T be the duration time of a slot and r be the transmission
bit rate of the wireless link. We assume that the data
transmission time is a dominant factor in a slot time and
thus T =~ P/r (P is the length of a data frame). Then, the
generation rate R of the ERSN and ELN messages, that is,
their bandwidth overhead, is expressed as

L Lr

R=Tr=1p)
where L is the message length of ERSN and ELN. When
L/P = 0.2, Figure 3 shows that R is below 5% of r in
the considered range of p. Knowing that the bandwidth of
wired links is usually larger than that of the wireless link, the
bandwidth overhead of the ERSN and ELN messages will not
be a big burden to wired networks.

4. ELSN-Capable SACK

The operation of the TCP sender needs to be redesigned to
handle the received ERSN and ELN messages. In this section
we describe the proposed TCP modification which can be
used with LL-ELSN as well as generic ELN schemes.

4.1. Congestion Control Algorithm. The side effect of imme-
diate retransmissions triggered by ELNs is that the sequence
of outgoing packets may be out of order and thus it is
difficult for TCP senders to make appropriate decision on
congestion control. To resolve this problem, Gao et al. [10]
proposed a data structure of a packet list which keeps the

EURASIP Journal on Wireless Communications and Networking 7

0.05 T T T T T
L]
0.04 ’/,
S o
o) <
3 -~
o 0.03F F i
£
a
.S
=
£ 002t e
=}
L
o ERSN
0.01
0
0 0.05 0.1 0.15 0.2 0.25 0.3
FER (p)
— = --1=4
-——=1=3 1=5

FIGure 3: Bandwidth overhead of ERSN and ELN messages versus.
FER p for different retry limit values /.

Packets in the order of sending time

14 15 16 17 18 19
IS e O e A T e A e
After 14 16 17 18 19 20
(415 [L0 [0 [0 [0 [0
After 14 16 18 19 20 21
(14,17) 2 ’ 1 ’ 0 7 0 ’ 0 ’ 0
After L1618 | J 20 | 21 | | 14 | Fast
(14,19) | 2 1 0 0 0 | recovery
After | 18 | J 21 | J 14 | | 16 | Fast
(14,20) | 2 0 0 0 | recovery
After | 14 | N 16 | o 18 | Fast
(14,21) | 0 0 0 | recovery

FiGURrk 4: Example behavior of the LHP packet list against multiple
packet drops in a congestion window.

information of sent packets, that is, sequence number and
duplicate ACK counter, in the sending order. By exploiting
this packet list (referred to as LHP packet list hereafter),
the TCP sender can invoke appropriate congestion control
schemes in various situations. However, it invokes multiple
fast retransmit and recovery procedures for multiple packet
drops in a congestion window, which makes the congestion
window size unnecessarily small. To illustrate, assume that
a list first has packet sequences from 14 to 19, as shown in
Figure 4, and packets 14, 16, and 18 are lost in the network.
When the sender receives an ACK of (14, 15) which means
the receiver received the packet 15, but has not received the
packet 14 yet, it removes the element of packet 15 in the list
and increases the duplicate ACK counter of packet 14 by 1.
(LHP premises the use of selective acknowledgement (e.g.,
SACK) and thus, from a received ACK, the TCP sender can

be aware which packet triggered the ACK as well as which
packet is expected.) Following ACKs for packets 17 and 19
increase the duplicate ACK counter of packets 14, 16, and
18. In this manner, the duplicate ACK counter of packet
14 reaches three, and a fast retransmit and fast recovery
events are invoked, in which the congestion window size is
reduced to half. After that, when the sender receives the ACK
of (14, 20), it invokes the congestion control again because
the duplicate ACK counter of packet 16 also reaches three.
Consequently, the fast recovery is invoked three times for
three packet drops in a congestion window.

To avoid this problem, we propose a new TCP modifi-
cation, ELN-capable SACK (ESACK), which is based on the
SACK implementation. In SACK, the data sender is assumed
to have a retransmission queue which contains the segments,
which have been transmitted, but not yet acknowledged, in a
sequence-number order. Each segment in the retransmission
queue has a flag bit “SACKed” to indicate whether this
segment has been reported to have been received in an SACK
option. ESACK adopts a similar approach except that the
retransmission queue is aligned in a sending order. The
retransmission queue does not need to store whole segments.
Instead, it can store only the start and end bytes of a segment
in the bulk data to reduce the size of the queue. ESACK
defines new variables as below.

(i) FirstUnsacked: the sequence number of the first
segment which is not SACKed in the retransmission
queue.

(i) HighSACK: the highest sequence number which is
SACKed.

The FirstUnsacked segment should be acknowledged
cumulatively or selectively by a very next ACK unless it
is reordered or dropped by congestion. If the segment is
lost in a wireless link, it will be notified by an ELN and
the entry of the segment will be moved to the tail of the
retransmission queue after being retransmitted. Therefore, if
FirstUnsacked is identified to be less than HighSACK after a
duplicate ACK is processed, the TCP sender understands that
the FirstUnsacked segment is reordered or dropped by con-
gestion assuming that ELN is not dropped. Thus, by checking
FirstUnsacked and HighSACK of the retransmission queue,
the TCP sender can react to congestion while processing
ELN. The procedure of ESACK when an ACK is received is
specified in Algorithm 1.

