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A new upper bound on the capacity of power- and bandwidth-constrained optical wireless links over gamma-gamma atmospheric
turbulence channels with intensity modulation and direct detection is derived when on-off keying (OOK) formats are used. In this
free-space optical (FSO) scenario, unlike previous capacity bounds derived from the classic capacity of the well-known additive
white Gaussian noise (AWGN) channel with uniform input distribution, a new closed-form upper bound on the capacity is found
by bounding the mutual information subject to an average optical power constraint and not only to an average electrical power
constraint, showing the fact that the input distribution that maximizes the mutual information varies with the turbulence strength
and the signal-to-noise ratio (SNR). Additionally, it is shown that an increase of the peak-to-average optical power ratio (PAOPR)
provides higher capacity values. Simulation results for the mutual information are further demonstrated to confirm the analytical
results under several turbulence conditions.

1. Introduction

Optical wireless communications using intensity modulation
and direct detection (IM/DD) can provide high-speed links
for a variety of applications [1], providing an unregulated
spectral segment and high security. Here, the transmit
power must be constrained by power consumption concerns
and eye-safety considerations. Moreover, these systems are
intrinsically bandwidth limited due to the use of large
inexpensive optoelectronic components. Recently, the use of
atmospheric free-space optical (FSO) transmission is being
specially interesting to solve the “last mile” problem, above all
in densely populated urban areas, as well as a supplement to
radio-frequency (RF) links [2] and the recent development
of radio on free-space optical links (RoFSOLs) [3, 4].
However, atmospheric turbulence produces fluctuations in
the irradiance of the transmitted optical beam, which is
known as atmospheric scintillation, severely degrading the
link performance [5, 6].

An upper bound on the capacity of the indoor optical
wireless channel was determined in [7] for the specific case of

multicarrier systems where the average optical amplitude in
each disjoint symbol interval is fixed. By contrast, Hranilovic
and Kschischang determine in [8] an upper bound by not
assuming a particular signaling set and allowing for the
average optical amplitude of each symbol to vary. This
upper bound is improved at low signal-to-noise ratio for
IM/DD channels with pulse amplitude modulation in [9].
In [10], a new closed-form upper bound on the capacity
is found through a sphere-packing argument for channels
using equiprobable binary pulse amplitude modulation
(PAM) and subject to an average optical power constraint,
presenting a tighter performance at lower optical signal-to-
noise ratio (SNR) if compared with [8]. Recently, using a dual
expression for channel capacity introduced in [11], Lapidoth
et al. have derived new upper bounds on the capacity
of the indoor optical wireless channel when the input is
constrained in both its average and its peak power [12]. In
the analysis of the capacity of the atmospheric FSO channel,
several works can be cited [13–22]. In [13], numerical results
for the capacity of gamma-gamma atmospheric turbulence
channels using on-off keying (OOK) formats are presented
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by maximizing the mutual information for this channel over
a binomial input distribution. In [14, 15], the capacity of
log-normal optical wireless channel with OOK formats is
computed for known channel state information (CSI) in
a similar way to the capacity of the well-known additive
white Gaussian noise (AWGN) channel with binary phase
shift keying (BPSK) signaling, assuming the fact that the
input distribution that maximizes mutual information is the
same regardless of the channel state. In [16–18], closed-
form mathematical expressions for the evaluation of the
average channel capacity are presented when log-normal
and gamma-gamma models are adopted for the atmospheric
turbulence, assuming the same considerations as in [14, 15].
In [19], the availability of CSI and the effects of channel
memory on the capacities of FSO communications channels
are investigated by adopting an approach as in [14–18], using
a definition of SNR proper to RF fading channels where
performance depends on the average power of the electrical
current, obtained by the conversion from the optical signal.
In [20], closed form expressions for the bit-error rate and the
outage probability are presented when pointing errors effects
are considered. In [21], ergodic capacity is numerically evalu-
ated for turbulence channels with pointing errors using OOK
formats. Recently, Farid and Hranilovic have considered in
[22] the design of capacity-approaching, nonuniform optical
intensity signaling in the presence of average and peak
amplitude constraints, presenting a practical algorithm by
using multilevel coding followed by a mapper and multistage
decoding at the receiver. The analysis of the channel capacity
for alternative FSO scenarios has been considered in [23–25].

