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Intercarrier Interference (ICI) is an impairment well known to degrade performance of Orthogonal Frequency Division
Multiplexing (OFDM) transmissions. It arises from carrier frequency offsets (CFOs), from the Doppler spread due to channel
time-variation and, to a lesser extent, from sampling frequency offsets (SFOs). Literature reports several models of ICI due to each
kind of impairment. Some studies describe ICI due to two of the three impairments, but so far no general model exists to describe
the joint effect of all three impairments together. Furthermore, most available models involve some level of approximation, and
the diversity of approaches makes it cuambersome to compare power levels of the different kinds of ICI. In this work, we present
a general and mathematically exact model for the ICI stemming from the joint effect of the three impairments mentioned. The
model allows for a vis-a-vis comparison of signal-to-ICI ratios (SIRs) caused by each impairment. Our result was validated by
simulations. An analysis of ICI in IEEE-802.16e-type transmissions shows that during steady-state tracking and at speeds below
150 km/h, SIR due to CFO is typically in the range between 25 dB and 35 dB, SIR due to Doppler spread is larger than 25 dB, and
ICI due to SFO is negligible.

Copyright © 2009 M. Garcia and C. Oberli. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
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1. Introduction

Mathematical models of Intercarrier Interference (ICI) in
Orthogonal Frequency Division Multiplexing (OFDM) and
techniques for mitigating it have been reported by many
authors. Studies modeling and dealing with ICI stemming
individually from channel variation in time are [1-9].
Likewise, the works of [10-15] address ICI due to Carrier
Frequency Offset (CFO) and those of [16, 17] ICI solely
due to Sampling Frequency Offset (SFO). Work modeling
ICI produced jointly by two of the three impairments is
significantly less common. The joint effect of CFO and SFO
has been studied in [18, 19], while [20] reports on ICI due
to CFO and channel mobility. Despite the attention that the
topic has received so far, there is as yet no general model in
literature that describes ICI resulting from the joint effect of
all three impairments.

Many of the above cited references model ICI by using
discrete-time and discrete-frequency signals. Unfortunately,

discrete-domain approaches are inaccurate for representing
impairments that affect signals outside the time-frequency
grid of discrete analysis, such as the SFO, or often restrict
the time-frequency properties of the channels for which the
approaches are valid. Another limitation of the models in the
cited references is the difficulty of combining them in order
to make a fair comparison of each kind of ICI under the same
conditions.

Our contribution with this paper is the derivation of
the general and mathematically exact model of ICI for
OFDM transmissions subject to the joint effect of CFO,
SFO, and time-varying channels with arbitrary statistics. By
including continuous-domain analysis, our derivations yield
a model that is general and is devoid of the limitations
of purely discrete-domain approaches, and by modeling all
three impairments together, we obtain a tool that allows for
a direct and clear comparison of the ICI caused by each
impairment.
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The remainder of this work is organized as follows.
Section 2 presents the development of our model of ICI
with deterministic signals; Section 3 analyzes the statistical
behavior of ICI; in Section 4, the statistical behavior pre-
dicted by our model is validated by simulations of IEEE-
802.16e-type transmissions (“mobile WIMAX”) [21]. Signal-
to-interference ratio curves for a broad range of mobile
speeds and CFOs are provided; finally, Section 5 sets out our
conclusions.

2. Deterministic Model of ICI

In what follows, we derive a mathematical model that
includes the effects of CFO, SFO, and channel mobility on
OFDM transmissions.

We begin by modeling the signal of the mth OFDM
symbol in continuous time ¢ using complex baseband
notation as

t—(m+1/2)T, + T,
x(t) = |‘|( ( )T )
Tg
Ny/2—-1 (1)
. Z Xm(v)ejz’”(“_ng)&.
v=—N,/2

In this equation, X,,(v) is the modulation on subcarrier v of
a total of N subcarriers. The separation between subcarriers
is ¢ = 1/N;T Hertz, where T is the sampling period of the
transmitter. The cyclic prefix has N, samples and duration
of T, = N, T seconds. Thus, the complete OFM symbol has
Ny = N, + N, samples and duration of T, = N,T seconds.
The symbol j denotes the imaginary unit +/—1. Finally, m(x)
is the rectangular function, equal to 1 when x is between
[—1/2,1/2] and 0 elsewhere.