When an ELN is received, ESACK retransmits the lost
segment indicated by the ELN immediately since the recep-
tion of an ELN indicates not only a packet was corrupted in
a wireless link but also the packet has been dropped from the
network. Thus the immediate retransmission ensures that
the TCP connection remains ACK-clocked.

When a duplicate ACK is received, the sender checks
FirstUnsacked and HighSACK to investigate whether it is
due to congestion. If FirstUnsacked is equal to HighACK,
it means that the FirstUnsacked segment was reordered
or dropped due to congestion (we assume that an ACK
acknowledges the sequence number or the first byte of the
expected data). (HighACK is defined as the sequence number

8 EURASIP Journal on Wireless Communications and Networking

if(ELN) retransmit(ELN)
else if(duplicate ACK)
if(there is a SACK option)
update retransmission queue
end if
if(HighACK == FirstUnsacked)
dupacks ++
else if(FirstUnsacked < HighSACK)
if(FirstUnsacked is changed)
dupacks =1
else dupacks ++
else if(HighACK segment is SACKed)
retransmit(HighACK)
end if
end if
if(dupacks >= DupThresh)
Typical TCP operation for DupThresh duplicate ACKs
end if

ArcoriTHM 1: Pseudocode of ESACK congestion control algorithm.

of the highest byte of data that has been cumulatively ACKed
at a given point in [34].) Otherwise, if FirstUnsacked is less
than HighSACK, it means that the FirstUnsacked segment
was reordered or dropped due to congestion while waiting
for a new ACK for the segment retransmitted by an ELN. If
the segment of HighACK is already SACKed, it means that
the segment was dropped in the receiver queue. Therefore,
the segment needs to be transmitted again. If the counter of
received duplicate ACKs becomes three, the sender triggers
the congestion recovery algorithms of fast retransmit and
recovery. In fast retransmit phase, the sender retransmits the
FirstUnsacked segment. The other operations of ESACK are
equal to SACK. Therefore, if there is no wireless loss, ESACK
behaves just like SACK.

4.2. ELN Filtering. When a TCP receiver is disconnected
from BS in downlink communication, the transmission
attempts of the frames for the disconnected receiver fail
consecutively. If the BS keeps on sending ELN messages for
those frames to the corresponding TCP sender, the TCP con-
nection will not be removed since the TCP sender keeps on
retransmitting the lost segments. This wastes the bandwidth
of the wired network unnecessarily. One solution to avoid
this problem is to let the BS stop sending ELN messages
for disconnection. The BS can assume disconnection when
a certain number of successive segments for a connection are
discarded. However, this approach is not scalable since the
BS should store per-connection information. We solve this
problem in the sender side.

ESACK can solve the bandwidth waste problem due to
consecutive ELNs by differentiating the causes of the ELNs:
channel noise or permanent disconnection. ESACK assumes
that channel noise can maximally result in N consecutive
ELNs. To obtain the appropriate value of N, let p be the
probability that a transmitted frame is corrupted by channel
noise and r be the retry limit. Then, the probability that
a transmission leads to at least k consecutive transmission

failures is obtained by p"™*. We configure N so that p'™~ is
reasonably high. For example, assume that p is 20% and there
is no retransmission (r = 1). Then, the probabilities of two
and three consecutive failures are 4% and 0.8%, respectively,
and we can configure N as 2 since three consecutive failures
due to channel noise is rather rare as 0.8%. For more
conservative operation, we can increase N. For those wireless
losses due to channel noise, the TCP sender retransmits
the discarded segments immediately without invoking con-
gestion control. If ELNs are received for more than N
successive data packets, we consider this a disconnection.
In this case, the TCP sender freezes all the TCP-related
parameters and retransmits the discarded segments at every
other ELN. By doing this, ESACK can reduce the bandwidth
waste of unnecessary retransmission due to consecutive
ELNs gradually in permanent disconnection. The reason of
gradual slow down is for the case when a wireless station
temporarily looks disconnected due to deep fading, handoff,
and so fourth If the TCP sender receives a new ACK, the TCP
sender restores the parameters and resumes data service.

5. Simulation Results

To investigate the quantitative performance of the proposed
scheme, we perform comprehensive simulation using the ns-
2 simulator [17].