In this paper, a new upper bound on the capacity of
power- and bandwidth-constrained optical wireless links
over gamma-gamma atmospheric turbulence channels with
intensity modulation and direct detection is derived when
OOK formats are used. Because FSO channel is envisioned
as the solution to the convectivity bottleneck problem and
as a supplement to RF links, the complexity of transmitter
and receiver must be low. Therefore, the use of IM/DD links
with OOK formats is proposed as a reasonable choice. In
this FSO scenario, unlike previous capacity bounds derived
from the classical capacity formula corresponding to the
electrical equivalent AWGN channel with uniform input
distribution, a new closed-form upper bound on the capacity
is found by bounding the mutual information subject to
an average optical power constraint and not only to an
average electrical power constraint, being considered in our
system model the impact of a nonuniform input distribution.
This new approach is based on the fact that a necessary
and sufficient condition between average optical power and
average electrical power constraints is satisfied for OOK
signaling where an unidimensional space is assumed with
one of the two points of the constellation taking the value
of 0, corroborating the nonnegativity constraint. This bound
presents a tighter performance at lower optical SNR if
compared with previously reported bounds and shows the
fact that the input distribution that maximizes the mutual
information varies with the turbulence strength and the
SNR. Additionally, it is shown that an increase of the peak-
to-average optical power ratio (PAOPR) provides higher

capacity values. Simulation results for the mutual infor-
mation are further demonstrated to confirm the analytical
results under several turbulence conditions.

2. Atmospheric Turbulence Channel Model

The use of infrared technologies based on IM/DD links is
considered, where the instantaneous current in the receiving
photodetector, y(t), can be written as

y(t) = ηi(t)x(t)⊗ h(t) + z(t) = xrx(t) + z(t), (1)

where the ⊗ symbol denotes convolution, η is the detector
responsivity, assumed hereinafter to be the unity, X � x(t)
represents the optical power supplied by the source, h(t)
the impulse response of an ideal lowpass filter, which cuts
out all frequencies greater than W hertz, modelling the fact
that these systems are intrinsically bandwidth limited due to
the use of large inexpensive optoelectronic components, and
I � i(t) the scintillation at the optical path; Z � z(t) is
assumed to include any front-end receiver thermal noise as
well as shot noise caused by ambient light much stronger
than the desired signal at detector. In this case, the noise
can usually be modeled to high accuracy as AWGN with
zero mean and variance N0/2, that is, Z ∼ N(0,N0/2),
independent of the on/off state of the received bit [1]. Since
the transmitted signal is an intensity, X must satisfy for all
t x(t) ≥ 0. Due to eye and skin safety regulations, the average
optical power is limited and, hence, the average amplitude of
X is limited. Although limits are placed on both the average
and peak optical power transmitted, in the case of most
practical modulated optical sources, it is the average optical
power constraint that dominates [26]. The received electrical
signal Y � y(t), however, can assume negative amplitude
values. In this fashion, the atmospheric turbulence channel
model consists of a multiplicative noise model, where the
optical signal is multiplied by the channel irradiance. Here,
we consider the gamma-gamma turbulence model proposed
in [5, 27], where the normalized irradiance I is defined
as the product of two independent random variables, that
is, I = IxIy , Ix and Iy representing large-scale and small-
scale turbulent eddies and each of them following a gamma
distribution. This leads to the so-called gamma-gamma
distribution, whose probability density function (PDF) is
given by

fI(i) =
2
(
αβ
)(α+β)/2

Γ(α)Γ
(
β
) i((α+β)/2)−1Kα−β

(
2
√
αβi
)

, (2)

where Γ(·) is the well-known Gamma function, and Kν(·)
is the νth-order modified Bessel function of the second kind
[28]. Assuming spherical wave propagation, the parameters
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α and β are related to the atmospheric conditions through
the following expressions [27, 29]:
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where χ2 = 0.5C2
nk

7/6L11/6 and d = (kD2/4L)1/2. Here, k =
2π/λ is the optical wave number, λ is the wavelength, D is the
diameter of the receiver collecting lens aperture, and L is the
link distance in meters. C2

n stands for the altitude-dependent
index of the refractive structure parameter and varies from
10−13 m−2/3 for strong turbulence to 10−17 m−2/3 for weak
turbulence. Since the mean value of this turbulence model
is E[I] = 1 and the second moment is given by E[I2] =
(1 + 1/α)(1 + 1/β), the scintillation index (SI), a parameter of
interest used to describe the strength of atmospheric fading,
is defined as