In [22, 23], the general input-output relationship of
time-variant linear systems is described as

y(t) = J:h(t,'r)x(t — 2)

where x(¢) and y(t) are the respective input and output
signals in the time domain. The function h(t, 7) is the time-
variant impulse response of the system observed at instant ¢
due to an impulse at time ¢ — 7.

Now consider h(t,7) to represent the baseband-
equivalent impulse response of a time-varying wireless chan-
nel, and substitute (1) for x(¢) in (2) to represent an OFDM
transmission through that channel. At the receiver, the
arriving (passband) signal becomes corrupted by Additive
White Gaussian Noise (AWGN), is then downconverted to
baseband with a CFO of A f Hertz, and sampled with an SFO
of AT seconds. Following the steps outlined in Appendix A

for including these impairments, we obtain the following
sampled received signal for the mth OFDM symbol:

Ni—1 Ny/2-1 ) )
J/s(t) = (T +AT) z Z Xm(v)eﬂnAftef]anstng
p=0 v=—Ny/2

- 8(t = p(T + AT) — mNy(T + AT))

i [th(t, T)ej2nv6[(t—‘r)
0

t — ((1/2)N; + mNg ) (T + AT)
n ( N(T 1 AT) )dr]+n5(t).

(3)

Above, §(-) is the impulse function and ny(t) is AWGN
sampled at instants ¢t = p(T + AT) + mNg(T + AT), with
p =0,...,N; — 1. Equation (3) is a continuous-time signal,
butits value is 0 at every instant except when ¢ = p(T+AT)+
mNg (T + AT), with p = 0,...,N; — 1.

To recover the symbols in an actual OFDM system
implementation, the Fast Fourier Transform (FFT) of the
N, samples is calculated. That operation is equivalent to
calculating the continuous Fourier transform of (3) with
respect to £, but with the origin fixed at time mN, (T + AT)
(i.e., taking the transform of y(t + mNy(T + AT))). It is to
be noted that we assume that the cumulative drift of the
FFT window due to SFO has not yet reached the previous
or following OFDM symbol. Intersymbol interference is
therefore not considered in our model. Upon following the
algebraic steps detailed in Appendix B, we obtain

Ny/2—-1

Yi(f) = (I: {s”(f,r)*f{(T+AT) > Xu()

v=—N,/2

. o= J2T(f =D =v8) (T-+AT)(mNg+(N;~1)/2)

sin[z(f — Af —v8)(T + AT)N;]
" sin[m(f — Af —8,)(T + AT)]

) e—jZﬂv&‘re—jvaﬁ,ng }:| dT) ej2nmeg(T+AT)

+ N(f).
(4)

In this equation the function s"'(f, ) is the Doppler-variant
impulse response [22], time-limited to the duration of the
mth OFDM symbol. Thus, s (f, ) is given by the Fourier
Transform:

t— ((1/2)N; + mNg ) (T + AT))}

sUfT) = }'<|h(t,r) r ( N.(T + AT)

= N,(T + AT)sinc(fN,(T + AT))

. = J27f(1/2)Nc+mNg) (T+AT) *fs(f, 7),

(5)
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where s(f,7) is the Doppler-variant impulse response
defined as the Fourier transform in t of h(t, 1) [22].
For a fixed delay 7, and if the channel is static, then
s(f, 1) is a frequency domain impulse. As channel mobility
increases, so does the frequency spread of s(f,r). The
symbol * s denotes continuous convolution in the frequency
domain.

Expression (4) gives an exact description of the contin-
uous spectrum of an OFDM signal received over a time-
variant channel with a CFO of Af Hertz and an SFO of
AT seconds. In practice, this signal is observed at the output
of the FFT in the receiver at frequencies of f = [§,, with
—Ny/2 <1 < Ny/2 - 1and §, = 1/Ns(T + AT) being equal
to the separation of the subcarrier frequencies used by the
receiver. Imposing these conditions on (4) and considering
an arbitrary subcarrier k, we obtain (Appendix C) the
discrete output of the system:

Y(k) = Bk, YH (k)X (k) + I(k) + W (k) + Q(k) + N(k),
(6)

where f(-, -) is a phase and magnitude distortion given by

B(d,»)

_ L janta—vsm,
N;

. e~ i2n[(d=V)/Ne=(WN)(AT/T)=AfTA+AT/T) | (mNg+(Ne—1)/2)
sin{m[(d— v)/Ns— (v/Ns)(AT/T)—AfT(1 + AT/T)]Ns}

sin{m[(d— v)/N,— (W/N)(AT/T)=AfT(1 + AT/T)]} °
(7)

and H(k) in (6) is the time domain average of the channel in
carrier k during the transmission of the mth OFDM symbol,
given by

H(k) = s7(0, 7)e J2mkoT gy

- J
NS(T+AT) . 0

(Ns+mNg )(T+AT)

e—j2nkéit
h(t, 7)dtdr.

