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The presence of (Non line of Sight) NLOS propagation paths has been considered the main drawback for localization schemes to
estimate the position of a (Mobile User) MU in an indoor environment. This paper presents a comprehensive wireless localization
system based on (Round-Trip Time) RTT measurements in an unmodified IEEE 802.11 wireless network. It overcomes the NLOS
impairment by implementing the (Prior NLOS Measurements Correction) PNMC technique. At first, the RTT measurements
are performed with a novel electronic circuit avoiding the need for time synchronization between wireless nodes. At second, the
distance between the MU and each reference device is estimated by using a simple linear regression function that best relates the
RTT to the distance in (Line of Sight) LOS. Assuming that LOS in an indoor environment is a simplification of reality hence,
the PNMC technique is applied to correct the NLOS effect. At third, assuming known the position of the reference devices, a
multilateration technique is implemented to obtain the MU position. Finally, the localization system coupled with measurements
demonstrates that the system outperforms the conventional time-based indoor localization schemes without using any tracking

technique such as Kalman filters or Bayesian methods.

1. Introduction

There is a proliferating demand for both commercial and
governmental applications of wireless localization services
that ascertain the position of a (mobile user) MU in an
indoor environment [1]. Indoor location information can
add many potential applications such as persons with special
care tracking inmates monitoring, or helping policeman,
fireman or soldiers to finish their missions inside buildings.
However, currently signals coming from Global Navigation
Satellite System (GNSS) cannot penetrate into indoor envi-
ronments. Hence, alternative wireless infrastructures which
offer indoor coverage have to be used. There are several exist-
ing wireless infrastructures deployed in indoor environments
like ultrasonic, infrared, and artificial vision, that have been

considered for indoor localization, but radiofrequency-based
systems predominate today, due to their availability and low
cost [2, 3]. Up to date, few wireless infrastructures that
operate inside buildings are as extensively deployed and used
as IEEE 802.11, a reason why this wireless technology is the
best candidate for the development of an indoor localization
system.

Localization methods are further classified by the mea-
surable quantities obtained from the transmitted signals.
Thus, it can be angle based as the angle of arrival (AOA) [4],
range based as the measured time of arrival (TOA) [5-7] or
the received signal strength (RSS) [8-10] of the MU’s signal
at the reference devices. This information, received on the
MU, establishes a geometric relationship between the MU
to be located and the reference devices. AOA measurements
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require antenna arrays and they are not available to inexpen-
sive systems, while RSS measurements are widely available
and provide cost-effective means of localization. However, in
indoor environments the propagation phenomena cause the
attenuation of the signal to poorly correlate with distance,
resulting in inaccurate distance estimates. On the contrary,
time-based methods are highly correlated with distance [11].
But, as TOA measurements need for time synchronization
between wireless nodes, round-trip time (RTT) measure-
ments have been used in this paper. These measurements
are obtained by using the electronic circuit proposed in
[12]. Once the RTT measurements have been performed
between two wireless nodes, a model is used to relate the
RTT to the actual distance that separates both nodes in LOSs.
Previous essays [13] have used a similar electronic circuit
to measure the RTT, but they use an empirical RTT-based
model to estimate distances. Therefore, that model is not
robust because it depends on the environment where the MU
is going to be located.

Whichever the method used, a similar impairment is
encountered related to indoor environments where the
transmitted signal could only reach the receiver through
reflected, diffracted, or scattered paths. Various NLOS
(Non-Line-Of Sight) mitigation techniques have emerged
to overcome this problem. They can be broadly classified
in two groups, techniques which attempt to minimize the
contribution of NLOS multipaths as [14] or techniques
which focus on the identification of NLOS reference devices
and discard them for localization [15]. However, their
reliability remains questionable in an indoor environment
with abundant scatterers where almost all reference devices
will be in NLOS. In this paper, the PNMC (Prior NLOS
Measurements Correction) technique is used to correct the
NLOS effect from distance estimates [16]. This technique
manages to introduce in the localization process the infor-
mation that actually resides in the NLOS measurements.
Once distances between the MU to be located and the
reference devices in range are estimated, and assuming
known the reference devices positions, different techniques
could be applied to infer the MU position, like circular
lateration [17] or hyperbolic lateration [18]. In this paper,
an MUItilateration technique that linearizes the problem
of finding the MU position is proposed to reduce its
complexity and to complete the wireless localization sys-
tem.

The paper is divided as follows: Section2 describes
the driver responsible to automate the localization system
and Section 3 describes the localization algorithm. Section 4
analyzes the accuracy of the localization system proposed in
an indoor environment. Finally, Section 5 summarizes the
main achievements.