SI = E
[
I2
]

(E[I])2 − 1 = 1
α

+
1
β

+
1
αβ

. (4)

We consider OOK formats with any pulse shape and
reduced duty cycle, allowing the increase of the PAOPR
parameter. A new basis function φ(t) is defined as φ(t) =
g(t)/

√
Eg where g(t) represents any normalized pulse shape

satisfying the nonnegativity constraint, with 0 ≤ g(t) ≤ 1 in
the bit period and 0 otherwise, and Eg =

∫∞
−∞ g2(t)dt is the

electrical energy. In this way, an expression for the optical
intensity can be written as

x(t) =
∞∑

k=−∞
ak

(
1/p
)
TbPopt

G
(
f = 0

) g(t − kTb), (5)

where G(f = 0) represents the Fourier transform of g(t)
evaluated at frequency f = 0, that is, the area of the employed
pulse shape. The random variable (RV) ak follows a Bernoulli
distribution with parameter p, taking the values of 0 for the
bit “0” (off pulse) and 1 for the bit “1” (on pulse). From
this expression, it is easy to deduce that the average optical
power transmitted is Popt. The constellation here defined for
the OOK format using any pulse shape consists of two points
in a one-dimensional space with an Euclidean distance of d =
(1/p)Popt

√
Tbξ where ξ = TbEg/G2( f = 0) represents the

square of the increment in Euclidean distance due to the use
of a pulse shape of high PAOPR, alternative to the classical
rectangular pulse. Assuming maximum-likelihood detection
and h(t) as the impulse response of an ideal lowpass filter,
which cuts out all frequencies greater than W hertz, the
electrical power of Xrx, signal corresponding to xrx(t) at
the detector output, conditionated to the irradiance, can
be written as Pel = pd2i2θ = (1/p)P2

opti
2Tbξθ where θ is

obtained from
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−W
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with 0 < θ < 1, representing the fact that the channel under
study is constrained to κ = 2WTb degrees of freedom. In
this way, the bandwidth constraint in our analysis is subject
to the channel and not to the signaling technique, as in
[8]. In our opinion, this is closer to the real scenario. It
must be noted that the intersymbol interference between
successive code words is considered negligible, assuming that
this channel is able to support the transmission of at most
κ dimensions per symbol. With the aid of the converse to
the coding theorem it is easy to show that the intersymbol
interference cannot reduce error probability. There is no
problem since we can transmit, in principle, only one code
word of arbitrarily long duration, showing that arbitrarily
small error probabilities can be achieved at any rate less
than capacity [30, Section 8.5]. The channel is assumed to
be memoryless, stationary, and ergodic, with independent
and identically distributed intensity fast fading statistics.
Although scintillation is a slow time varying process relative
to typical symbol rates of an FSO system, having a coherence
time on the order of milliseconds, this approach is valid
because temporal correlation can in practice be overcome
by means of long interleavers, being usually assumed both
in the analysis from the point of view of information theory
and error rate performance analysis of coded FSO links
[13, 29, 31]. This assumption has to be considered like an
ideal scenario where the latency introduced by the interleaver
is not an inconvenience for the required application, being
interpreted the results so obtained as upper bounds on the
system performance. We also consider that the channel state
information is available at both transmitter and receiver.
In this way, the channel capacity must be considered as a
random variable following the gamma-gamma distribution
corresponding to the atmospheric turbulence model and,
hence, its average value, known as ergodic capacity, will
indicate the average best rate for error-free transmission [16–
19].

3. Upper Bound on Channel Capacity

Considering the channel capacity as a random variable and
perfect CSI available at both transmitter and receiver [14,
32], we can use the theory derived for discrete-time Gaussian
channels [33], expressing the ergodic capacity in bits per
channel use as

C = max
p

∫∞

0
I(X ;Y | i) fI(i)di, (7)

that is, the maximum, over all distributions on the input that
satisfy the average optical power constraint at a level Popt,
of the conditional mutual information between the input
and output, I(X ;Y | i), averaged over the PDF in (2). It
must be noted that unlike the approach followed in [14–
18], where the capacity is computed in a similar way to
the capacity of the well-known AWGN channel with BPSK
signaling, assuming the fact that the input distribution that
maximizes mutual information is the same regardless of the
channel state, we consider in our system model the impact of
a nonuniform input distribution. In this way, the exchange
of integration and maximization is not possible because
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the channel we consider does not satisfy a compatibility
constraint [32], since the input distribution that maximizes
mutual information is not the same regardless of the channel
state, as also considered in [13, 34, 35].

