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1. Introduction

Orthogonal frequency-division multiplexing (OFDM) is
an attractive modulation technique for wideband wireless
communications due to its robustness against multipath
distortions and flexibility in allocating power and data rate
over distinct subchannels. For these reasons, it is adopted in
a variety of applications, including digital audio broadcasting
(DAB), digital video broadcasting (DVB), and the IEEE
802.11a wireless local area network (WLAN) [1]. Combining
OFDM with the multiple-input multiple-output (MIMO)
technology is an effective solution to increase the capacity of
practical commercial systems. The deployment of multiple
antennas at both the transmitter and receiver ends can
be exploited to improve reliability by means of space-time
coding techniques and/or to increase the data rate through
spatial multiplexing [2].

Similar to single-input single-output (SISO) OFDM,
MIMO-OFDM is extremely sensitive to carrier frequency
offsets (CFOs) induced by Doppler shifts and/or oscillator
instabilities. The CFO destroys orthogonality among sub-
carriers and must be accurately estimated and compensated
for to avoid severe error rate degradations [3]. While
CFO recovery is a well-studied problem for single antenna
systems, only few solutions are available for MIMO-OFDM.

A blind kurtosis-based scheme is presented in [4], while a
method for jointly estimating the CFO and MIMO channel
is derived in [5] by placing null subcarriers and pilot tones
across adjacent OFDM blocks. Unfortunately, these methods
are quite complex as they require a large-point discrete
Fourier transform (DFT) operation and a computationally
demanding line search. Furthermore, they provide the CFO
estimate upon observation of several OFDM blocks, and
accordingly, are not suited for packet-oriented applications,
where synchronization must be completed shortly after
the reception of a packet. In order to achieve fast timing
and frequency recovery, training sequences with a periodic
structure are commonly employed in SISO-OFDM systems
[6–8]. Extending this approach to MIMO-OFDM, however,
is not straightforward as signals emitted from different
antennas give rise to multistream interference (MSI) at the
receiver station, which may degrade the accuracy of the
synchronization algorithms. The detrimental effect of MSI
can be alleviated by a careful design of the MIMO preambles.
For instance, in [9], it is shown that the performance of
the least-squares (LSs) channel estimator is optimized if the
training sequences at different TX branches are orthogonal
and shift-orthogonal for at least the channel length. To meet
such requirement, a time-orthogonal design is employed in
[10], where different TX antennas transmit their preambles
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over disjoint time intervals. In this way, however, the
preamble length grows linearly with the number of TX
branches, thereby, increasing the system overhead. The use
of chirp-like polyphase sequences is suggested in [11], while
a training block composed of repeated PN sequences with
good cross-correlation properties is employed in [12]. In
both cases, the CFO estimate is obtained by cross-correlating
the repetitive parts of the received preambles in a way similar
to SISO-OFDM. This approach is also adopted in [13, 14],
where the pilot sequences are obtained by repeating Chu
or Frank-Zadoff codes with a different cyclic shift applied
at each TX antenna. Alternative criteria for MIMO-OFDM
preamble design can be found in [15, 16].

A subspace-based method for CFO estimation in MIMO-
OFDM has recently been proposed in [17]. In this scheme,
pilot symbols at different transmit antennas are frequency-
division multiplexed (FDM) and placed over equally spaced
subcarriers. The resulting preambles are characterized by an
inherent periodic structure in the time domain which can
be effectively exploited at the receiver to separate signals
arriving from different TX antennas. This approach is
reminiscent of the multiple-signal-classification (MUSIC)-
based frequency recovery scheme employed in [18] in the
context of orthogonal frequency division multiple access
(OFDMA). The main advantage with respect to [18] is that in
[17], the CFO estimate is obtained with reduced complexity
by looking for the roots of a real-valued polynomial function.
A root-based approach is also adopted in [19] after writing
the CFO metric in polynomial form.

In this paper, the repetitive slots-based CFO estimator
discussed in [8] is extended to MIMO-OFDM transmissions.
In order to enlarge the frequency acquisition range, however,
we decompose the CFO into a fractional part plus an
integer part. The fractional CFO is computed first by cross-
correlating the repetitive segments of the received preambles
in a way similar to [8], while the integer CFO is subsequently
estimated by resorting to maximum likelihood (ML) meth-
ods. This results into an algorithm of affordable complexity
which can estimate large CFOs and whose accuracy attains
the relevant Cramer-Rao bound (CRB).