5.1. Simulation Setup. We use the built-in modules for Reno,
NewReno [35], SACK [5], and Snoop, the open sources
[36] for TCP Westwood, [37] for TCP-DCR [19], and add
some modules for TCP Veno [12], TCP Jersey [13], JTCP
[14], TIBET [15], and LHP, with default parameter settings
mentioned in the corresponding papers. (The version of
TCP Westwood considered in the simulation is Westwood+.)
Unless otherwise specified, LL-ELSN is used with ESACK. We
use NewReno when evaluating the performance of Snoop for
better performance. We compare their goodput performance
and fairness in mixed wired and wireless networks. Here,
goodput is defined as the TCP-level data reception rate
measured at TCP receivers. We perform our simulation
by changing RTT, competing traffic and the characteristic
of the wireless channel. Simulation is run for a period
of 200 seconds and we average over 20 runs without LL-
ARQ and 50 runs with LL-ARQ. (LL-ARQ increases link
layer dynamics and thus we need more simulation runs
with LL-ARQ to obtain stable results.) The TCP packet
size is 1000 bytes. TCP receivers advertise a very large
window such that the sending rate of TCP senders is not
clamped by the receivers’ dynamics. IEEE 802.11b [38] is
used for the data link layer of a wireless link and the
queue size of each wired link and the wireless network
interface is 50 packets. We do not use the Request-To-
Send(RTS)/Clear-To-Send(CTS) exchange mechanism and
link layer fragmentation in simulation. The transmission bit
rate of data and ACK frames over the wireless link is 11Mbps.
We use the default physical parameters of ns-2 for the
802.11 b modulations. The simulated topology for downlink
communication is depicted in Figure 5. All the wired links

EURASIP Journal on Wireless Communications and Networking

10M
. @@/LIOMEIOM E%@”
®

F1GURE 5: Simulation network for downlink communication.

are full-duplex 10 Mbps and their buffers have delay offset
dofr. Each connection carries long-live FTP application traffic
from the source node (S) to the destination node (D). Packets
are dropped bidirectionally at the wireless link. We generate
bit errors depending on the given frame error rate (FER) in
the wireless link. So, data packets are more prone to be lost
than ACKs due to the longer length.

5.2. Comparison of Wireless TCP Schemes. In this subsection,
we compare the various aspects of wireless TCP schemes.
We first set the retry limit of 802.11 MAC to one in order
to investigate the robustness of the testing schemes against
wireless losses while excluding the effect of LL-ARQ. In this
case, FER of the wireless link is equal to the Packet Error Rate
(PER). It is noted that wireless losses due to collisions are not
counted in FER, so there are still wireless losses even with
small FER.

We perform the simulation of one TCP connection case,
n = 1. Figure 6 shows the goodput result as FER varies from
0.001% to 9%. In the result, LL-ELSN shows significant
performance improvement over the other schemes. Note that
LL-ELSN is better than the other schemes even with 0.01%
FER since there are still wireless losses due to collisions
between data packets (from BS) and TCP ACK packets (from
the wireless station). Snoop shows the second best perfor-
mance due to its local retransmission at BS. However, as FER
increases, the goodput of Snoop decreases more drastically
than that of LL-ELSN. That is because the local retransmis-
sion causes TCP to lose its ACK-based clock due to long end-
to-end delay in high FER while LL-ELSN lets the TCP sender
keep on sending data due to its accurate detection of wireless
losses. The other schemes are better than Reno, but are much
worse than LL-ELSN. Figure 7 shows the effect of RTT on the
goodput performance. We indirectly vary RTT by adjusting
the delay offset dog of each link buffer, that is, increase dog
to increase RTT. The goodput of TCP Reno is known as
inversely proportional to RTT [39]. Similarly, the testing
schemes also show decreasing goodput for increasing RTT.
However, their sensitivities to RTT are different. Especially,
TIBET and Westwood are worse than Reno in small RTT. LL-
ELSN shows good performance constantly.

Since the importance of uplink communication is
increasing, we also simulate the uplink communication
scenario where the wireless station is the TCP sender. We
assume that the Snoop agent is at the wireless station
by symmetric operation. In Figure 8, LL-ELSN shows the
best performance because LL-ELSN has negligible ELN
delay in uplink communication. However, Snoop is much
worse than in downlink communication due to its slow
retransmission. Snoop cannot retransmit the lost packet

24 b ° -

1.8 1 4

Goodput (Mbps)

o L . . .
1074 1073 1072 107!

FER

&+ Snoop
—— LL-ELSN

(a)

3.6 FT T T =

Goodput (Mbps)

FER
—— Veno —v— TIBET
—— Westwood -+- HACK
~=x - Jersey —— LHP
¢ JTCP --e-- DCR

(b)

FiGure 6: Goodput comparison in downlink communication (n =
1, dor = 10 miliiseconds).

until the Snoop agent receives a duplicate ACK, which takes
one RTT in uplink communication, or a timeout occurs at
the agent. Moreover, Snoop cannot distinguish congestion
losses from wireless losses in uplink communication, thus
Snoop is not suitable for uplink communication. The relative
performances of the other schemes are similar to those in
downlink communication.