The constraint in optical domain implies that E[X2
rx],

the second moment of Xrx, takes a value of up to Pel.
Additionally, in our channel model, assuming a unidimen-
sional space where the nonnegativity constraint is satisfied
and one of the two points of the constellation takes the
value of 0, it is easy to deduce that an average electrical
power constraint of Pel, and, hence, E[X2] ≤ Pel/(i2θ),

implies an Euclidean distance as d = (1/p)Popt

√
Tbξ and,

hence, an average optical power constraint of Popt. Thus, an
average electrical power constraint of Pel is necessary and
sufficient condition for satisfying an average optical power
constraint of Popt. This is only valid for OOK signaling,
representing the basis of our work in order to achieve a
tighter performance if compared with previously reported
bounds. In relation to the equivalent discrete-time channel,
it must be emphasized that the transmitted optical signal
is represented by the random variable X , the atmospheric
turbulence-induced signal is represented by the product
XI , and the corresponding signal performed in electrical
domain is represented by Xrx, being the latter the signal to
be finally considered in our analysis. Applying the fact that
the Gaussian distribution maximizes the entropy over all
distributions with the same variance [33, Theorem 8.6.5], we
obtain

I(X ;Y | i) ≤ 1
2

log2

(

1 +
σ2
Xrx

No/2

)

, (8)

where σ2
Xrx
= E[(Xrx − E[Xrx])2] and represents the variance

of the optical signal detected in electrical domain, resulting
in

I(X ;Y | i) ≤ 1
2

log2

(

1 +

((
1/p
)− 1

)
P2

opti
2Tbξθ

No/2

)

. (9)

This expression bounds the conditional mutual information
of the bandlimited optical intensity channel corrupted by
white Gaussian noise with two-sided spectral density of
No/2 watts/Hz and average optical power constraint of Popt

watts. Next, assuming that the channel is constrained to κ
dimensions and even without maximizing over the input
distribution, the channel capacity C(γ, p) can be obtained by
averaging over the PDF in (2) as follows:

C
(
γ, p
) ≤

∫∞

0

1
2

log2
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(
1
p
− 1

)

κξθγ2i2
)

fI(i)di

≤ HB
(
p
)
,

(10)

where γ = Popt/
√
NoW is the SNR definition, as in [8,

10], different to the expression used in [14, 16–19], and
HB(p) = −plog2p−(1− p)log2(1− p) represents the entropy
of the Bernoulli RV ak in (5), presenting the maximum
value achievable because OOK is the signaling technique

considered in this analysis. After substituting (2) in (10),
we can use Meijer’s G-function [28, equation (9.301)],
available in standard scientific software packages such as
Mathematica and Maple, in order to transform the integral
expresion to the form in [36, equation (21)], expressing in
(10) the modified Bessel function of the second kind [36,
equation (14)] and the logarithm function [36, equation
(11)] in terms of Meijer’s G-function. Finally, after a simple
power transformation of the RV In = I2 in order to
achieve a linear argument for Meijer’s G-function related
to the logarithm function and using [36, equation (21)], a
closed-form solution for C(γ, p) is derived as can be seen
in

C
(
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) ≤ 2α+β−2/ log(2)
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Knowing that C(γ, p) is also upper bounded by the
binary entropy HB(p), the ergodic capacity in bits per
channel use is obtained by maximizing C(γ, p) over the
parameter p as

C = max
p

C
(
γ, p
)
. (12)

For the sake of easy comparison, we present a closed-form
expression in terms of the Meijer’s G-function following a
similar approach as in works in the same context [16–18].
Nonetheless, it must be commented that Meijer’s G-function
has to be numerically calculated and, hence, the use of Monte
Carlo integration to solve (10) may represent an alternative
with less computational load.