The rest of this paper is organized as follows. Section 2
describes the system model and introduces basic notation. In
Section 3, we review the joint ML estimation of the CFO and
MIMO channel, while Section 4 is devoted to the training
sequences design and CFO recovery scheme. Simulation
results are presented in Section 5 and some conclusions are
drawn in Section 6.

Notation 1. Matrices and vectors are denoted by boldface
letters, with WN and IN being the DFT matrix and identity
matrix of order N , respectively. A = diag{a(n);n =
1, 2, . . . ,N} denotes an N × N diagonal matrix with entries
a(n) along its main diagonal, while B−1 is the inverse of
a square matrix B. We use E{·}, (·)∗, (·)T , and (·)H
for expectation, complex conjugation, transposition, and
Hermitian transposition, respectively. The notation ‖ · ‖
represents the Euclidean norm of the enclosed vector, while
Re {x}, |x|, and arg{x} stand for the real part, modulus, and
principal argument of a complex number x. Finally, [B]k,l

denotes the (k, l)th entry of a matrix B, while ˜λ is a trial value
of the unknown parameter λ.

2. SystemModel

We consider a MIMO-OFDM system with NT transmitting
and NR receiving antennas. We denote by N the number of
available subcarriers which are enumerated from n = 0 to
n = N − 1 and call ci = [ci(0), ci(1), . . . , ci(N − 1)]T the fre-
quency domain pilot sequence at the ith TX antenna. Before
transmission, this sequence is converted in the time domain
through an inverse discrete Fourier transform (IDFT) oper-
ation and a cyclic prefix (CP) of length Ng is inserted
to avoid inter-block interference (IBI). The signal emitted
from the ith TX branch arrives at the mth RX antenna
after propagating through a multipath channel with discrete-
time impulse response hm,i = [hm,i(0),hm,i(1), . . . ,hm,i(L −
1)]T , where L is a design parameter that depends on the
duration of the transmit/receive filters and on the channel
delay spread. Since one single oscillator is used for frequency
conversion at both ends of the wireless link, the same
CFO is assumed for all transmit/receive antenna pairs. We
denote by xm = [xm(0), xm(1), . . . , xm(N − 1)]T the time
domain samples available at the mth RX antenna and define
Γ(ν) =diag{e j2πνk/N ; 0 ≤ k ≤ N−1}, where ν is the frequency
offset normalized by the subcarrier spacing. Assuming ideal
timing recovery and Ng ≥ L, we have

xm = Γ(ν)sm + nm, (1)

where nm is an N-dimensional vector of AWGN samples
with zero-mean and variance σ2

n , while sm = [sm(0), sm(1),
. . . , sm(N − 1)]T is the useful signal component, which is
modeled as

sm =
NT
∑

i=1

Aihm,i. (2)

In (2) , we have set Ai =WH
NCiFL, where Ci = diag{ci(n); 0 ≤

n ≤ N − 1} collects the pilot sequence emitted by the ith TX
antenna, while FL is an N × L matrix with entries
[

FL
]

n,l = e− j2πnl/N , 0 ≤ n ≤ N − 1, 0 ≤ l ≤ L− 1. (3)

In Section 3 we show how to exploit vectors {xm; 1 ≤ m ≤
NR} for jointly estimating the CFO ν and the MIMO channel
H = {hm,i; 1 ≤ m ≤ NR, 1 ≤ i ≤ NT}. In doing so, we
adopt the FDM training sequences suggested in [17], which
optimize the performance of the LS channel estimator thanks
to their shift orthogonality properties [9]. Such sequences are
expressed by

ci(n) =

⎧

⎪

⎨

⎪

⎩

di(n′) n = n′Q + μi, 0 ≤ n′ ≤ N

Q
− 1

0, otherwise,
(4)

where Q is a power of two not smaller than NT , {μi} are
integer parameters satisfying 0 ≤ μ1 < μ2 < · · · < μNT <
Q, and di(n′)} are pilot symbols with constant modulus
|di(n′)| =

√

Q/NT . In this way, the total energy allocated to
training amounts to ET = N and is equally split between the
TX antennas.
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3. Maximum Likelihood Frequency Estimation