- J 0 No(T +AT) ) vy(ream)

Finally I(k), W(k), and Q(k) in (6) represent various forms
of intercarrier interference (ICI). Concretely, I(k) is ICI
due solely to mobility, W (k) is ICI caused exclusively by
imperfect synchronization, and Q(k) is an ICI that is nonzero
only when both impairments are present. Their expressions
are

| No/2-1
I(k) = mdz%ﬂ?(m(d)ﬁ(d, d)
d#k 9)
: st”((k — )8, T)e 2T gy,
0
N/2-1 B
Wk) = > Xu(nBk,vH(), (10)
v=—N,/2
v#k
) NJ/2-1 Ny/2-1
Q(k) = NAT+AT) > D> Xu)B(d,)

d=—N,/2 v=—N;/2
d#k v#d (11)

: J Sk = d)8,, T)e 2 iy,
0

Results (6) through (11) are deterministic and math-
ematically exact. In (9) (ICI due to mobility) we observe
that the interference in subcarrier k is the sum of signals
from all the other subcarriers, respectively weighted by
the integral of s"'((k — d)d;,,7). The value of the integral
depends on mobility and on the separation between the
interfering subcarriers (d) and the desired subcarrier (k).
This value is relevant only when subcarrier d is in the
neighborhood of k. The size of the neighborhood grows
with the mobile’s speed, but in any current-day OFDM
systems designed for mobility (e.g., DVB-T/H [24], “mobile
WIMAX” [21]), the neighborhood is mainly comprised by
subcarriers k + 1 and k — 1. It is to be noted that (9) equals
zero if the channel is static, regardless of synchronization.
If synchronization is perfect (i.e., AT = 0 and Af = 0),
then (9) is similar to the description found by many authors
[2, 6, 9, 25] for representing interference based on Doppler-
variant impulse responses. However, they all use discrete-
domain approaches, different from the one employed here,
thus capturing the effect of ICI less accurately.

Term (10) (ICI due to imperfect synchronization) has
been described by several authors for static channel condi-
tions, either considering CFO and SFO jointly [18, 19], CFO
alone [10, 12], or SFO alone [16, 17]. This term equals zero
if and only if there are no frequency nor sampling offsets,
regardless of mobility.

Finally, Q(k) of (11) is a new finding and clarifies
a frequent misconception that ICI due to mobility and
imperfect synchronization is two separate additive terms.
There is an ICI enhancement when both impairments are
jointly present (we will show in Section 4, however, that this
ICI is negligible in practice).

3. Statistical Analysis of ICI

In this section we analyze the statistical properties of ICI on
the basis of the expressions derived in the previous section.
The analysis that follows assumes a WSSUS (wide-sense
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stationary with uncorrelated scattering) channel [22, 23],
meaning that

E{s(fi,11)s* (fs12)} = 8(fo = fi)8(72 — 11)Sss(f15 T1)s
(12)

where S(f,7) is the scattering function [22, 23]. It is also
assumed that the transmitted data symbols are not correlated
either in frequency or in time and have an average energy of
E..

The relationship between the Doppler power spectral
density and the scattering function is [23]

$() = [ se(f ), (13)

where S(f) is the power spectral density of a pure tone
received under conditions of mobility. Perhaps the most
widely used model for this density is the one due to Clarke
[26] (often referred to as Jakes’ Doppler spectrum):

1

——, if|fl =/
7 fo\J1 = (f/ fp) (14)

0, if |[f|> fo,

where fp is the maximum Doppler spread as given by fp =
v/A, with v denoting the mobile’s speed and A the carrier
wavelength.