Next, we simulate the network with » multiple TCP
connections (n > 1). In the goodput comparison in Figure 9,
LL-ELSN shows quasiconstant goodput irrespective of n.
That is because LL-ELSN fully utilizes the channel bandwidth

10

Goodput (Mbpt)

O 1 1 1
2 10 20 30
Delay offset of link buffer (ms)
—%— Reno —— Westwood
—o— SACK - Jersey
—=— Veno —e— JTCP
—v— TIBET ¢+ Snoop
-+- HACK e.- DCR
—o— LHP —— LL-ELSN

FIGURE 7: Goodput versus delay offset of link buffer (n = 1, PER =
1%).

even with small number of connections. However, the other
schemes can fully utilize the bandwidth with sufficiently large
number of connections since each connection suffers from
rate reduction due to wireless losses. In order to quantify
fairness among multiple TCP connections, we evaluate the
Jain’s fairness index [40] which is defined as below

(Zx)’

T, ©
where x; is the goodput of ith connection among the
total n connections. F(x) ranges from 1/n to 1.0, where
F(x) = 1.0 means the perfect fairness and in that case, all
the connections occupy the same bandwidth. F(x) = 1/n
means that one connection occupies the whole bandwidth.
In Figure 10, the fairness of TCP-Jersey and JTCP gets worse
as the number of connections gets increased. TCP Westwood
and TIBET show the poor fairness as some connections suffer
severely from frequent timeouts due to small congestion
window size. Although the fairness of the testing schemes are
relatively comparable with each other, most of them achieve
high fairness index above 0.98 and do not suffer from severe
unfairness. From the above two figures, we can conclude that
LL-ELSN achieves good performance against wireless losses
by accurate congestion response, not by aggressive behavior.

To investigate the performance against both wireless
and congestion losses, we introduce background traffic to
the network along the path of a TCP connection. The
background traffic follows the Pareto distribution whose
mean rate is 8 Mbps and the shape parameter is set rather
high as two to induce high dynamics to the network. The
simulation result is shown in Figure 11. LL-ELSN still shows
the best performance among the testing schemes, which

EURASIP Journal on Wireless Communications and Networking

Goodput (Mbps)

0L s MR | s MR | s PR |

1074 1073 1072 107!
FER
—<— Reno ¢+ Snoop
—o— SACK —— LL-ELSN
()
28 CT T T]

Goodput (Mbps)

1074 1073 1072 107!
FER

—=— Veno —— TIBET

—— Westwood -+- HACK

- - Jersey —o— LHP

—e— JTCP --e-- DCR

(b)

FiGure 8: Goodput comparison in uplink communication (n = 1,
doir = 10 miliiseconds).

means that it successfully handles congestion losses as well as
wireless losses. The severe performance degradation of LHP
is due to multiple fast recoveries. This fact is investigated
further in the next subsection.

Another important aspect of a new TCP variant is
the friendliness with existing TCP Reno which is the base
model of many TCP variants [41]. To be friendly with
TCP Reno, a new TCP variant should follow the guidelines
provided in [2]. Otherwise, it can be aggressive or feeble
against TCP Reno. We investigate the goodput change of
a connection using TCP Reno when 10 connections using

EURASIP Journal on Wireless Communications and Networking

Goodput (Mbps)

0.6 B
0 1 1 1 1 1
5 10 15 20 25
Number of TCP connections
—»— Reno —v— TIBET
—o— SACK -+- HACK
—=— Veno —o— LHP
—— Westwood -0 Snoop
- = Jersey e+ DCR
e JTCP —— LL-ELSN

Figure 9: Goodput versus of TCP connections (PER = 1%, dog = 20
milliseconds).

0.99

0.98

Jain’s fairness index

0.96’
0.94
0.92

0.9

5 10 15 20 25

Number of TCP connections

—»— Reno —o— LHP
—o— SACK o Snoop
—=— Veno —— LL-ELSN
—-+- Westwood —v— TIBET
-x - Jersey --e-- DCR
--e-- JTCP -+- HACK

FiGure 10: Fairness versus of TCP connections (PER = 1%, d¢ = 20
milliseconds).

TCP Reno are replaced one by one with those using a new
TCP variant. If the goodput of a Reno connection remains
the same, it means perfect friendliness of the new TCP
variant. Otherwise, the goodput decreasing rate of a Reno
connection presents the degree of the unfriendliness of the
new TCP variant with TCP Reno. Figure 12 shows the result.

11

Goodput (Mbps)

O 1 1 1 a1 aaal 1 1 i1 1 aaal 1 1 i1 aaal
1074 1073 1072 107!
FER
—>— Reno —v— TIBET
—o— SACK -~ HACK
—=— Veno -+- LHP
—— Westwood —o— Snoop
%= Jersey ~-o- DCR
¢ JTCP —— LL-ELSN

FiGure 11: Goodput with 8 Mbps Pareto background traffic (dog =
10 milliseconds).

0.8

0.7 -

0.5

0.4

Goodput of Reno connection (Mbps)

0.2 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9

Number of connections using a new TCP variant

—s— Reno + Veno

—— Reno + Westwood
—— Reno + TIBET
-—-— Reno + ideal BWE

—>— Reno only

—o— Reno + SACK
-+- Reno + HACK
--e-- Reno + DCR
—a— Reno + LL-ELSN

Fi1GURE 12: Friendliness with TCP Reno (n = 10).