4. Numerical Results

We now numerically evaluate mutual information for our
channel model using OOK signaling to corroborate the
tightness of the previous results. For the sake of simplicity,
showing the fact that the input distribution that maximizes
the mutual information varies with the turbulence strength
and the SNR, the statistical channel model can be rewritten
as

Y = AXI + Z, X ∈ {0, 1}, Z ∼ N(0, 1), (13)
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whereA = (1/p)γ
√
ξθκ. The conditional mutual information

I(X ;Y | i) for this channel is, therefore, derived as can be
seen in

I(X ;Y | i) =
1∑

x=0

PX(x)
∫∞

−∞
fY
(
y | x, i

)

× log2

(
fY
(
y | x, i

)

∑
m=0,1 PX(m) fY

(
y | x = m, i

)

)

dy.

(14)

as in [13, 19, 21], where PX(x = 1) = p, PX(x =
0) = 1 − p, fY (y | x = 1, i) = (1/

√
2π) exp(−(y −

Ai)2/2), and fY (y | x = 0, i) = fY (y | x = 0) =
(1/
√

2π) exp(−y2/2). Then, substituting (14) in (7), the
ergodic capacity is numerically obtained after maximizing
over p the expectation with respect to the PDF in (2)
of the conditional mutual information. This expression is
computed using a symbolic mathematics package [37].

4.1. No Atmospheric Turbulence. Firstly, no atmospheric
turbulence is considered to show the fact that the input
distribution that maximizes the mutual information varies
with the SNR. It is easy to deduce from the upper bound
in (9) that the channel capacity Cnt in the absence of
atmospheric turbulence is obtained by maximizing Cnt(γ, p)
over p, that is, Cnt = maxpCnt(γ, p), where Cnt(γ, p) is

Cnt
(
γ, p
) ≤ 1

2
log2

(

1 +

((
1
p
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− 1

)

κξθγ2

)

≤ HB
(
p
)
. (15)

At this point, the greater tightness of this upper bound can
be corroborated if compared to the approach followed in
[14–18], where the capacity is computed in a similar way to
the capacity CAWGN of the well-known AWGN channel with
BPSK signaling, assuming the fact that the input distribution
that maximizes mutual information is the same regardless
of the channel state and with a value of p = 1/2. With our
notation, this capacity CAWGN can be expressed as

CAWGN
(
γ
) ≤ 1

2
log2

(

1 +

(
1
p

)

κξθγ2

)∣∣
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p=1/2

= 1
2

log2

(
1 + 2κξθγ2).

(16)

Obtained results for the capacity Cnt(γ, 1/2) in (15), with
a value of p = 1/2, and CAWGN(γ) in (16) are illustrated in
Figure 1 when a rectangular pulse shape with duty cycle of
100% is adopted, that is, ξ = 1. Here, κ = 2 and κ = 20 have
been considered and, hence, values of θ = 0.9028 and θ =
0.9898, respectively, are computed in (6) by direct integration
in frequency domain using a symbolic mathematics package
[37]. For this rectangular pulse shape, it is easy to deduce that
θ = 2(πκSi(πκ) + cos(πκ)− 1)/(π2κ), where Si(·) is the sine
integral function [38, equation (5.2.1)]. In this figure, mutual
information Int(X ;Y) is also displayed, being numerically
solved in a similar way as in (14) but not yet considering the
impact of the atmospheric turbulence. It can be corroborated

0

0.2

0.4

0.6

0.8

1

−20 −15 −10 −5 0 5 10

γ (dB)

κ = 2

C
ap

ac
it

y
(b

it
s/

ch
an

n
el

u
se

)

(a)

0

0.2

0.4

0.6

0.8

1

−20 −15 −10 −5 0 5 10

γ (dB)

C
ap

ac
it

y
(b

it
s/

ch
an

n
el

u
se

)

κ = 20

Cnt(γ, 1/2)
CAWGN(γ)
Int(X ;Y) | p = 1/2

CH (γ)
CF (γ)

(b)

Figure 1: Capacity bounds and mutual information numerically
solved for the nonturbulent optical channel with uniform input
distribution when a rectangular pulse shape with duty cycle of
100%, that is, ξ = 1, and values of (a) κ = 2 and (b) κ = 20 are
adopted.

that the proposed upper bound in the absence of turbulence
Cnt(γ, 1/2) shows a tighter performance, regardless of the
value of κ. Here, there must be commented the fact that
the analysis in this paper is particularized for the OOK
signaling and, hence, the improvement in performance for
the capacity Cnt(γ, 1/2) in (15) is sufficiently contrasted if
compared to the mutual information, numerically solved for
the OOK signaling. However, when no signaling schemes
are particularized in the capacity analysis, upper bounds are
usually corroborated by evaluating the asymptotic behavior
with the corresponding lower bounds.