1.1. Previous Work. The main mechanism that makes RTT
measurements possible in an IEEE 802.11 wireless network
with a minimum elapsed time in the access point (AP) is
the RTS/CTS handshake mechanism [19, 20]. In this paper,
the printed circuit board (PCB) proposed in [12] is used
to measure the RTT of the RTS/CTS two-frame exchange
mechanism between two IEEE 802.11 wireless nodes. The

way in which the PCB works is as follows: the MU enables
the measuring system before sending the RTS frame and
disables it after receiving the CTS frame response. Within
that time the PCB extracts both transmission pulses and
receiver signals from the MU wireless adapter in such a
way that the RTS frame departure is used as the trigger to
start the count that would be stopped by the corresponding
CTS frame arrival. Despite the short lapse of time between
the measuring system activation and the RTS departure or
between the RTS departure and the CTS arrival, a frame
coming from other wireless nodes could interfere activating
or deactivating the count, respectively. As this interference
could occur, a filter which rejects measurements out of the
expected range has been implemented. After the RTS/CTS
handshake is completed the MU saves the state of the count.

The measuring system proposed has some limitations.
Firstly, as the CLK that governs the PCB is 44 MHz frequency,
the 16-bit counter implemented on the PCB cannot measure
RTTs over 1.489 ms, but this time is enough for wireless
networks range. Secondly, as a frame coming from other
wireless nodes could activate or deactivate the count within
the short lapse of time in which the measuring system is
enabled, a filter that rejects these undesirable measurements
is implemented. Filter limits have been chosen based on
previous trials where there were no other wireless nodes
interfering. Finally, according to [12] the elapsed time
in the AP, between receiving an RTS frame and sending
the corresponding CTS frame, can be assumed to be
constant when there are no other processes competing
for the AP resources. Obviously, although the RTS frame
has the highest priority in [19], it could be concurrent
RTS frames coming from other MUs at the same AP
increasing the load of the AP. In that case, if there are not
enough APs in range to apply the localization algorithm,
the wireless localization system delay increases, but the
accuracy is not degraded thanks to the previous filter that
rejects the RTT measurements that are out of the expected
range.

2. Localization System

The first two objectives of the wireless localization system
proposed in this paper are to be integrated in a commercial
IEEE 802.11 wireless adapter and to be autonomous. On
one hand, the PCB proposed in [12] is used to measure
the RTT between two wireless nodes. On the other hand, a
driver that controls that PCB is programmed to automate
the process of obtaining the RTT measurements. To obtain
the MU position, the driver interacts with a novel wireless
localization algorithm according to the flowchart shown in
Figure 1. Therefore, a complete wireless localization system
to be deployed in an unmodified IEEE 802.11 wireless
network is proposed.

In this paper, it is assumed that the PCB and the local-
ization algorithm are performed in the MU side, although
other combinations could be possible. The way in which
the localization system obtains the MU position is by the
localization algorithm that will be described in Section 3. The
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FIGURE 1: Flowchart of the system automation.

only input arguments needed by the localization algorithm
are as follows: the APs positions that play the role of reference
devices and whose positions are assumed to be known,
and the RTT measurements that characterize the distance
between the MU and each AP in range. Following the
flowchart shown in Figure 1, the RTT measurements are
obtained automatically by the PCB described in [12] thanks
to the driver that works as follows.

(1) The MU wireless adapter scans the environment
looking for beacon probes coming from the APs, which
are commonly sent by each AP every 100ms [19]. The
power level, based on the RSS indicator (RSSI), with its
corresponding MAC source address are stored when the
beacon reaches the MU wireless adapter. If the MU receives
beacon probes coming from no more than two APs, the MU
continues scanning the environment. Once more than two
APs are in range, the following action is repeated for each
AP.

(2) The MU wireless adapter communicates to the AP
through the MAC address sending to it N RTS frames.
After receiving the corresponding CTS response frames,
the corresponding RTTs are stored from each RTS/CTS
frame exchange. Next, regarding the RTT estimator to
be used, the Fisher information is computed from the
RTT measurements to calculate the minimum number of
RTS/CTS frames exchange (parameter PKTyy in Figure 1)
that are needed for a given confidence level and sample
error. By this way, the localization system minimizes the
number of RTS/CTS frames exchange and hence the use
of the IEEE 802.11 channel which could slow down the
packet delivery on the wireless network. In Appendix B,
a detailed information is given about PKTyyn computing.

Therefore,

(i) if the number of RTT measurements is lower than the
computed parameter PKTyy, the MU adapter sends
another N RTS frames,

(ii) if not, the distance between the MU and the corre-
sponding AP is characterized by the RTT measure-
ments carried out until that moment,

(3) once this process has been repeated for each AP in
range, and if the number of APs in range is no less than three,
the RTT measurements stored are ready to be used by the
localization algorithm to infer the MU position.