(We exclude Snoop in this simulation since Snoop is a
link-level solution and thus independent of TCP variants.)
Here, we consider the ideal BWE scheme which knows
the exact available bandwidth and RTT. In the figure, it
is shown that TCP Westwood, Veno, and TIBET including
the ideal BWE are aggressive against Reno connections.
That means the accuracy of bandwidth estimation is not

12 EURASIP Journal on Wireless Communications and Networking

60 1
50 1
40 1
30 b
20 b
10 b

Number of spurious
timeouts

S}
T
L
°Y
(=}

L
_
(=}

Goodput (Mbps)
N
S
Improvement ratio (%)

o La . .
1074 1073 1072

FER

,_
O‘_
o

—=— Without ERSN
—o— With ERSN
—%— Improvement

FIGURE 13: The number of spurious timeouts and goodput
comparison with and without ERSN with the retransmission delay
of 100 ms and the retry limit of 7 (1 = 1, dog = 20 milliseconds).

321

1.6

Goodput (Mbps)

O 1 1 1 1 1
1 5 10 15 20 25

Number of TCP connections

—o— LL-ELSN + LHP
-++-- LL-ELSN + HACK
-—+- LL-ELSN + HACK-fixed

—— LL-ELSN + ESACK
—*— Reno
&+ Snoop

FiGUre 14: Goodput comparison of different TCP modifications
with LL-ELSN (PER = 1%) when dop, = 20 milliseconds.

the only factor for TCP-friendliness. Those four schemes
set ssthresh to the estimated bandwidth when a congestion
event occurs. Therefore, when multiple fast recoveries or
timeouts are invoked in a short-time period due to heavy
network congestion, those schemes have larger ssthresh than
Reno. While on the other, LL-ELSN and HACK show the
similar result with SACK. That is because they behave just
like SACK without wireless losses. TCP-DCR is somewhat
aggressive against Reno as it delays congestion response, that
is, reduction of transmission rate.

We also investigate the effectiveness of ERSN in
the network with long retransmission delay. We set the

25

Improvement ratio (%)

Rate of background traffic (Mbps)

F1GURE 15: Performance improvement of ESACK compared to the
LHP packet list.

retransmission delay of the wireless link layer to 100
milliseconds. Figure 13 shows that the number of spurious
timeouts increases as FER increases due to the increasing
number of retransmissions. LL-ELSN with ERSN achieves
higher goodput than that without ERSN thanks to the
prevention of spurious timeouts. It is observed that the
improvement ratio of ERSN is almost proportional to the
number of spurious timeouts.

5.3. Effect of TCP Sender Operation. We compare several
combinations of LL-ELSN and different TCP modifications
to show the effect of TCP sender operation to the TCP
performance and find which combination results in the best
performance. We compare 4 different TCP modifications,
TCP HACK, HACK-fixed, LHP packet list, and ESACK,
when used with LL-ELSN. Figure 14 shows the result. In the
result, HACK shows better performance than Reno since it
retransmits lost packets in the wireless link quickly. However,
even with wireless losses, congestion control can be invoked
by following duplicate ACKs and thus it is much worse than
the other schemes. HACK-fixed is better than LHP when
there are small connections, but, becomes worse than LHP
when there are more than 10 connections due to congestion
collapse by somewhat aggressive behavior. LHP is worse than
ESACK because of ACK loss and multiple fast retransmit and
recovery, as explained in Section 4. ESACK shows the best
performance regardless of the number of connections, which
means that it works well by accurate congestion response, not
by an aggressive behavior.

Figure 15 shows the goodput improvement ratio of
ESACK compared to the LHP packet list with the same Pareto
background traffic as Figure 11. At low congestion, there
is no difference between the LHP packet list and ESACK
because the occurrence of multiple packet drops is rare. As
congestion becomes severe, however, ESACK shows better
performance since unnecessary fast recovery operations are
invoked in the LHP packet list.

EURASIP Journal on Wireless Communications and Networking 13

Sending rate (Mbps)

0 5 10 15 20 25

Time (s)

<<<<<< Without ELN filtering
— With ELN filtering

FIGURE 16: Sending rate variation of ESACK in a disconnection with
and without ELN filtering (n = 10, dog = 40 milliseconds, N = 2).

B
0
E \
5 X
b=l
g
O L6F i
.X'
P
0.8 , s L
10-4 10-3 1072 107!
FER

~.x-- Reno-2 —o— Snoop-5

- Reno-3 - - LL-ELSN-2

..x-- Reno-4 & LL-ELSN-3

—x— Reno-5 —— LL-ELSN-4

o+ Snoop-2

FIGureg 17: Goodput versus. FER with different retry limit (n = 1,
dog = 20 milliseconds).

Figure 16 shows the sending rate variation of ESACK
whose receiver is disconnected at 10 seconds. As shown in the
figure, ESACK can avoid unnecessary retransmissions and
thus mitigate bandwidth waste by filtering consecutive ELNs.