Given the unknown parameters (H, ν), from (1), it turns out
that vectors {xm} are statistically independent and Gaussian
distributed with mean Γ(ν)sm and covariance matrix σ2

nIN .
Hence, bearing in mind (2), the log-likelihood function
(LLF) for (H, ν) takes the form

Λ( ˜H, ν̃) = −NRN ln
(

πσ2
n

)

− 1
σ2
n

NR
∑

m=1

∥

∥

∥

∥

∥

xm − Γ(ν̃)
NT
∑

i=1

Ai
˜hm,i

∥

∥

∥

∥

∥

2

.
(5)

As a consequence of the FDM property of the employed
training sequences, we observe that AH

i1 Ai2 = FHL C
H
i1 Ci2FL is

the null matrix for any i1 /= i2. Using this fact, after neglecting
irrelevant terms independent of ˜H and ν̃, we may rewrite the
LLF as

Λ1( ˜H, ν̃) = 2Re

{ NR
∑

m=1

NT
∑

i=1

˜h
H

m,i A
H
i Γ

H(ν̃)xm

}

−
NR
∑

m=1

NT
∑

i=1

∥

∥Ai
˜hm,i

∥

∥

2

,

(6)

where we have borne in mind that ΓH(ν̃)Γ(ν̃) = IN . The
joint ML estimate of the unknown parameters is the location

where Λ1( ˜H, ν̃) achieves its global maximum. After standard
computations, the CFO estimate is found to be

ν̂ = arg max
ν̃
{g(ν̃)}, (7)

where

g(ν̃) =
NR
∑

m=1

∥

∥LHΓH(ν̃)xm
∥

∥

2
, (8)

and LLH is the following Cholesky decomposition:

LLH =
NT
∑

i=1

Ai
(

AH
i Ai

)−1
AH
i . (9)

In the sequel, we refer to (7) as the maximum likelihood
frequency estimator (MLFE). The following remarks are in
order.

(1) Observing that AH
i Ai = FHL C

H
i CiFL with rank{FL} =

L and rank {CH
i Ci} = N/Q, it turns out that

rank{AH
i Ai} ≤ min{L,N/Q}. Since AH

i Ai has dimen-
sions L× L, a necessary condition for the existence of
(AH

i Ai)
−1 in the right-hand-side of (9) is that L ≤

N/Q. On the other hand, from (4), it follows that
AH
i Ai has entries

[

AH
i Ai

]

�1,�2
= Qej2πμi(�1−�2)/N

N/Q−1
∑

n′=0

e j2πn
′(�1−�2)Q/N ,

0 ≤ �1, �2 ≤ L− 1,

(10)

and reduces to N · IL if L ≤ N/Q. In such a case, the
frequency metric simplifies to

g(ν̃) = 1
N

NR
∑

m=1

NT
∑

i=1

∥

∥AH
i Γ

H(ν̃)xm
∥

∥

2
. (11)

(2) By invoking the asymptotic efficiency property of
the MLFE, the frequency estimate (7) is expected
to be unbiased with an accuracy that approaches
the corresponding CRB for large data records and
sufficiently high signal-to-noise ratios (SNRs). Using
the LLF in (5), it is found that [19]:

CRB(ν) = σ2
n

2
∑NR

m=1 yHm
(

IN − LLH
)

ym
, (12)

where ym = [ym(0), ym(1), . . . , ym(N − 1)]T is an N-
dimensional vector with entries

ym(k) = 2πk
N

· sm(k), 0 ≤ k ≤ N − 1. (13)

4. Frequency Estimation with
Reduced Complexity

4.1. Problem Formulation. Direct maximization of g(ν̃) in
(8) undertakes heavy computational burden. One possible
way to reduce the system complexity is indicated in [19],
where g(ν̃) is transformed into a real-valued polynomial
function, and the CFO estimate is indirectly obtained by
means of a polynomial rooting procedure. In this paper, we
follow the alternative approach outlined in [8], by which
a periodicity is first introduced in the MIMO training
sequences, and CFO recovery is then accomplished by
measuring the phase rotations between the repetitive parts
of the received preambles. For this purpose, the sequences in
(4) are modified so as to simultaneously satisfy the following
constraints:

(C1) pilot symbols are equipowered, equispaced in the
frequency domain and modulate distinct subcarriers
at different TX antennas according to the FDM
principle;

(C2) each vector WH
N ci (i = 1, 2, . . . ,NT) of time domain

samples is obtained by the repetition of R identical
segments, where R is some power of two.