3. Localization Algorithm

After having automated the wireless localization system, its
core—the localization algorithm—has to be explained. As
shown in Figure 1, the localization algorithm takes as input
arguments the RTT measurements carried out between the
MU and each AP in range, and the position of these APs
that are assumed to be previously known. As a result, the
output of the localization algorithm is an estimation of the
MU position. Figure 2 shows the flowchart that explains
the process followed by the novel localization algorithm to
estimate the MU position. Firstly, a location estimator is
obtained from the RTT measurements. That value will be
used in a model that characterizes the distance between the
MU and the corresponding AP. As the transmitted signal
could only reach the receiver through a path different from
the direct one, the PNMC technique is used to correct
the positive bias that introduces the NLOS error. Once the
effect of NLOS error is corrected, the model that relates the
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FiGure 2: Flowchart of the localization algorithm.

actual distance to the RTT estimator in LOS is used. Finally,
when the distance from the MU to more than two APs is
estimated and assuming known the positions of these APs,
an MU tilateration method that linearizes the problem of
finding the MU position is implemented.

3.1. Statistical Estimators and Robust Linear Regression in
LOS. According to [21], the range resolution is determined
by the bandwidth of the transmitted signal when RTT
measurements are used. Furthermore, when using a 44 MHz
clock as input of the measuring system to quantify the RTT
measurements, the maximum resolution achievable, if only
one sample is taken, is about 6.8 m. Moreover, the RTT
measurements have a random behavior due to the error
introduced by the standard noise from electronic devices,
that is always present. To overcome these limitations several
RTT measurements have to be performed at each distance
and a representative value, called the location estimator, from
this group of RTT measurements has to be selected. That
selection is based on the model that relates the location
estimator to the distance that separates the MU and the AP
in LOS.

The location of a random variable distribution can usu-
ally be presented by a single number, the location estimator.
In [22], several location estimators of a random variable are
analyzed. The mean, median, mode and the scale parameter
of the Weibull distribution (scale-W) are examples of the
location of a random variable. They have been analyzed and
compared as location estimators of the RTT measurements in
terms of the coefficient of determination, R?. This coefficient
measures how much of the original uncertainty in the RTT
measurements is explained by the model [23]. In this paper,
a simple linear regression function is assumed to be the
model that relates the actual distance between the two nodes

involved in RTT measurements to the location estimators in
LOS. Analytically,

i3 = po + RTTH,,
(1)

L
iy = d + eros,

where, c?}g% and d are the estimated and the actual distance
between the MU and the AP in LOS, respectively, RTT is
the location estimator of RTT measurements, 3y and f3
are the intercept and slope of the simple linear regression
function, respectively, and e1os is the error introduced by
RTT. The error term eLos has been modeled as a zero-
mean Gaussian random variable, because the estimators
used are asymptotically Gaussian and a large amount of
measurements have been used, so

eros ~+ N(0, o10s). (2)

In this case, as the model is a simple linear regression func-
tion, R? is simply the square of the correlation coefficient,
réT\T’ -

The parameters 8y and f3; that characterize the simple
linear regression function do not depend on the environ-
ment where the wireless localization system is going to be
deployed, but on the communication system used, that is,
the MU and the AP. These parameters are computed so as to
give a best fit of the location estimators to the actual distance.
Most commonly, the best fit is evaluated by using the least
squares method, but this method is actually not robust in
the sense of outlier-resistance. Hence, robust regression has
been performed as it is a form of regression analysis designed
to circumvent some limitations of least squares estimates for
regression models [22].
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FIGURE 3: Robust linear regression function that best fits each location estimator to be analyzed: the mean, median, mode, and scale-W
parameter, where each location estimator is computed from groups of 50 RTT measurements at each distance.

Assuming LOS between the MU and the AP without
any scatter nearby and guaranteeing the first Fresnel zone
clearance of the link between both nodes, three campaigns of
300 RTT measurements were conducted for several distances
from 0 to 40 m. Figure 3 shows the robust linear regression
function which best fits each location estimator to be
analyzed. Each location estimator has been computed from
each group of 50 RTT measurements at each distance. The
different location estimators are analyzed and compared in
terms of the coefficient of determination value, R

The mode (I{ﬁ“md) is the value that is most likely to be
sampled, thereby it could be a good candidate for the location
estimator, but the value that occurs the most frequently in a
data set is a discrete value. Therefore, the resolution achieved,
Tcik, is not enough for indoor localization systems. The
same resolution is achieved with the median (ﬁl“mdn) as it
is a discrete value separating the higher half of a data set.