We define the function S"(f) as the Doppler power
density of the baseband-equivalent of a time-limited carrier
wave, that is, the Doppler density S(f) convoluted in
frequency with a sinc?(+) function:

S(f) =

ST(f) = sinc® (fN(T + AT)) % £S(f). (15)
Based on the foregoing considerations, we show in

Appendix D that the expected power of ICI on subcarrier k
is composed by three additive terms as

EJI1(k) + W (k) + Q(k) I}
= E{lI()I*} + E{lW(R)IP} + EllQUO1P}  (16)
= Si(k) + Sw (k) + Sq(k),

where the notation used is self-evident. The three power
terms are, respectively, given by

Ny/2-1
Si(k) = E; > B(d,d)B*(d,d)S"((k — d)é,), (17)
d=—N,/2
d+k
Ny/2—-1
Sw(k) = Es > Pk, v)B* (k,»)S7(0), (18)
v=—N,/2
v#k

Ny/2—1 N;/2-1

So(k)=E; > > PBldv)B*(d,»)S"((k - d)é,). (19)
d=—N,/2 v=—N;/2
d#k v#d

Note that (16) implicitly states that the three ICI terms are
statistically independent from each other.

In [27], the steps of Appendix D were also followed
for determining the covariances of the ICI terms between
different subcarriers. The result can be used for generating
statistically accurate frequency-correlated ICI from a white
Gaussian sequence. (By virtue of the central limit theorem
with N; large enough it is commonly accepted that ICI has
Gaussian random properties; see, e.g., [25].) The ICI thus
generated might greatly simplify some simulations of imper-
tectly synchronized OFDM systems in mobile environments.

Finally, using (6) and (8) (and WSSUS conditions), we
can calculate the expected power of the desired symbol
actually received on subcarrier k:

Sx(k) = E{B(k, k)X (K)H (k) p*(k, )X (k)*H" (k) } o)
= Es ) ﬁ(ka k)ﬁ* (k) k)S’_I (0))

where E[H(k)H " (k)] = S7(0) follows from (8) and (15).

Strictly speaking, the expected interference powers per
subcarrier given by (17), (18), (19), and (20) change with
k. In practice, however, if the transmission bandwidth is
much larger than the Doppler spread bandwidth, these terms
are practically constant over frequency. This is so because
the time-limited Doppler spread function (S"(f)) takes
significant values only in the neighborhood of a subcarrier
k, thus ensuring statistical homogeneity in most subcarriers
other than those at the band edges, which are exposed to less
ICI because they have fewer neighboring subcarriers.

We define 1 = Sx(k)/E; as the fraction of energy kept
by subcarrier k. If we assume perfect synchronization then
by (20) we can calculate 7 as a measure of degradation due
only to channel mobility. Using (14) and (15), we obtain the
precise value of 7 as follows:

v/A : 2
W:J Asinc(fN;T) J

VA yy[1 — (/\f/v)2 s (21

An example of (21) is shown in Figurel(a) for a
IEEE-802.16¢ transmission with 512 subcarriers (“mobile
WIMAX?”) [21]. At speeds under 500 km/h, the subcarrier
energy retention is over 95%.

A similar performance measure can be calculated for a
case without mobility but with imperfect synchronization.
Using (20) and (7) and considering (v/N;)(AT/T) = 0, we
obtain

1 sin’ {mn[AfT(1+ AT/T)IN}
N2 sin?{n[AfT(+AT/T)]}

(22)

In this case, the WIMAX system requires a CFO smaller than
0.2 intercarrier spacing so that less than 10% of energy is lost
as ICI (Figure 1(b)).
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FIGURE 1: Fraction of energy retained by a subcarrier as (a) mobile’s speed increases and (b) as carrier frequency offset increases. The
remaining energy is lost as intercarrier interference. System parameters: 512 subcarriers, 5 MHz bandwidth, 3.5 GHz carrier frequency.

4. Computational Verification of Results

We now turn to the computational validation of (17),
(18), (19), and (20) found in Section 3. For this, consider
defining the signal-to-interference-plus-noise ratio (SINR)
of a subcarrier k as

Sx (k)
Si(k) +Sw(k) + SQ(k) + Es/l“'

Above, the parameter T' is defined such that transmissions
have an expected signal-to-noise ratio (SNR) of I' when
there is no ICI (i.e., no mobility and perfect synchronization,
hence (23) evaluates to T').

Our goal is to compare the theoretical prediction of (23)
with values of SINR obtained from simulations by averaging
over 300 OFDM symbols, transmitted over the same number
of independent realizations of WSSUS time-varying channels
with Clarke’s statistics, and with receiver-side insertion of
CFO and SFO. The time-variant impulse responses h(t, )
were generated using an autoregressive model of order 100
as set out in [28], with an € = 107> bias to ensure
the algorithm’s stability. Unit-power QPSK was used for
subcarrier modulation.