In Figure 1, we also include the upper bound on channel
capacity determined in [8, expression (21)] by Hranilovic
and Kschischang, based on a signal space representing the
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convex hull of a generalized N-cone with vertex at the origin.
As in [8, Section V.A], this is adopted in the unidimensional
case but using the new basis function φ(t) proposed in
this paper to consider the favorable impact of the increase
of the PAOPR and, this way, to compare results in similar
conditions. It must be noted that the mathematical treatment
in [8] is more general since a particular signaling is not
assumed when the sphere-packing procedure is carried out.
This modified upper bound can be written in bits/channel
use as

CH
(
γ
) ≤ log2

[(√
κξθγ + 2

)√
e

2π

]
. (17)

Recently, a better representation at lower SNR for the channel
capacity (in bits/channel use) has been derived by Farid and
Hranilovic in [9, expression (15)], compared to previous
work in [8] with

CF
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) ≤ log2
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α(√
κξθγ

)α 1
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where α and Θ(α) are obtained as explained in [9], depend-
ing on SNR values. As a result, the new bound Cnt(γ, 1/2)
derived in (15) yields superior tightness over the bound in
(17) and (18). It can be corroborated that the superiority
of the proposed upper bound is even more significant when
the value of κ is lower. Recently, using a dual expression for
channel capacity introduced in [11], Lapidoth et al. have
derived new upper bounds on the capacity of the indoor
optical wireless channel when the input is constrained in
both its average and its peak power [12]. They also present
results on the asymptotic capacity at low power, showing
precise results when an average- and a peak-power constraint
are imposed, presenting asymptotic upper and lower bounds
whose ratio tends to 1 as the power tends to 0. Nonetheless,
this ratio tends to 2

√
2 as the power tends to 0 when only an

average-power constraint is imposed, context in which the
upper bound proposed in this paper is evaluated.

Since the input distribution that maximizes the mutual
information varies with the SNR, numerical maximization
of the capacity bound in (15) and mutual information
over the input distribution p for the nonturbulent channel
are shown in Figure 2(a) when a rectangular pulse shape
with duty cycle of 100%, that is, ξ = 1, and κ = 20
are adopted. Figure 2(b) shows the fact that a nonuniform
input distribution improves the channel capacity, especially
at low SNR [34, 35]. Unlike other channels in which the gap
between mutual information with uniform and nonuniform
source distributions is small, this figure demonstrates that for
optical wireless systems the use of nonuniform distributions
provides a relevant improvement in performance.

4.2. With Gamma-Gamma Atmospheric Turbulence. In this
subsection, atmospheric turbulence is considered, showing
the fact that the input distribution that maximizes the
mutual information varies with the turbulence strength and
the SNR, and corroborating the better performance for
the upper bound in (11) if compared to previous capacity
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Figure 2: (a) Maximization of the capacity bound in (15)
and mutual information over the input distribution p for the
nonturbulent optical channel when κ = 20 and a rectangular pulse
shape with ξ = 1 are adopted. (b) Mutual information versus the
input distribution p for values of SNR of γ = −1 dB, γ = −5 dB,
and γ = −10 dB.

bounds derived from the classic capacity of the well-known
AWGN channel with uniform input distribution. In a similar
way as derived in (11) but starting from the expression
CAWGN in (16), this capacity Cturb

AWGN, corresponding to the
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approach followed in [14–18], can be written with our
notation as can be seen in

Cturb
AWGN

(
γ
) ≤ 2α+β−2/ log(2)

(
2πΓ(α)Γ

(
β
))

×G1,6
6,2

⎛

⎜
⎝

32ξθκγ2

α2β2

∣
∣
∣∣
∣
∣
∣

1, 1,
1− α

2
,
2− α

2
,
1− β

2
,
2− β

2
1, 0

⎞

⎟
⎠.

(19)

Obtained results for the capacity C(γ, 1/2) in (11), with a
value of p = 1/2, and Cturb

AWGN(γ) in (19) are illustrated
in Figure 3 when κ = 20 and a rectangular pulse shape
with ξ = 1 are adopted. In this figure, mutual information
I(X ;Y) is also displayed, being numerically solved as in (14).
Here, the greater tightness of the proposed upper bound in
(11) can be corroborated when a uniform input distribution
and different levels of turbulence strength are assumed,
corresponding to values of scintillation index of SI = 0.5625
and SI = 1.5.