Figures 3(a) and 3(b) show that the Gaussian distributions
that characterize the errors e o5 of the mode and the median

are the widest, with o/ = 7m being R2, = 0.64 and
ol = 3.6 m being R2, 4, = 0.9.

The mean (RTTpy) is equivalent to the center of gravity
of the distribution and it does not take discrete values,
thereby the resolution is improved. Although the mean is
rather sensitive in the presence of outliers, the use of a robust
regression function circumvents this limitation. Figure 3(c)
shows that the errors committed when using the mean as
a location estimator are characterized by a Gaussian with
ofSs = 2.7m, being R = 0.94, lower than the error
commit when the median. But Figure 3(d) shows that the
best location estimator is the scale-W parameter (Ifﬁ"sc)
once Weibull distribution is fitted to the RTT measurements.
In this case eos is characterized by o{ng = 2.3m and
R%. = 0.96. Therefore, the assumption of a linear function
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Figure 4: CDFs of distance errors performed with four different
location estimators and an RSS-based method.

as the model that relates RTT measurements to distance
is corroborated by a value of R} close to the unit. This

value indicates that the regression line nearly fits the RTT,.
perfectly.

Figure 4 shows the cumulative distribution function
(CDF) of &1ps. As the mode and the median take discrete
values, the CDF has a step-shape with large errors. The mean
has a good behavior with an error lower than 2 m on average.
But the scale-W parameter with an error lower than 3 m for
a cumulative probability of 80% achieves the best behavior.

There is no phenomenological explanation for choosing
the scale-W parameter as location estimator of the RTT
measurements set, but this parameter is another kind of a
location estimator since the maximum likelihood estimator
(MLE) of the scale-W parameter is the Holder mean [24],
a generalized form of the Pythagorean means, taking as
parameter the shape parameter of Weibull distribution (for
more detail see Appendix A).

Once scale-W parameter is found as the statistical
estimator of the RTT measurements that best fits the
actual distance when using a simple robust linear regression
function as the model that relates the estimator to the
distance, its performance is compared to an RSS-based
solution to evaluate the goodness of the proposed one. The
same two wireless nodes have been used in the same LOS
environment. As it is well known the distance between two
wireless devices causes an attenuation in the RSS values.
This attenuation is known as path loss and it is modeled
to be inversely proportional to the distance between both
devices raised to a certain exponent. According to [8], the
distance between two wireless nodes can be estimated from
RSS measurements by

drss = 10(Per=Py10%, (3)

where drss is the estimated distance between the MU and
the AP, Py is the RSS measured in logarithmic units at the
reference distance of 1 m, P is the average RSS in logarithmic
units at the actual distance, and « is the path loss exponent.
According to [20], for any distance under 20 m in LOS,
a is recommended to be 2 while « = 3.5 for longer
distances. Therefore, having taken this value for the path loss
exponent and from the RSS values measured between both
devices, the distance between the two wireless nodes can be
estimated by using the expression (3). In Figure 4 that it can
be appreciated the great accuracy obtained by the method
presented (square marks), since it outperforms the RSS range
based method, specially for cumulative probabilities larger
than 50%.

3.2. NLOS Correction. The two sources of range measure-
ment errors in localization techniques are mainly electronic
errors and NLOS errors. Electronic errors are inherent to
electronic devices and they are commonly modeled as a zero-
mean Gaussian distribution. In the previous section, assum-
ing LOS propagation, the effect caused by the electronic
error has been minimized by choosing the best location
estimator of the RT'T measurements, the scale-W parameter.
But the assumption of LOS condition is an oversimplification
of reality in an indoor environment. Therefore, a method
to correct the bias that introduces the NLOS in range
measurements has to be implemented to improve the indoor
wireless localization system.

The easiest method for dealing with NLOS conditions
is simply to place APs at additional locations and select
those from LOS, but one of the objectives of this paper
is to deploy a wireless localization system in a common
and unmodified wireless network. Therefore, the PNMC
technique [16] is implemented to correct the NLOS errors
in range measurements. The PNMC technique was created
to correct the NLOS errors in open areas. Its performance
has been evaluated by simulations in [16], but as it will be
shown in this paper, it also works under indoor environ-
ment conditions. Based on a statistical process, the PNMC
technique corrects the NLOS effect from a record of range
measurements taken through a time window in a previous
stage to the positioning process. This processing relies on the
statistical estimate of the NLOS range measurements ratio
present in the record. The ratio is used to identify the NLOS
recorded range measurements. Subsequently, the NLOS
range measurements are classified in segments according to
the NLOS statistical distribution. Finally, the correction is
carried out by subtracting the expected NLOS errors for each
segment. For a detailed explanation on the PNMC technique,
see [16].