The parameters used were those of an IEEE-802.16e
system [21] with Ny = 512 subcarriers, a cyclic prefix of
N, = 64, bandwidth of 5MHz, and a carrier of 3.5 GHz.
Finally, the coherence time was estimated as T. = 0.423/fp
[29], the average symbol energy E; was set equal to 1, and
the channels’ maximum delay spread was restricted to the
duration of the cyclic prefix.

Note that evaluating (17), (18), (19), and (20) for (23)
requires computing continuous integrals given by (8) and
(15) (the latter was computed based on (14)). These were
carried out with a sampling density of 100 points between
subcarriers. In order to reduce the computational complexity
of the resulting calculations, we used the fact that (17) to

SINR(k) =

(23)

(20) are essentially invariant in k (as noted) and therefore
confined ourselves for evaluating the case of k = 0.

A first set of simulations illustrates the individual
contributions of CFO, SFO, and environment mobility to the
signal-to-interference ratio (SIR) in the absence of thermal
noise (Figure 2). Solid curves show evaluations of (23) and
markers quantify simulation results. Curve A shows the SIR
due only to mobility (Sx/S;) when synchronization is ideal.
For cases with imperfect synchronization, note that the SIR
Sx/Sw is a constant with respect to the channel’s coherence
time. The SIR is thus shown by asymptotes B1 for the case
with CFO = 0.2 parts of one intercarrier spacing and SFO
= Oppm, and C1 for the case with CFO = 0 and SFO =
20 ppm. Correspondingly, curves B2 and C2 present the
ratios Sx/(Sw + Sq). They confirm that S is relevant only
in transmissions with extremely high mobility and has no
practical relevance in current-day OFDM systems. Similarly,
the contribution of SFO to SIR (curves C1 and C2) is also
negligible compared to the effect of mobility and CFO, even
with the rather large SFO used here.

We now focus on the simulation results for SINR with
different CFOs and coherence times. Figures 3 and 4 display
some of these results for I = 7dB and I = 12dB.
Observe that for high-mobility channels, where coherence
times are less than approximately 3 OFDM symbols, SINR
degrades dramatically, regardless of the magnitude of CFO.
This implies that for the range of coherence times just
indicated, CFO-induced degradation is overshadowed by
the degradation due to mobility. By contrast, with greater
coherence times, the ICI produced by CFO tends to dominate
the SINR. A graphic representation of how SINR varies with
CFO for different levels of thermal noise is presented in
Figure 5. It shows that taking full advantage of OFDM per-
formance in high SNR regimes needs tighter synchronization
requirements than at lower SNRs.
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FiGure 2: Individual contributions of mobility (curve A), carrier
frequency offset (CFO, curves Bl and B2), and sampling frequency
offset (SFO, curves Cl1 and C2) to the SIR. Solid curves are
evaluations of (23) and markers represent simulation results.
System parameters are as in Figure 1.
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FIGURE 3: SINR for different carrier frequency offset as a function
of channel coherence time. Solid curves are evaluations of (23) and
markers represent simulation results. System parameters are as in
Figure 1, SNRT = 7dB.

The top curves of Figures 3 and 4 present a discrepancy
between theoretical and simulation results. As discussed by
Baddour and Beaulieu [28], the autoregressive approach
for simulating a time-varying channel uses ill-conditioned
equations, which makes simulating slow-varying channels
with Clarke’s U-shaped spectral density difficult. As a
workaround, they propose a heuristic solution equivalent to
adding a very small amount of white noise to the channel’s
fading process. The effect is also equivalent to a slight
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F1GURE 4: SINR as in Figure 3 with T = 12 dB.
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FiGure 5: SINR as a function of carrier frequency offset for SNR
levels T = {7,12,18} dB. Channel coherence time is 5 OFDM
symbols. Solid curves are evaluations of (23) and markers represent
simulation results. System parameters are as in Figure 1.

enhancement of thermal noise and reveals itself in our
simulations when thermal noise dominates over ICI, as in the
curves mentioned. When this simulation bias is negligible,
however, our theoretical results are well matched by the
simulations.