Condition C1 implies that the NT preambles remain
shift-orthogonal in the time domain, which is desirable
to enhance the accuracy of the channel estimates, while
condition C2 facilitates CFO recovery by ensuring that the
preambles are periodic with period P = N/R.

To proceed further, let Q be a power of two with Q ≥
NT . Then, it can be easily shown that C1 and C2 are
simultaneously met if pilot symbols at each TX antenna are
equispaced in the frequency domain at a distance of M = QR
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subcarriers and their positions are shifted by R subcarriers
from one TX branch to the next. This amounts to putting

ci(n) =

⎧

⎪

⎨

⎪

⎩

di(n′), n = n′M + (i− 1)R, 0 ≤ n′ ≤ N

M
− 1,

0, otherwise,

(14)

where we set |di(n′)| =
√

M/NT to ensure that the total
energy allocated to training is still ET = N . It is worth
observing that the use of time-repetitive FDM training
sequences for MIMO-OFDM has also been suggested in [16]
to make the CRB of the frequency estimates independent of
the channel realization. However, our design (14) is more
general as it applies to any triple

(

N ,NT ,L), whereas in [16],
the number of subcarriers is constrained to be a multiple of
NTL. Recalling that in practical OFDM systems N is always
a power of two, it turns out that the sequence design in [16]
can only be adopted on condition that both NT and L are
powers of two.

As it is known, the use of OFDM preambles composed by
R repetitive slots restricts the acquisition range of the CFO
estimator to±R/2 times the subcarrier spacing. To cope with
such a drawback, we decompose ν into a fractional part, less
than R/2 in magnitude, plus an integer part which is multiple
of R. The normalized CFO is thus rewritten as

ν = R(ε + η), (15)

where η is an integer parameter referred to as the integer
CFO (ICFO), while ε is the fractional CFO (FCFO) and
belongs to the interval (−1/2, 1/2]. Since the transmitted
preambles remain periodic after passing through the channel
(apart from the presence of thermal noise and from a phase
shift induced by the CFO), each vector of received time
domain samples can be decomposed into R segments xm =
[xTm(0), xTm(1), . . . , xTm(R− 1)]T , with

xm(r) = ume j2πεr + nm(r), 0 ≤ r ≤ R− 1. (16)

In(16), um is a P-dimensional vector with elements

um(k) = e j2πνk/N sm(k), 0 ≤ k ≤ P − 1, (17)

while {nm(r); r = 0, 1, . . . ,R−1} are statistically independent
Gaussian vectors with zero-mean and covariance matrix
σ2
nIP .

4.2. Estimation of the Fractional CFO. Our first goal is
the estimation of ε based on the observations {xm}NR

m=1.
Inspection of (16) reveals that this task is complicated by
the presence of the nuisance vectors {um}. One possible
approach is to consider such vectors as deterministic but
unknown parameters and proceed to the joint ML estimation
of the parameter set (u, ε), with u = [

uT1 uT2 · · · uTNR

]T .
This approach has been used in [8] in the context of SISO-
OFDM, and its extension to MIMO transmissions leads to
the following FCFO metric:

q(ε̃) =
NR
∑

m=1

R−1
∑

r=1

Re
{

Rm(r)e− j2πε̃r}, (18)

where Rm(r) is the rP—lag sample correlation function
evaluated at the mth RX branch, that is,

Rm(r) =
N−1
∑

k=rP
xm(k)x∗m(k − rP). (19)

The ML estimate of ε is eventually found by locating the
global maximum of q(ε̃). Unfortunately, no closed form
solution is available except when R = 2. The more general
case can be approached by an exhaustive search over the
interval ε̃ ∈ (−1/2, 1/2] which may be cumbersome in
practice. For this reason, we suggest a suboptimal but simpler
procedure which develops in two steps. In the first step a
coarse FCFO estimate is obtained as

ε̂(c) = 1
2π

arg

{ NR
∑

m=1

Rm(1)

}

. (20)

The rationale behind the above expression is easily under-
stood after substituting (16) into (19). This yields

Rm(r) = (R− r)
∥

∥um
∥

∥

2
e j2πεr + Nm(r), (21)

where Nm(r) is a zero-mean disturbance term collecting
signal × noise and noise × noise interactions. Inspection of
(21) reveals that, in the absence of noise, the right-hand-
side of (20) is just the true FCFO. In order to improve the
estimation accuracy, ε̂(c) is refined in the second step by
looking for an estimate of the residual error Δε = ε − ε̂(c).