Let d be the actual distance between the MU and the AP,
thus

AN =d+e, (4)
where d}%?s and d are the estimated and the actual distances
between the MU and the AP, respectively. The term ¢ denotes

the error. This error is the sum of two independent errors,
& = €10s + enL0Os, Where g1 0s describes the electronic errors,
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while expos is the error due to the lack of direct sight between
the MU and the AP. On one hand, the term ¢ o5 has been
evaluated in the previous section and it was found as a zero-
mean Gaussian with ops = 2.3m. On the other hand,
the term enpos can follow different statistical distributions,
Gaussian, Exponential, Gamma, and so forth [16]. But,
regarding the distribution of exros, it can be characterized by
its mean and standard deviations. These parameters, as well
as the distribution type of exros, depends on the particular
environment, but it can be assumed that the NLOS prop-
agation conditions do not change significantly in the time
window that contains the record of range measurements, so
the mean and standard deviation of enios can be assumed
to be constant. Moreover, the parameters that characterize
enLos can be obtained previously to the localization process
by the estimates performed in the environment where the
localization system is going to be deployed. For simplicity,
the Exponential distribution has been chosen for the term
enros- Therefore,

entos ~ Exponential (), (5)

where the 8 parameter is fixed previously to the localization
process.

In order to show the feasibility of the PNMC technique
in an indoor environment, a campaign of measurements
in the second floor of the Higher Technical School of
Telecommunications Engineering (ETSIT) at the University
of Valladolid has been carried out. Specifically, the PNMC
technique is applied to the range measurements computed
between an AP and an MU 14m away who is moving
5m straight perpendicularly to the path that joins the
AP and the MU. As ¢ = ¢0s + entos, the probability
density function (PDF) of the term ¢ is the convolution
of the Gaussian PDF caused by the 05 errors and the
Exponential PDF caused by the enios errors. Figure 5(a)
shows the histogram of the distance estimates record and
the PDF of the term ¢ that best fits these estimates, where
the value of the parameter 3 that best fits the data is
B = 0.3m™!. Once the term ¢ is statistically characterized,
the PNMC technique can be applied. Figure 5(b) shows
the result of applying the PNMC technique to the original
range measurements computed in a time window equivalent
to 5m walking. In this scenario, the ratio of exyos errors
from the record of range measurements has been 52%.
Subsequently, these NLOS range measurements have been
corrected by subtracting the expected NLOS errors for each
segment according to the Exponential distributions. The
accuracy improvement of applying the PNMC technique to
find the MU position in an indoor environment is shown in
Section 4.

3.3. Multilateration. In two-dimensions, multilateration is
defined as a method for determining the intersections of M
circles with M > 3. The circles are defined by their centers
AP;, i = 1,2,..., M, corresponding to the known positions
of the APs, and the radii r;, i = 1,2,..., M, corresponding
to the distance estimates between the MU and each AP.
This means that to infer the position of the MU, a system
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Ficure 5: NLOS error correction from a record of distance
estimates. (a) Histogram of distance estimates and the PDF that best
fits the data. (b) Record of original and corrected distance estimates
after having applied the PNMC technique.

of M quadratic equations has to be solved. As the distance
estimates between the MU and each AP do not usually match
the actual distances, the circles will not cut each other in
a single point. Hence, the MU position x = [x, y]T of
the localizing wireless node can be estimated by finding X
satisfying

2
X = argminz [\/(AP,-X — x)2 + (APiy _ y)z 3 Li} . (6)

Solving (6) problem requires significant complexity and is
difficult to analyze. In order to simplify the resolution of
the expression (6), an alternative way to find the location
of the MU is defined. Instead of using the circles as the
equations to determine the MU location, the radical axes
will be used. The radical axis of two circles is the locus of
points at which tangents drawn to both circles have the same
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length. The radical axis is always a straight line and it is always
perpendicular to the line connecting the centers of the circles,
albeit closer to the circle of the larger radius. Let
2
(x—AP;)’ + (y - AP;) =2,
, , (7)
72
(x-AP,) +(y-4P;) =d
be the equations of two circles corresponding to different
APs (i # j). Then, the equation of the radical axis will be
the result of subtracting the two involved circles’ equations.
Analytically,

2x(Aij - APi,) +2y (Apjy - APiy)
(8)
=& - &~ (APL - AR2) - (AP} - AR2).