The values used above for CFO (0.2 and 0.4) are adequate
for representing initial conditions of tracking loops after an
acquisition stage. But during steady-state tracking, typical
RMS values of the residual CFO are in the range between
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FiGure 6: SIR as a function of carrier frequency offset (CFO).
Obtained from (23) with static channel, SNRI' = co and system
parameters are as in Figure 1.

0.01 (I' = 18dB) and 0.04 (I' = 7dB) [19]. Because of
the algorithmic limitations discussed above, simulating these
cases of CFO for channels with coherence times of practical
interest yields inaccurate results. However, we can now
predict precise SIR levels by evaluating (23). Figure 6 shows
the SIR due only to CFO for a broad range of CFO values.
The surprising linearity of the relationship between SIR and
CFO is not at all evident from the equations. For the residual
CFOs given before, SIR is in the range between 25 dB and
35dB. In similar fashion, Figure 7 presents the SIR for a wide
range of mobile speeds. For mobile speeds below 150 km/h,
SIR is larger than 25 dB. Observe that Figures 6 and 7, used
along with an SNR level I, provide a quick way for ranking
the three impairments in terms of their contribution to SINR
and for determining link-level SINR values without having to
resort to time-consuming simulations.

Finally, note that after neglecting SFO the sole parameter
remaining in (17), (18), (19), and (20) is the intercarrier
spacing 1/N;T = 1/T;. Because all modes of operation
specified by the IEEE-802.16e standard use the same inter-
carrier spacing [21], it follows that the curves in Figures 2
through 7 are in fact valid for any mode of mobile WIMAX
transmission.

5. Conclusions

A general and mathematically exact model of the power
of intercarrier interference (ICI) was derived for OFDM
transmissions exposed to the joint impact of sampling
frequency offset, carrier frequency offset (CFO), and channel
time variation. It was shown that the ICI ensuing from
these impairments has three components: one solely caused
by Doppler spread, one that depends only on the syn-
chronization offsets, and one that is nonzero only when
imperfect synchronization and channel variation happen
together. Similar but nevertheless approximate descriptions
of the former two components are available in literature. In

« CFQ = 0.007
%« CFQ = 0.008
* GFQ = 0.009
35 + *.CFO. = 0.0
30 F
CFO =0.03
25+ S ARSI
— % CFO = 0.04
g x CFO = 0.05
Z 9t . CFQ. = 0.06
o~ « CFQ = 0.07
= % GFO = 0.08
x CFO = 0.09
15+ *.CFO =01
x CFO = 0.15
10 * CFO = 0.2
5t S - % CFO = 0.3 S
37 km/h 182km/h 106 km/h 75km/h 58 km/h 47 km/h 40km/h 34km/h
0 v v v L Y L Y

0 5 10 15 20 25 30 35 40
Coherence time as multiple of OFDM symbol duration

FIGURE 7: SIR as function of mobility. Obtained from (23) with no
carrier frequency offset (CFO), SNRT = oo and system parameters
are as in Figure 1. Selected SIR levels due to CFO are also given for
comparison (x-markers, values copied over from Figure 6).

this paper, besides describing them without approximations,
they are presented with the same power scale. This allows
for a direct comparison of these two sources of ICI. The
third component is a new finding. It was shown to be
nonnegligible only in very-high-speed environments of no
practical interest at the present.

The new model was validated by computer simulations
of OFDM transmissions using IEEE 802.16e parameters
(mobile WIMAX).

Signal-to-noise and signal-to-interference ratios (SIR)
were used for comparing the different sources of ICI with
levels of thermal noise. SIR curves for a broad range of CFOs
and mobile speeds were presented. For reference, during
steady-state tracking and at speeds below 150 km/h, SIR due
to carrier frequency offset is typically in the range between
25 dB and 35 dB, and ICI due to Doppler spread is larger than
25dB.

Appendices
A. Sampled Received Signal

By substituting (1) into (2) and adding the phasor e/>7Af!
due to the difference of Af Hertz between the receiver and
transmitter carrier frequencies, we obtain

y(t) = ejZnAfth - (t T—(m+1/2)Tg + Te)
0

Tg
No/2-1 ‘ (A.1)
C D Xp(w)elmotrmmId (s 2)dT + n(t).
v=—N,/2

We now sample the received signal (A.1) at a rate offset
by AT seconds from the transmitter rate, that is, at instants
n- (T + AT), where T is the transmitter sampling period. If
we assume that adequate filtering of the signal was conducted
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prior to sampling so that the noise term n(t) is limited
to the band of interest, the sampling times for the mth
OFDM symbol are t = n(T + AT) + mN,(T + AT), where
n = 0,...,Ny; — 1. Thus, the sampling operation implicitly
removes the cyclic prefix and extracts the OFDM symbol in
the “correct” window except for a cumulative drift due to AT.
The sampling function shah(-) representing this operation is
given by

t
Shah<T+AT)