For this purpose, we let R(c)
m (r) = Rm(r)e− j2πε̂(c)r and rewrite

(18) in the following form:

q(Δε̃) =
NR
∑

m=1

R−1
∑

r=1

∣

∣Rm(r)
∣

∣ cos
[

ϕ(c)
m (r)− 2πΔε̃r

]

, (22)

where we have defined Δε̃ = ε̃ − ε̂(c) and ϕ(c)
m (r) =

arg{R(c)
m (r)}. Setting to zero the derivative of (22) with

respect to Δε̃ and assuming that Δε is small enough such that

sin[ϕ(c)
m (r)−2πΔε̃r] � ϕ(c)

m (r)−2πΔε̃r, an estimate of Δε can
be computed in closed form as

Δε̂ = 1
2π

∑NR
m=1

∑R−1
r=1 r

∣

∣Rm(r)
∣

∣ϕ(c)
m (r)

∑NR
m=1

∑R−1
r=1 r2

∣

∣Rm(r)
∣

∣

. (23)

The final FCFO estimate is given by

ε̂ = ε̂(c) + Δε̂. (24)

4.3. Estimation of the Integer CFO. If the normalized CFO is
guaranteed to be less than R/2 in magnitude, the quantity ε̂R
can be regarded as an estimate of ν. Otherwise, ν is expressed
as in (15), and an estimate of the integer offset η must be
found. This problem is now addressed using ML methods.

In order to compensate for the fractional offset ε, the
received samples at each RX branch are first counter-rotated
at an angular speed 2πε̂R/N . This produces the NR vectors
zm = [zm(0), zm(1), . . . , zm(N − 1)]T , with

zm = ΓH(ε̂R)xm, 1 ≤ m ≤ NR. (25)
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Substituting (1)-(2) into (25) and assuming ideal FCFO
compensation, we obtain

zm = Γ(ηR)
NT
∑

i=1

Aihm,i + n′m, (26)

where n′m = ΓH(ε̂R)nm is the noise contribution, which is
statistically equivalent to nm. Vectors {zm} are next used to
get the joint ML estimate of (H,η). Bearing in mind (26), the
corresponding LLF is found to be

Υ( ˜H, η̃) = −NRN ln
(

πσ2
n

)

− 1
σ2
n

NR
∑

m=1

∥

∥

∥

∥

∥

zm − Γ(η̃R)
NT
∑

i=1

Ai
˜hm,i

∥

∥

∥

∥

∥

2

,
(27)

by which, maximizing with respect to ˜hm,i, we obtain

̂hm,i(η̃) = (AH
i Ai

)−1
AH
i Γ

H(η̃R)zm. (28)

Now, we observe that AH
i Ai = FHL C

H
i CiFL is an L × L matrix

whose rank is not greater than min {L,N/M}. Hence, a
necessary condition for the existence of (AH

i Ai)
−1 is that

L ≤ N/M. In such a case, if the pilot sequences are those
defined in (14), we have AH

i Ai = N · IL so that (28) simplifies
to

̂hm,i(η̃) = 1
N
AH
i Γ

H(η̃R)zm. (29)

The concentrated likelihood function for η is found by
substituting (29) into the right-hand-side of (27). Neglecting
irrelevant terms independent of η̃, we obtain

ψ(η̃) =
NR
∑

m=1

NT
∑

i=1

∥

∥AH
i Γ

H(η̃R)zm
∥

∥

2
, (30)

and the ML estimate of η is computed as

η̂ = arg max
|η̃|≤|η|max

{

ψ(η̃)
}

, (31)

where |η|max represents the largest expected value of |η|,
which is determined by the stability of the transmitter and
receiver oscillators. Recalling that Ai = WH