If M circles cut each other in a single point then, the M(M —
1)/2 radical axes performed among all the pairs of circles
without repetition will cut each other in the same single
point. Therefore, once the radical axes among all the pairs
of circles are performed, the problem of solving a system
of M quadratic equations is reduced to solve a system of
M(M — 1)/2 linear equations. In the common case, as the
M circles do not cut each other in a single point, the linear
system is solved in a least-square sense. Let

Ax=b 9)
be the linear equation system defined by the radical axes with

(AP, —AP,) (AP, —AP,)

(APy-1, — APy,) (APy1, — APy

()

d3 — df - (AP3, — AP},) - (AP3 - AP}
b= : >

‘2\12\/1 - 6?12\471 - (APIZVI, _AP%\/I—lx) - (APIZ\@ _AP%AA),)
(10)

where A is a matrix of M(M — 1)/2 rows and 2 columns
described only by the APs coordinates, while b is a vector
of M(M — 1)/2 components represented by the distance
estimates together with the AP coordinates. In the least-
squared sense the solution for the expression (9) is done via

-1
%= (ATA) ATb, (11)
where X is an estimate of the actual MU position.

Figure 6 shows a graphical example of the method used
to multilaterate. In that scenario, the MU has four APs in

range whose positions are known (APix,AP,»y), i=1,2,3,4.
After the distance between the MU and each AP is estimated
through the RTT measurements, d; with i = 1,2,3,4, the
four circles are well defined. Then, the six radical axes are
performed from all the combinations of pairs of circles, r; ;.
The MU position, (X, ¥), is obtained as the result of solving
the expression (11).

4. Results and Discussion

The second floor of the ETSIT as a real indoor environ-
ment with several offices, rooms and many people walking
around has been the selected scenario to test the wireless
localization system’s accuracy. The IEEE 802.11 wireless
network deployed in that building has been used as the one
over which the MU communicates with their APs whose
positions are previously known. The accuracy achieved
in the estimation of the MU position is compared for
different methods which do and do not mitigate the NLOS
errors.

4.1. Experimental Setup. As described in Section 2, the PCB
that quantifies the RTT and the localization algorithm are
performed in the MU side. It includes an IEEE 802.11b
wireless cardbus adapter, specifically a Cisco Aironet AIR-
PCM340 with the HFA3861B baseband processor. The
wireless adapter has been connected to the computer through
a cardbus extender to be able to access to the HFA3861B
pinout. This wireless adapter includes two on-board patch
antennas with a diversity switch which toggles to and from,
and stops when a significant amount of radiofrequency
power is detected. The wireless network deployed in the
ETSIT building consists of eight identical Linksys WRT54GL
IEEE 802.11b/g APs. These APs include two rubber duck
omnidirectional antennas in diversity mode that never work
at the same time, since diversity circuitry switches to the one
with better reception. Rubber duck antennas provide vertical
polarization with 360 degrees of coverage in the horizontal
plane and 75 degrees in the vertical one. The APs were
configured to send a beacon frame each 100 ms at constant
power on IEEE 802.11 frequency channel 1 (2.412 GHz).

Figure 7 shows the layout of the second floor of the
ETSIT building where positioning tests have been carried
out. The route followed by the MU describes a 34.7m X
19.4 m rectangle walking through the middle of the corridors
where each pair of continuous positions is separated 0.8 m
approximately (blue dots in Figure 7). The corridors involved
in the route are 2m wide except the widest one that has
a width of 4.3 m. As a consequence of the heterogeneous
distribution of rooms and offices, and the people walking
around, multiple reflection, diffraction or scatter points
could appear and alter the signal path. Presumably, although
NLOS is always present, multipath will be more noticeable
when moving along the narrowest corridors.

According to the wireless localization system proposed
in this paper, at each position groups of N = 10 RTS/CTS
frames exchange have been performed before computing
the boundary PKTyn. The aim of the parameter PKTyn
is to minimize the use of the IEEE 802.11 channel which
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FIGURE 6: Least-squares solution of the six radical axes that correspond to four circles.

Actual position
PNMC position

Empirical position

FIGURE 7: Multilateration obtained in the second floor of the ETSIT at the University of Valladolid. Blue dots represent actual positions, red
ones are positions obtained by an empirical method, while green dots are positions after applying the localization algorithm proposed in this

paper.

could slow down the packet delivery on the wireless network.
This parameter is computed at each position according
to the confidence interval (CI) explained in Appendix B.
The error introduced by the term enios is corrected by
using the PNMC technique, where enpos is observed to be
exponentially distributed with § = 0.3m™! and a time

window equivalent to 4m walking is used. As location
estimator, the scale-W parameter has been implemented
to reduce the error produced by the term ¢ os. Finally
the multilateration method explained in Section 3 has been
implemented to linearize the problem of estimating the MU
position.



10 EURASIP Journal on Wireless Communications and Networking

4.2. Discussion. The performance of the wireless localization
algorithm is compared to other cited solutions in an indoor
environment to evaluate the goodness of the methods
proposed in this paper. They are as follows.