5.4. Effect of Link Layer ARQ. In this simulation, we only
consider two best schemes in the previous simulations, that
is, LL-ELSN and Snoop, and TCP Reno as a reference.
If we use LL-ARQ, we can get much different results, as
shown in Figure 17. When FER is less than 3%, TCP Reno

360

350
2
o
0
2
2340
]
<]
<]
)
200
180 | / k
%*
1 1 1 1 1 1 1
1 2 3 4 5 6 7
Retry limit

—»— Reno-0.1 —— LL-ELSN-0.1

- - Reno-0.2 --«- LL-ELSN-0.2
-+ Reno-0.3 - LL-ELSN-0.3
~-%-- Reno-0.4 & LL-ELSN-0.4
-%- Reno-0.5 -&- LL-ELSN-0.5

FIGURE 18: Goodput versus. retry limit in the bursty loss channel
with different py, (1 = 10, dog = 20 milliseconds).

with the retry limit of two is better than Snoop because
LL-ARQ can hide significant amount of wireless losses.
Notwithstanding that Snoop performs local retransmission,
Snoop shows worse performance than TCP Reno with LL-
ARQ. It results from the slower retransmission of Snoop
than LL-ARQ because the timeout time of Snoop should
be larger than LL-ARQ’s and Snoop retransmits a TCP
packet when a duplicated ACK is received or the timer
expires. Also, Snoop does not retransmit TCP ACK which
can be also lost, so this increases packet losses and delays
the retransmission of data packets further. Although Snoop
is combined with LL-ARQ, it is worse than Reno with LL-
ARQ because the retransmission mechanism of Snoop is
independent of that of the link layer. That is, the Snoop
agent can retransmit a TCP packet unnecessarily while the
link layer keeps on retransmitting it. On the other hand,
if LL-ELSN is combined with LL-ARQ, it shows better
performance with relatively small retry limit than TCP Reno.
It is because LL-ELSN lets the TCP sender not to shrink the
congestion window against wireless losses which LL-ARQ
cannot recover through retransmissions. From the result, it is
shown that LL-ARQ achieves significant increase of goodput
due to PER decrease in high-error conditions. Such a result
is consistent with that of [42]. However, LL-ARQ has some
disadvantages in wireless channels with bursty errors, as will
be shown in the following.

To investigate the effect of a bursty loss channel orig-
inated from inherent channel characteristics or temporary
link outage from weak signal power or handoffs, we use a
Markov chain for the wireless channel model and simulate
10 concurrent TCP connections. The Markov chain can
be also used to model Rayleigh fading channels. Tan and
Beaulieu [43] proposed a first-order Markov model for

14 EURASIP Journal on Wireless Communications and Networking

Rayleigh fading channels and analytically proved its accuracy.
Babich and Lombardi [44] proposed a first-order Markov
model for three-level quantized Rayleigh fading channels.
Zorzi et al. [45] showed that a two state Markov model well
approximates Rayleigh fading channels. As such, modeling
Rayleigh fading channels using a first-order Markov model
has gained some acceptance in literature and seems to find
a growing number of applications [28, 46]. The Markov
chain considered in this paper consists of two states: good
and bad. We assume that state transitions occur per frame
transmission and all the frames are transmitted successfully
except when collisions occur in the good state while all the
frames are lost with probability one in the bad state. We set
the transition probability from the good state to the bad state,
denoted as pyy,, to 0.01 and vary the staying probability in the
bad state, denoted as pyp, from 0.1 to 0.5. As pypy, increases,
the burstiness of channel loss gets higher.

As shown in Figure 18, using LL-ARQ does not always
perform well. Furthermore, the performance gets worse
with LL-ARQ as the burstiness gets higher because, in the
simulation environment considered, TCP performance is
more sensitive to RTT increase rather than PER decrease due
to LL-ARQ. Also, large retry limit results in the head of line
(HOL) blocking in the First-In First-Out (FIFO) queue of
BS (e.g., AP of 802.11 WLANS), so the other connections in
the good state cannot be served due to a few connections
in the bad state which keep on retransmitting failed frames
until the retry limit is reached [47]. The HOL blocking also
happens when a wireless station is suddenly powered-off
during its communication with remote TCP senders. The
harmful effect of HOL gets larger as the retry limit increases.
Therefore, in order to achieve good performance flexibly in
various environments, the retry limit should be set as small
as possible satistying the desired service quality in uniform
error conditions.

6. Conclusions

In this paper, we proposed a new ELN scheme and a TCP
modification. The proposed ELN scheme can detect wireless
losses rapidly and accurately with minimum overhead since
it does not need any additional data exchange over wireless
links. We also showed that the proposed TCP modification
can deal with multiple packet drops in a congestion window.
The combination of these two schemes gives the significant
performance improvement over existing protocols as we
have demonstrated throughout the simulation results. We
conclude that the combination of LL-ELSN and LL-ARQ
with a small retry limit will perform well flexibly in various
environments.

References

[1] J. Postel, “Transmission Control Protocol,” IETF RFC 793,
September 1981.

[2] M. Allman, et al., “TCP Congestion Control,” IETF RFC 2581,
April 1999.