NCiFL, after
standard manipulations, we may put ψ(η̃) in the equivalent
form

ψ(η̃) =
NR
∑

m=1

NT
∑

i=1

L−1
∑

�=0

∣

∣

∣

∣

∣

N−1
∑

n=0

c∗i (n)Zm(n + η̃R)e j2πn�/N
∣

∣

∣

∣

∣

2

, (32)

where {Zm(n)} is the repetition with period N of the DFT of
zm, that is,

Zm(n) =
N−1
∑

k=0

zm(k)e− j2πkn/N for −∞ < n < +∞. (33)

On the other hand, from (14), we see that symbols ci(n) are
different from zero only when n = pi(n′), where pi(n′) =

n′M + (i − 1)R are the indices of the pilot subcarriers at the
ith TX antenna. Function ψ(η̃) can thus be rewritten as

ψ(η̃)

=
NR
∑

m=1

NT
∑

i=1

L−1
∑

�=0

∣

∣

∣

∣

∣

N/M−1
∑

n′=0

d∗i (n′)Zm
[

pi(n′) + η̃R
]

e j2πpi(n
′
)�/N

∣

∣

∣

∣

∣

2

.

(34)

Once the ICFO is obtained as indicated in (31), an estimate
of the CFO is computed from (15) in the form

ν̂ = R(ε̂ + η̂). (35)

In the sequel, we refer to (35) as the reduced complexity
frequency estimator (RCFE).

4.4. Remarks. (1) As mentioned previously, matrix AH
i Ai in

(28) is nonsingular provided that L ≤ N/M. Such condition
is more restrictive than the constraint L ≤ N/Q that was
found in the previous section for MLFE. In particular,
recalling that M = QR, it turns out that the maximum
channel length that RCFE can manage is R times smaller than
for MLFE.

(2) Assuming for simplicity that the ICFO has been
perfectly estimated, from (35), it follows that E{(ν̂ − ν)2} =
R2 · E{(ε̂− ε)2}. Since parameters (u, ε) are jointly estimated
through ML methods, we expect that E{(ε̂ − ε)2} asymp-
totically approaches the corresponding CRB. The latter is
provided in [8] and reads

CRB(ε) = 3
2π2

σ2
n/σ

2
s

NRN
(

R2 − 1
) , (36)

where σ2
s denotes the average signal power at each RX branch,

that is,

σ2
s =

1
PNR

NR
∑

m=1

P−1
∑

k=0

∣

∣sm(k)
∣

∣

2
. (37)

The frequency MSE is thus given by

E
{

(ν̂− ν)2} = 3
2π2

σ2
n/σ

2
s

NRN
(

1− 1/R2
) . (38)

(3) The computational load of RCFE can be assessed
as follows. Computing the correlations {Rm(r)}R−1

r=1 in (19)
requires a total of 2(R−1)(2N−1) real operations (additions
plus multiplications) for each RX branch, while 8NR(R −
1) operations are needed to obtain Δε̂ in (23). Quantities
Zm(n) in (33) are computed through an N-point DFT for
each receiving antenna, with a corresponding complexity
of 5NRN log2 N . Finally, evaluating ψ(η̃) in (34) needs
additional 8NLNTNR/M operations for each η̃. The overall
complexity of RCFE is summarized in the first row of Table 1,
where a distinction has been made between the FCFO and
ICFO recovery tasks, and we have denoted by Nη = 2|η|max +
1 the number of hypothesized ICFO values.

(4) Our FCFO recovery algorithm is an improved
version of the correlation-based frequency estimator (CBFE)
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Table 1: Complexity of FCFO and ICFO estimation schemes.

FCFO recovery ICFO recovery

RCFE 2NR(R− 1)(2N + 3) NRN(5 log2N + 8LNTNη/M)

PBFE 4NRNQ + 30(Q − 1)3 NRN(5 log2N + 4NT)

CBFE 4NR(3N − 2P − 1)

proposed in [12]. Actually, both schemes employ training
preambles composed by R repetitive parts and operate in two
steps. A coarse estimate ε̂(c) is firstly computed by CBFE in a
way similar to (20), and it is next refined by evaluating the
quantity

Δε̂ = 1
πR

arg

{ NR
∑

m=1

R(c)
m

(

R

2

)

}

. (39)

The final CFO estimate is obtained as ν̂CBFE = R(ε̂(c) + Δε̂),
and its MSE is given by [12]