(1) An empirical range method that is also RTT-based
[13]. This method consists on estimating the distance
between the MU and the AP by the following
empirical formula:

. RTTemp — T 1
Aor ¢ emp proc ( )) 12
p-RTT ( 5 ) [ (12)

where d/\emp—RTT is the estimated distance by this range
method, ¢ is the speed of the electromagnetic waves in
the media, Tproc is the processing time of the AP that
is calculated as the mean of the RTT measurements
when d = 0, fucik is the measuring circuit frequency,

and RTT emp 1S an empirical estimator of the RTT.

Specifically, ﬁ[emp = NrrT — ORTT/3, Where #rrT and
orrT are the mean and standard deviation of the RTT
measurements at each distance, respectively.

(2) The RSS-based range method described by the
expression (3) and assuming the paths loss exponent
to be « = 2 for distances shorter then 20m and
a = 3.5 for larger distances.

(3) The residual weighting algorithm (RWGH) as a
posteriori NLOS error mitigation technique. This
technique is based on the sum of the residual
squares taking the residual as the difference between
the distance estimation and the range between
the position estimate and the AP position. For a
detailed explanation on the RWGH technique, see
[14].

In Figure 7, green dots correspond to multilateration
obtained by using the localization algorithm proposed in
this paper. At first glance, these position estimates are highly
accurate for the widest corridor. However, they tend to be
slightly scattered near APs with numbers 2 and 3 where
offices are smaller and corridors are narrower, in other
words, where signal suffers from severe multipath. In the
same figure, red dots correspond to multilateration obtained
by using the empirical RTT-based range method. In order
to be an empirical method, its performance depends on
the environment in which the MU is going to be located.
Therefore, the dynamic conditions of the ETSIT building
degrades its accuracy.

In order to better compare the wireless localization
algorithm proposed in this paper to other solutions, the
CDF of the errors is used. This error is defined as the
distance between the actual MU position and the esti-
mated one. In Figure 8, the CDFs of the errors with five

Probability

Error (m)

—*— No corrected
—— RWGH
—&— PNMC

—o— Empirical RTT
—&— RSS-based

FiGgure 8: CDFs of errors performed with five different localization
methods that have been tested in the second floor of the ETSIT.

different wireless localization algorithms are shown. Five
multilateration results are compared in terms of accuracy
improvement to the route followed in the ETSIT building as
a generic indoor environment: the empirical RTT-based and
RSS-based solutions to estimate distances, the localization
algorithm proposed in this paper without mitigating the
NLOS errors, the localization algorithm having implemented
the PNMC technique to correct NLOS errors, and the
same localization algorithm having implemented the RWGH
method.

From Figure 8 one can appreciate that the empirical RTT-
based and RSS-based methods are not suitable for NLOS
environments. On the contrary, the proposed localization
algorithm without any NLOS errors mitigation technique
has a good behavior for NLOS environments with an error
lower than 4 m on average. This error is slightly improved
after implementing the posteriori NLOS error mitigation
technique RWGH. However, the implementation of the
PNMC technique achieves the best result with an error
lower than 5m for a cumulative probability of 70%. It is
worth pointing out that this precision has been achieved only
through multilateration without any tracking technique.
Obviously, the positioning accuracy can be improved by
using some tracking techniques such as Kalman filters or
Bayessian methods, but in this paper it has been indicated
that the feasibility of using the wireless localization system
proposed in indoor environments without any tracking
technique help.

5. Conclusions

The achievable positioning accuracy of traditional wireless
localization systems is limited when harsh radio propagation
conditions like rich multipath indoor environments are
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present. In this paper, a novel RTT-based algorithm to locate
devices in such scenarios has been proposed. The wireless
localization system proposed has been developed over a
hardware solution that performs RTT measurements. The
effect of hardware errors has been minimized by choosing
the scale-W parameter as RTT estimator. A coefficient of
determination value of 0.96 achieved with this estimator
in LOS justified the simple linear regression function as
the model that relates distance estimates to RTT measure-
ments in LOS. As LOS is not guaranteed in an indoor
environment, the accuracy of the proposed localization
algorithm has been tested in a rich multipath environment
without any NLOS error mitigation technique achieving an
error lower than 4m on average. However, this error is
improved after having implemented the PNMC technique
to correct NLOS errors. In spite of the multipath fading
conditions, experimental results have been shown that the
wireless localization system proposed in this paper is highly
accurate, achieving an error lower than 4 m in 80% of cases.
The algorithm proposed has been compared to an empirical
RTT-based and RSS-based localization algorithms and to the
RWGH method for mitigating the NLOS effect, concluding
that the localization system gives the best results without any
tracking technique help that could improve the positioning
accuracy.