[3] R. Caceres and L. Iftode, “Improving the performance of reli-
able transport protocols in mobile computing environments,”

IEEE Journal on Selected Areas in Communications, vol. 13, no.

5, pp. 850-857, 1995.

H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R.

H. Katz, “A comparison of mechanisms for improving TCP

performance over wireless links,” IEEE/ACM Transactions on

Networking, vol. 5, no. 6, pp. 756-769, 1997.

[5] M. Mathis, et al., “TCP Selective Acknowledgment Options,”
IETFE RFC 2018, October 1996.

[6] H. Balakrishnan and R. H. Katz, “Explicit loss notification
and wireless web performance,” in Proceedings of IEEE Global
Telecommunications Conference (GLOBECOM °98), Sydney;,
Australia, November 1998.

[7] R. K. Balan, B. P. Lee, K. R. R. Kumar, L. Jacob, W. K. G. Seah,

and A. L. Ananda, “TCP HACK: TCP header checksum option

to improve performance over lossy links,” in Proceedings of
the 20th Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM °01), vol. 1, pp. 309—

318, Anchorage, Alaska, USA, April 2001.

B. Zhang and M. N. Shirazi, “Implementation of explicit

wireless loss notification using MAC-layer information,” in

Proceedings of the IEEE Wireless Communications and Network-

ing (WCNC03), vol. 2, pp. 1339—1343, New Orleans, La, USA,

March 2003.

G. Buchholez, T. Ziegler, and T. Van Do, “TCP-ELN: on the

protocol aspects and performance of explicit loss notification

for TCP over wireless networks,” in Proceedings of the Ist

International Conference on Wireless Internet (WICON °05),

pp. 172-179, Budapest, July 2005.

[10] X. Gao, S. N. Diggavi, and S. Muthukrishnan, “LHP: an

end-to-end reliable transport protocol over wireless data

networks,” in Proceedings of the IEEE International Conference
on Communications (ICC ’03), vol. 1, pp. 66-70, Anchorage,

Alaska, USA, May 2003.

S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R.

Wang, “TCP Westwood: bandwidth estimation for enhanced

transport over wireless links,” in Proceedings of the 7th Annual

International Conference on Mobile Computing and Networking

(MOBICOM °01), pp. 287-297, Rome, Italy, July 2001.

[12] C. P. Fu and S. C. Liew, “TCP veno: TCP enhancement for
transmission over wireless access networks,” IEEE Journal on
Selected Areas in Communications, vol. 21, no. 2, pp. 216-228,
2003.

[13] K. Xu, Y. Tian, and N. Ansari, “TCP-Jersey for wireless IP
communications,” IEEE Journal on Selected Areas in Commu-
nications, vol. 22, no. 4, pp. 747-756, 2004.

[14] E. H.-K. Wu and M.-Z. Chen, “JTCP: jitter-based TCP for
heterogeneous wireless networks,” IEEE Journal on Selected
Areas in Communications, vol. 22, no. 4, pp. 757-766, 2004.

[15] A. Capone, L. Fratta, and F. Martignon, “Bandwidth esti-
mation schemes for TCP over wireless networks,” IEEE
Transactions on Mobile Computing, vol. 3, no. 2, pp. 129-143,
2004.

[16] Nortel Networks, “HSDPA and Beyond,” white paper, 2005.

[17] The Network Simulator-ns-2, http://www.isi.edu/nsnam/ns.

[18] H. Balakrishnan, S. Seshan, and R. H. Katz, “Improving
reliable transport and handoff performance in cellular wireless
networks,” ACM Wireless Networks, vol. 1, no. 4, pp. 469481,
1995.

[19] S. Bhandarkar, A. L. Narasimha Reddy, M. Allman, and
E. Blanton, “Improving the robustness of TCP to Non-
Congestion Events,” IETF RFC 4653, August 2006.

[20] S. Keshav and S. P. Morgan, “SMART retransmission: perfor-
mance with overload and random losses,” in Proceedings of
the 16th Annual Joint Conference of the IEEE Computer and

=

=

©

(11

EURASIP Journal on Wireless Communications and Networking

Communications Societies (INFOCOM °97), vol. 3, pp. 1131—
1138, Kobe, Japan, April 1997.

D. Qiao and S. Choi, “Goodput enhancement of IEEE 802.11a
wireless LAN via link adaptation,” in Proceedings of the IEEE
International Conference on Communications (ICC °01), vol. 7,
pp- 1995-2000, Helsinki, Finland, June 2001.

L. S. Brakmo and L. L. Peterson, “TCP Vegas: end to end
congestion avoidance on a global internet,” IEEE Journal on
Selected Areas in Communications, vol. 13, no. 8, pp. 1465—
1480, 1995.

C. Parsa and J. J. Garcia-Luna-Aceves, “Differentiating con-
gestion vs. random loss: a method for improving TCP
performance over wireless links,” in Proceedings of the IEEE
Wireless Communications and Networking (WCNC °00), pp.
90-93, Chicago, IlI, USA, September 2000.