E
{(

ν̂CBFE − ν
)2} = 2

π2

σ2
n/σ

2
s

NRN
. (40)

Comparing this results with (38), we see that the loss (in
dB) with respect to RCFE is 10·Log[4(1 − 1/R2)/3], which
approaches 1.25 dB for large values of R. Furthermore, since
no ICFO estimation is attempted in [12], the estimation
range of CBFE is restricted to |ν| ≤ R/2, while RCFE can
cope with CFOs as large as ±N/2. The overall complexity
of CBFE is shown in the third line of Table 1. Compared to
FCFO recovery by means of RCFE, the computational saving
of CBFE is in the order of R/3.

5. Simulation Results

Computer simulations have been run to check and extend
the analytical results of the previous sections. The simulation
scenario is summarized as follows.

5.1. Simulation Model. The investigated MIMO-OFDM
system has N = 1024 subcarriers and operates in the
5 GHz frequency band. The signal bandwidth is 5 MHz,
corresponding to a subcarrier distance of approximately
4.9 kHz. The sampling period is Ts = 0.2 microsecond,
so that the useful part of each OFDM block has length
0.205 millisecond. Each channel is characterized by L =
12 independent Rayleigh fading taps with an exponentially
decaying power delay profile

E
{∣

∣hm,i(�)
∣

∣

2} = σ2
h · exp

(

− 4�
L

)

, � = 0, 1, . . . ,L− 1.

(41)

In (41), the constant σ2
h is chosen such that the channel

power is normalized to unity, that is, E{‖hm,i‖2} = 1. A new
channel snapshot is generated at each simulation run and
kept fixed over the training period. Vectors hm,i are assumed
to be statistically independent for different TX/RX antenna
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Figure 1: MSE of the FCFO estimators versus SNR with NT = 3 and
NR = 2.

pairs . The training sequences employed by RCFE are given
in (14), where we have set R = 8 and Q = 4. In this
way, each TX antenna transmits a total of 32 pilot symbols
which are randomly taken from a QPSK constellation with
power |di(n′)|2 = 32/NT . Parameters NT and NR are varied
throughout simulations to assess their impact on the system
performance.

Comparisons are made between RCFE, CBFE, and the
polynomial-based frequency estimator (PBFE) proposed in
[17]. This scheme employs the training sequences defined in
(4) and performs initial ICFO recovery by maximizing the
following cost function:

ψPBFE(η̃) =
NR
∑

m=1

NT
∑

i=1

N/Q−1
∑

n′=0

∣

∣Xm
(

n′Q + μi + η̃
)∣

∣

2 (42)

over the set η̃ ∈ {−Q/2,−Q/2 + 1, . . . ,Q/2 − 1}, with
{Xm(n); 0 ≤ n ≤ N − 1} being the N-point DFT
of xm. After ICFO compensation, the fractional CFO is
eventually estimated by looking for the roots of a real-valued
polynomial function that is obtained by applying the MUSIC
principle. As mentioned in [17], the estimation range of
PBFE is |ν| ≤ Q/2. Its computational requirement is mainly
ascribed to the need for evaluating the correlation matrix of
the received time domain samples and is summarized in the
second row of Table 1.

5.2. Performance Assessment. Figure 1 compares the perfor-
mance of the fractional CFO estimators in terms of their
MSE E{(ν̂ − ν)2} versus the signal-to-noise ratio at each
receiving antenna. The latter is defined as SNR = σ2

s /σ
2
n ,

where σ2
n is the noise power, and σ2

s is given in (37). Marks
indicate simulation results, while solid lines are drawn to
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Figure 2: Accuracy of RCFE versus SNR with NT=2, 3, 4 and NR=2.