— ((1/2)N, + mN, ) (T + AT
:(T+AT)|—|(t (A/2)N. + N (T + ))

Ni(T + AT)

5 8(t = p(T+AT) — mN(T + AT)),
p=—o
(A2)

where §(-) is the Dirac delta function. The scaling factor
T + AT indicates sampling by area. This formulation of the
sampling function, instead of simply representing it by a
sum of N, terms, is more convenient for the derivation in
Appendix B leading to (4). Applying (A.2) to (A.1) we obtain

y(t) = i 8(t = p(T +AT) — mNg(T + AT))

p=—o
N;/2—1
A(T+AT) D Xp(v)elmft
v=—N/2
t = ((1/2)N; + mNg ) (T + AT)
: NA(T + AT)
. 5 ) (A.3)
()
o t—7— +1/2)T, + T,
J m( = (m+1/2)T, e)h(t,r)
0 Tg
(8
; t
. pJ2mv (t—1-mTy) .
e : dT+shah(T+AT) 0

"

n(t)

where mN (T + AT) < t < (mNg + Ny — 1)(T + AT). If
the cyclic prefix duration is sufficiently large that h(t,7) = 0
for all T > T, at every instant ¢, a careful analysis of (A.3) will
show that the presence of () allows r(#) to be eliminated.
This is so due to the condition on T, and the position of
the M(-) functions when m and AT are within the range of
interest. Further simplification may be achieved by joining
m(¢) with the series in p, as given in (3).

B. Spectrum of Sampled Received Signal

If we calculate the transform of y,(¢) in (3), evaluated at ¢ +
mNg(T + AT), we obtain

Yi(f) = J:J: M (™t T)y(t, T)e 2 dtdr

FAn(wh(tLT)y(tT)}

(B.1)

) ejanmNg(TJrAT) +N(f),

where the function (¢, 7) is defined as

N;—1 Ny/2-1

y(t,T) = (T+AT) > > Xu(»)

p=0 y=—N,/2

(B.2)
-8(t = p(T+AT) — mNy(T + AT))

) ejZHAfte—jZTrv&ngej2nv6[(t—‘r)
In (B.1), #:{-} is the Fourier transform in t of the

product M(#)h(t, T)y(t,7) for delay 7 in the time-variant
impulse response. The transform is given by

FAnh(t, )y, 1)} =" (f,7)* Y (f, 1), (B.3)

where s"'(f,7) and ¥(f, 7) are the Fourier transforms in t of
M(s)h(t, 7) and y(t, 1), respectively, given by

(Ny+mNy)(T+AT) A
s (for) = J h(t, T)e 2t dt, (B.4)
mNg(T+AT)
Ny/2—-1
\P(f,T) — (T+AT) Z Xm(v)e—]va&nge—]vaélr
v=—N,/2
) e—j2n(f—Af—v6t)mNg(T+AT) (BS)
N;—1
. Z e i2m(f=Af=v)p(T+AT)
p=0

The last step is to directly evaluate the geometric series in
(B.5), following [19]. We are then left with

Ny/2-1
“Il(f, T) = (T +AT) Z Xm(v)eijm)&ngeijm@T
v=—N,/2

. o= J2m(f=Af =) (T+AT)(mNg+(Ne=1)/2) (B.6)

_ sin[7(f — Af —v8,)(T + AT)N;]
sin[z(f — Af —v8:)(T +AT)] ’

which is the expression in curly brackets in (4). Substituting
(B.4) and (B.6) into (B.1) and (B.3), we obtain the desired
signal model in (4).
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C. Received Subcarrier Signal
We first evaluate portions of (4) at the desired discrete

frequencies f = I§,, with -Ny/2 < | < Ny/2 — 1 and
8, = 1/N(T + AT) and find

e—jme&ngej2nmeg(T+AT) _ ej2n(l—v)é}ng’

I- AT v AT
(f—Af— V(S[)(T'{'AT): NS —AfT<1+T>—NST
(C.1)