As in nonturbulent case, since the input distribution
that maximizes the mutual information is nonuniform,
numerical maximization of the capacity bound in (11) and
mutual information over the input distribution p for the
gamma-gamma atmospheric turbulent channel are shown
in Figure 4(a) when κ = 20 and a rectangular pulse shape
with ξ = 1 are used. Figure 4(b) shows the fact that a
nonuniform input signaling improves the channel capacity,
especially at low SNR [35], depending on the maximizing
input distribution on the SNR and the turbulence strength.

Additionally, from the result in (11) for the capacity
proposed in this letter, a relevant improvement in perfor-
mance must be noted as a consequence of the pulse shape
used. To fully exploit this improvement, a pulse shape with
a high PAOPR must be employed. So, for instance, when
a rectangular pulse shape of duration μTb, with 0 < μ ≤
1, is adopted, a value of ξ = 1/μ can be easily shown.
Nonetheless, a significantly higher value of ξ = 4/μ

√
π is

obtained when a Gaussian pulse of duration μTb as g(t) =
exp(−t2/2σ2) for all |t| < μTb/2 is adopted, where σ = μTb/8
and the reduction of duty cycle is also here controlled by the
parameter μ. In this fashion, 99.99% of the average optical
power of a Gaussian pulse shape is being considered. In
Figure 5, maximization of the capacity bound in (11) and
mutual information for the atmospheric turbulent optical
channel are displayed when a scintillation index of SI =
1.5 and rectangular and Gaussian pulse shapes are adopted.
Here, a value of κ = 20 has been considered and, hence,
values of θ = 0.9898 when using a rectangular pulse with
μ = 1 and θ = 0.9945 when using a Gaussian pulse shape
with μ = 0.25 have been obtained from (6). For this Gaussian
pulse shape, it is easy to deduce that θ = erf(πκμ/8), where
erf(·) is the error function [38, equation (7.1.1)]. It is shown
that OOK format using the classical rectangular pulse with
duty cycle of 100% requires about 5 dB more optical SNR to
yield similar values of capacity compared with OOK format
with Gaussian pulses having a duty cycle of 25%.
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Figure 3: Capacity bounds and mutual information numerically
solved for the atmospheric turbulent optical channel with uniform
input distribution when κ = 20, a rectangular pulse shape with ξ =
1, and different levels of turbulence strength (a) (α,β) = (4, 4) and
(b) (α,β) = (4, 1) are assumed.

5. Conclusions

As a result, a new upper bound on the capacity of power- and
bandwidth-constrained optical wireless links over gamma-
gamma atmospheric turbulence channels with intensity
modulation and direct detection is derived when OOK
formats are used. In this FSO scenario, unlike previous
capacity bounds derived from the classic capacity of the well-
known AWGN channel with uniform input distribution,
a new closed-form upper bound on the capacity is found
by bounding the mutual information subject to an average
optical power constraint and not only to an average electrical
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Figure 4: (a) Maximization of the capacity bound in (11)
and mutual information over the input distribution p for the
atmospheric turbulent optical channel when κ = 20, a rectangular
pulse shape with ξ = 1, and a scintillation index of SI = 0.5625
are adopted. (b) Mutual information versus the input distribution
p for a value of SNR of γ = −10 dB and different levels of turbulence
strength.

power constraint. This bound presents a tighter performance
at lower optical SNR if compared with previously reported
bounds and shows the fact that the input distribution
that maximizes the mutual information varies with the
turbulence strength and the SNR. Additionally, it is shown
that an increase of the PAOPR provides higher capacity
values. Simulation results for the mutual information are
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Figure 5: Maximization of the capacity bound in (11) and mutual
information over the input distribution p for the atmospheric
turbulent optical channel when κ = 20 and a scintillation index
of SI = 1.5 are adopted with rectangular and Gaussian pulse shapes.

further demonstrated to confirm the analytical results
under different turbulence conditions. From the results here
obtained when only an average-power constraint is imposed,
investigating the impact of an input constrained in both its
average and its peak power as well as misalignment fading
on the system model here proposed for representing OOK
signaling is an interesting topic for future research.
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