ease the reading of the graphs. The number of TX and RX
antennas is NT = 3 and NR = 2, respectively. The same
training sequences are used for both CBFE and RCFE, while
PBFE employs the pilot design specified in (4) with Q = 32
and {μ1,μ2,μ3} = {0, 1, 5}. This means that the number
of pilot symbols transmitted by each TX antenna is 32 for
all the considered schemes. As suggested in [17], the pilot
symbols {di(n′)} for PBFE belong to a Chu sequence. The
CFO is randomly generated at each simulation run with
uniform distribution within the interval [−0, 4; 0.4), which
corresponds to having η = 0 and ε = ν/R. For the time being,
we concentrate on the accuracy of the FCFO estimates and
assume ideal ICFO recovery for both RCFE and PBFE. We
use the average CRB to benchmark the performance of the
considered schemes. The latter corresponds to the extended
Miller and Chang bound (EMCB) [20] and is obtained
by numerically averaging the right-hand-side of (12) with
respect to the channel statistics. Inspection of Figure 1 reveals
that RCFE outperforms the other schemes, and its accuracy
is close to the EMCB at all investigated SNR values. As
predicted by the theoretical analysis shown in (38) and (40),
the loss of CBFE with respect to RCFE is approximately
1.25 dB. Looking at the system complexity, from Table 1, it
turns out that in the considered scenario, RCFE requires a
total of 57 500 operations for FCFO recovery, while PBFE
and CBFE need 1 156 000 and 24 000 operations, respectively.
Combining these figures with the results of Figure 1 indicates
that RCFE is superior to PBFE in terms of both estimation
accuracy and processing load, while CBFE is a valid solution
when limiting the computational requirement is an issue of
concern.

Figure 2 illustrates the impact of the number of transmit
antennas NT on the accuracy of RCFE. The simulation
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Figure 3: Accuracy of RCFE versus SNR with NT=3 and NR=2, 3, 4.

scenario is the same as in Figure 1, except that now NT =
2, 3 or 4. As it is seen, the frequency MSE is virtually
independent of NT and the same occurs for the EMCB. Such
behavior can be ascribed to the fact that signals emitted
by different TX antennas combine incoherently at each RX
branch, so that higher values of NT do not result into a
corresponding increase of the array gain. As it is known,
array gain exploitation by means of multiple TX antennas
requires channel knowledge at the transmitter in conjunction
with suitable precoding techniques.

Figure 3 shows how the performance of RCFE is affected
by the number NR of receiving antennas. In such a case,NT is
fixed to three while NR = 2, 3 or 4. As predicted by (38), the
estimation accuracy improves with NR, and this trend is also
evident in the EMCB. The physical reason behind such SNR
advantage is that the presence of multiple receiving antennas
increases the length of the data record x = [xT1 , xT2 , . . . , xTNR

]T

used for CFO recovery. This provides the system with an
array gain of 10·Log(NR) dB.

The performance of the ICFO estimators is illustrated in
Figure 4 in terms of probability of failure Pf = Pr{η̂ /=η}
versus SNR. Comparisons are made between RCFE and PBFE
using the same simulation setup of Figure 1. The RCFE
metric defined in (34) is evaluated for η̃ ∈ {−2,−1, 0, 1, 2},
while PBFE looks for the maximum of ψPBFE(η̃) over the set
η̃ ∈ {−16,−15, . . . , 15}. In this way, the estimation range is
|ν| ≤ 20 for RCFE and |ν| ≤ 16 for PBFE. As it is seen, for
SNR > −10 dB, the best performance is obtained with RCFE.
From Table 1, it follows that the total number of operations
needed to get the CFO estimate ν̂ is 1 283 000 for PBFE
and 252 500 for RCFE, thereby leading to a reduction of the
processing load by a factor greater than 5. It is fair to say,
however, that the complexity of PBFE can be controlled by
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Figure 4: Probability of failure versus SNR for RCFE and PBFE with
NT = 3 and NR = 2.

a judicious design of parameter Q. Specifically, decreasing Q
alleviates the computational requirement at the expense of a
reduced CFO acquisition range.

6. Conclusions

We have addressed the problem of training-assisted CFO
recovery in MIMO-OFDM systems. To reduce the compu-
tational burden required by the exact ML solution, we have
divided the CFO into a fractional part plus an integer part
and have designed FDM pilot sequences that are periodic in
the time domain. The fractional CFO is estimated in closed
form by measuring the phase rotations between the repetitive
parts of the received preambles, while the integer CFO is
estimated in a joint fashion with the MIMO channel matrix
by resorting to the ML principle. The proposed scheme has
affordable complexity and exhibits improved performance
with respect to existing alternatives. For these reasons, we
believe that it provides an effective approach for frequency
synchronization in beyond third generation (3G) wideband
MIMO-OFDM transmissions.
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