K. Ramakrishnan, et al., “The Addition of Explicit Congestion
Notification (ECN) to IP” IETF RFC 3168, September 2001.
H. Schulzrinne, et al., “RTP: A Transport Protocol for Real-
Time Applications,” IETF RFC 3550, July 2003.

D. Barman and I. Matta, “Effectiveness of loss labeling in
improving TCP performance in wired/wireless networks,” in
Proceedings of the 10th IEEE International Conference Network
Protocols (ICNP °02), pp. 2—11, Paris, France, November 2002.
M. Kim and B. Noble, “Mobile network estimation,” in
Proceedings of the 7th Annual International Conference on
Mobile Computing and Networking (MOBICOM "01), pp. 298—
309, Rome, Italy, July 2001.

S. Biaz and N. H. Vaidya, ““De-randomizing” congestion
losses to improve TCP performance over wired-wireless
networks,” IEEE/ACM Transactions on Networking, vol. 13, no.
3, pp. 596-608, 2005.

IEEE Std. 802.11-1999, Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) specifications,
Reference number ISO/IEC 8802-11:1999(E), 1999.

3rd Generation Partnership Project, Technical Specification
Group Radio Core Network; Radio Link Protocol (RLP) for
circuit switched bearer and teleservices. Release 6. 3GPP TS
24.022 (V.6.0.0), December 2004.

3rd Generation Partnership Project, Technical Specification
Group Radio Access Network; HSDPA Overall Description.
Release 7. 3GPP TS 25.308 (V.7.0.0), March 2006.

X. Lin, N. B. Shroff, and R. Srikant, “A tutorial on cross-layer
optimization in wireless networks,” IEEE Journal on Selected
Areas in Communications, vol. 24, no. 8, pp. 14521463, 2006.
H. Jiang, et al., “Cross-layer design for resource allocation
in 3G wireless networks and beyond,” IEEE Communications
Magazine, vol. 43, no. 12, pp. 120-126, 2005.

E. Blanton, et al., “A Conservative Selective Acknowledgment
(SACK)-based Loss Recovery Algorithm for TCP,” IETF RFC
3517, April 2003.

S. Floyd, et al., “The NewReno Modification to TCP’s Fast
Recovery Algorithm,” IETF RFC 2582, April 1999.

TCP Westwood modules for ns-2, http://www.cs.ucla.edu/
NRL/hpi/tcpw.

TCP-DCR modules for ns-2, http://students.cs.tamu.edu/
sumitha.

IEEE Std. 802.11b, Supplement to Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY)
specifications: Higherspeed Physical Layer Extension in the
2.4 GHz Band, IEEE Std. 802.11b-1999, 1999.

J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: a simple model and its empirical validation,” in
Proceedings of the ACM SIGCOMM Conference on Applications,

15

Technologies, Architectures, and Protocols for Computer Com-
munication (ACM SIGCOMM °89), pp. 303-314, Vancouver,
Canada, October 1998.

R. Jain, et al, “A quantitative measure of fairness and
discrimination for resource allocation in shared computer
systems,” DEC Research Report TR-301, Digital Equipment
Corporation, Littleton, Mass, USA, 1984.

J. Pahdye and S. Floyd, “On inferring TCP behavior,” in
Proceedings of the ACM SIGCOMM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Com-
munication (ACM SIGCOMM °01), pp. 287-298, San Diego,
Calif, USA, August 2001.

D. Barman, I. Matta, E. Altman, and R. El Azouzi, “TCP
optimization through FEC, ARQ, and transmission power
tradeoffs,” in Proceedings of the Wired/Wireless Internet Com-
munications (WWIC °04), vol. 2957 of Lecture Notes in
Computer Science, pp. 87-98, Springer, 2004.

C. C. Tan and N. C. Beaulieu, “On first-order Markov
modeling for the rayleigh fading channel,” IEEE Transactions
on Communications, vol. 48, no. 12, pp. 2032-2040, 2000.

B. Fulvio and G. Lombardi, “On verifying a first-order
Markovian model for the multi-threshold success/failure
process for Rayleigh channel,” in Proceedings of the 8th IEEE
International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC ’97), vol. 1, pp. 12-16, Helsinki,
Finland, September 1997.

M. Zorzi, R. R. Rao, and L. B. Milstein, “On the accuracy
of a first-order Markov model for data transmission on
fading channels,” in Proceedings of the 4th IEEE International
Conference on Universal Personal Communications Record, pp.
211-215, Tokyo, Japan, November 1995.

P. P. Pham, “Comprehensive analysis of the IEEE 802.11,
Mobile Networks and Applications, vol. 10, no. 5, pp. 691-703,
2005.

M. Portoles, et al., “IEEE 802.11 downlink traffic shaping
scheme for multi-user service enhancement,” in Proceedings of
the 14th IEEE International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC ’03), vol. 2, pp. 1712—
1716, Beijing, China, September 2003.

	1. Introduction
	2. Related Work
	3. Link Layer Originated Explicit Link Status Notification
	4. ELSN-Capable SACK
	5. Simulation Results
	6. Conclusions
	References