Also, the frequency-convolution integral in (4) becomes a
summation (in d, below) with its differential df turning
into 8, = 1/Ny(T + AT). The term s"'(I8,, ) is evaluated
at the discrete frequencies [, with sample separation §, =
1/Ns(T+AT), and to conserve energy it must be multiplied by
8. Thus, sampling (4) at frequency [ = k gives the following
result:

Y (k)

Ny/2—-1 Ny/2-1

22 Xal)

—Ny/2 v==N;/2

1
NZ(T+AT)

. ejZn(d—v)&ng

. = i27l(d=)/N= (/N (AT/T)=A f TA+AT/T)] (mNg+(Ne=1)/2)

sin{7r[(d—v)/Ns— (v/N)(AT/T)=AfT(1 + AT/T)|N}
" sin{a[(d—v)/Ne— (v/N)(AT/T)—AfT(1 + AT/T)]}

. J:s”((k —d)8,, 1)e 77 dr + N(k).
(C2)

If we now separate out v = d from the rest of the terms in the
second summation of (C.2), we obtain

Ny/2-1

> Xu(d)(d,d)

d=—N,/2

1

Y(k) = N.(T + AT)

- I Sk = d)3,, 7)e 12407 4
0

Ny/2—-1 Ng/2-1 (C3)

1
NTAD), 2, %, R
v#d

- J Sk = d)8,, T)e 27 dr 1+ N(K),
0

in which B(d, v) represents the phase and magnitude effects.
This function is given in (7).

Finally, by isolating the terms d = k from both sums on
d in (C.3) and by using the definition of the time-domain
average channel given in (8), we obtain (6), (9), (10), and
(11).

D. Expected Power of ICI

For simplicity, we write W (k) and Q(k) as one term ¢(k) =
W (k) + Q(k). Then, we have

E[ (1(K) + (k) (1(K) + p(k)) * |
= EL(K)I* (k)] + E[1(k)g* (k)] + E[(k)I* (k)]
+E[p(k)p*(k)].
(D.1)

We now proceed term by term:

E[I(k)I* (k)]

Ni/2-1 Ny/2-1

1
= 2 Z Z
NAT+AT) y TNpa=—np
d#k di#k

- Bldr, dv)B* (da, d2)

E[Xn(d1) X, ()]

(D.2)

| B[k = )k - )6 )]
0

. e/ r=dit) g dr
By (12) it is readily apparent that
E[s"((k = d1)8y, 71)s" (k — d2)8y,72) |
= sinc(fN,(T + AT))? % Se(f,7) )f:(kfd)& (D.3)
CN2(T +AT)?84,4,0(1, — 1),

where 6, is the Kronecker delta. Given (13) and (15) and
our assumption that the data symbols are uncorrelated with
average energy Es, we can simplify (D.2) to obtain

N/2-1
E[I(I* (k)] =E > B(d,d)p*(d,d)S"((k—d)s,).
d=—Ny/2
d+k
(D.4)
Similarly, for ¢(k),
E[p(k)o* (k)]
] N/2-1 NJ/2-1 Ng/2-1 Ny/2-1
- N2(T + AT)? di=—N./2v1=—Ne/2 dy=—N./2 v2=—Ny/2
v#d vy #dy
(D.5)

ELXn ()X (v2)Blds, 7B (e, 2)
AJ B[k = )k - )67
0

i ej2n6,(vz‘rz —vl‘rl)d.[.l de.
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Using again (D.3) and uncorrelated data symbols we get

E[p(k)p* (k)]

Ng/2—1 Ng/2-1

=E Y > S((k-d)8)B(d,)p*(d,v).
d=—N,/2 V=V;I\g/2

(D.6)

Equations (18) and (19) are obtained by separating the term
for d = k from the rest of the sum on d in (D.6).
Finally, the cross-correlations are

E[I(k)¢* (k)]

1 N;/2—-1 N/2—-1 N;/2-1
" N2(T + AT)? 222
s dy=—Ny/2 dy=—N,/2 v2=—N,/2
dy #k v #dy

X0 ()X, () 1Blch, B ()
[ B[k = ) )5 (- )]

. ej2n8f(vzfz*d171)dTIde.
(D.7)

In this case, assuming uncorrelated data symbols eliminates
all summands in (D.7) except those for d; = d, and d; = »,.
Then, because the sum on v, leaves out the terms v, = d», we
find that (D.7) equals zero.
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