Appendices

A. Maximum Likelihood Estimator of the Scale
Parameter of the Weibull Distribution

The scale-W parameter is estimated by using the maximum
likelihood estimator (MLE) method and assuming that the
shape parameter is known.

The probability density function of a Weibull (two-
parameter) random variable x is

fxskA) =

where k > 0 is the shape parameter and A > 0 is the scale-W
parameter.

Let X;,X,,...,X, be a random sample of random
variables with two-parameter Weibull distribution, k and A.
The likelihood function is

Lixi,..., x5 k1) = Hf(xi;k,)t). (A.2)
i=1

Therefore,

InL(x1,..., %05 k,A)

M=

lnf(xl,. .. ’xn§k,/l)
1
(o) (3)-(3))

>(3)

i=1

- n-lnG) Fk—1)- Zm(’%) -
i-1

=n- (In(k) —In(A)) + (k- 1)

_ [n In(d) + iln(xi)] - i(%)k

i=1 i=1

:n-ln(k)+(k—1)-iln(x,»)—n-k

i=1

-In(A) — A7k fo»‘,

i=1

(A.3)
thus,
olnL 1 1 <
=-n-k->+k- fo‘ (A.4)
oA A Akt =
In order to find the maximum, d1n L/0A = 0; then,
1 1 &
Oz—n'k'X'Fk'W';Xi
no_k k
_2imX —n- A (A.5)
Ak+1
= Zx,k —n- Ak
i=1

Hence, the MLE of the scale-W parameter is obtained

" 1/k
o 1
i iy

This expression is known as the generalized mean or Holder
mean.
The Holder mean is a generalized mean of the form,

(A.6)

1/p
1 n
Mp(xlaXZ)”"xn) = |:nzxzp:| 5 (A7)
i=1

where the parameter p is an affinely extended real number, n
is the number of samples and x; are the samples with x; > 0.
The Holder mean is an abstraction of the Pythagorean means
which, for example, includes minimum (M-, ), harmonic
mean (M_,), geometric mean (M), arithmetic mean (M;),
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quadratic mean (M), maximum (M), and the MLE of the
scale-W parameter (Mj) where k is the shape parameter of
Weibull distribution.

Once A is the MLE of A of Weibull distribution, the
Fisher information (I(1)) and the Cramér-Rao lower bound
(I"'()) are computed.

The Fisher information, I(1):

*InL
I()L):—EA[ = ]

“E [—n ke (=g ) R R =D fo}

n-k k-(k+1) < «
= — )@ +W . gEA(Xi>,
(A.8)
where
EA(xk> = roxk : <§>k71 e g (A9)
0 A \A '
Taking t = (x/)L)k, therefore,
Ex(xF :Jwt- “takdr
() = [Tree
RV AP
0| e (A.10)
=21 (2)
=)k,
Then,
n-k k-(k+1)
I(A):_AT—FMT.’?.M
n-k k-(k+1)-n
-t P (A.11)
n-k?
=
And thus, the Cramér-Rao lower bound,
22
-1 = A.12
') e ( )
B. Confidence Interval

The PKTymmv boundary is used to optimize the traffic that
the location system adds to the wireless network and the
time needed to obtain an accurate estimation. This boundary
represents the minimum number of frames needed to be
injected over the wireless network in order to get a reliable
location estimator at each time. PKTyy is computed based
on the CI of the location estimator. Once the scale-W
parameter has been chosen as the best location estimator
of RTT measurements, the CI can be analyzed. Therefore,

instead of estimating the scale-W parameter by a single value,
an interval likely to include it is given. How likely the interval
is to contain the scale-W parameter is determined by the
confidence level 1 — a.

The Fisher information of the location estimator is used
to define the CI. This method is based on the assumption
that RTT measurements are independent and identically-
distributed. Thus, the value C, given that

Plpe(i-colvc))=1-a (B
is determined. Where the parameter A is the scale-W
parameter and 1 — « is the confidence level.

If the record is large enough, 1~N (A, I71(A)), thus

PA(X—Ca<A<X+C“)
= p(~co1() P (i-a) a()
< Cy - I()At)iln).

AsA ~ N I'(V)), then (A —A) - T(A)""% ~ N(0,1) and
thus,

(B.2)

Co =2Zi—a2 - 1(1)71/2> (BS)

where z_4/; is the 1 — a/2 quantile of N(0,1) and as it is
shown in Appendix A, I(A) = nk?/A%.

Therefore, once the CI is computed,

[A = Cad+ G- (B.4)

the sample error is defined by +C,. Once Cl and sample error

are selected, it is straightforward to calculate the minimum
number of frames needed, working out #,

2 N2
Zi_aph

PKTmiNn = =
MIN C2k2

(B.5)
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