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Active interference cancellation (AIC) is an effective technique to provide interference avoidance feature for an ultrawideband
(UWB) OFDM transmitter. Partial transmit sequence-AIC (PTS-AIC), which was recently proposed as an improvement of AIC,
requires high computational complexity by doing the exhaustive search of all possible weighting factors whose number grows
exponentially with the number of subblocks used. To reduce the complexity of PTS-AIC, this paper proposes a suboptimal way,
called particle swarm optimization (PSO), to choose the weighting factors suboptimally without much performance degradation.
Both continuous and discrete versions of PSO have been evaluated, and it has been shown that the discrete PSO is able to reduce
the complexity significantly without sacrificing the performance of PTS-AIC in many cases.

1. Introduction

Ultrawideband (UWB) communication, a spectrum under-
lay system, has a very small power spectral density that spans
over hundreds of megahertz. While a UWB device must
endure interference from the primary narrowband devices,
the UWB transmission must not cause interference back
to them. There are several works studying the impact of
interference if the UWB system is to coexist with other
narrowband systems, for example, [1-4]. These studies
indicate performance degradation as a result of mutual
interference between UWB and narrowband systems.

Due to the secondary nature of UWB devices, it is their
requirement to avoid causing the interference in the first
place. One approach is to enhance the UWB device with
the “detect-and-avoid” (DAA) [5] capability, sensing any
ongoing narrowband transmissions and intelligently keeping
away from the overlapped spectrum. If the narrowband
transmission is found, the UWB device will adjust its
transmission such that the effect of the UWB transmission
will be negligible at the primary device receiver. DAA has
been an interesting research topic on UWB recently. The

strong interest of DAA is attributed to widespread usage
of wireless applications sharing the same or overlapped
part of the spectrum band. For example, current impor-
tant narrowband systems that share parts of the UWB
spectrum are WiMAX at the 3.5 GHz frequency range and
IEEE802.11a at the 5GHz frequency range. In the future,
it seems inevitable for the UWB device to have the DAA
feature.

This paper focuses on the avoidance part of DAA for
the UWB system that employs OFDM transmission such as
WiMedia standard [6]. In [6], tone nulling at the overlapped
narrowband spectrum (referred to as an interference band)
is suggested as an avoidance technique. Although tone
nulling completely removes the interference at the exact
center frequency corresponding to the nulled tones, there
still exists interference caused by sidelobes of the remaining
tones present elsewhere in the interference band [7]. One
efficient technique to mitigate sidelobe interference is active
interference cancellation (AIC) proposed in [7]. In addition
to removing the subcarriers that lie inside the interference
band, AIC removes two more subcarriers beside them and
replaces the removed tones with the computed “AIC tones”.
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The purpose of placing AIC tones is to generate “negative
interference” in order to cancel the sidelobe interference
from the remaining subcarriers.

Many extensions and improvements of AIC have been
proposed recently. In a subcarrier-based antenna selection
system, a new AIC formulation was proposed in [8]. The
problem of sidelobe interference coming from a superposi-
tion of the transmissions from all antennas necessitates a new
AIC for all antennas.

A few AIC algorithms with low complexity were pro-
posed in [9]. The algorithms are based on simplifying matrix
computation in the AIC. The complexity saving in [9] comes
at a price of degraded interference cancellation performance
although it is claimed that the algorithm is still better than
the original AIC in the worst case.

The following works attempt to deepen the notch
spectrum obtained with AIC. Extended AIC inserts the so-
called extended AIC tones between the usual AIC tones,
and they generate better negative interference [10]. However,
since the extended AIC tones are placed in between the usual
subcarrier positions, orthogonality between the subcarriers
is lost and the bit error rate (BER) curve shows an error floor.
Reference [11] proposes three enhancements of the AIC
by cyclic shifting, phase shifting, or joint cyclic and phase
shifting the data subcarriers. Doing so leads to modification
of the spectrum and yields smaller remaining interference
after the AIC operation. The algorithms in [11] increase
the cancellation performance of AIC significantly with the
drawbacks of high complexity and the requirement of side
information. Recently, another technique, so-called partial
transmit sequence-AIC (PTS-AIC), was proposed in [12]. It
is essentially a novel application of partial transmit sequence
that has been applied in OFDM in order to reduce peak-
to-average power ratio (PAPR) [13, 14]. Adjacent subblock
partitioning and interleaved subblock partitioning were pro-
posed for the PTS-AIC. It was shown that PTS-AIC enhances
the performance of AIC and provides more flexibility in
parametrizing the algorithm. However, selecting the optimal
parameters for PTS-AIC is very complex, especially when
a large number of subblocks are used. High complexity
comes from the exhaustive search for the optimal weighting
factors whose number grows exponentially with the number
of subblocks [12].

Particle swarm optimization (PSO) is a heuristic bio-
inspired optimization algorithm that is well suited to solve
high-dimensional and multimodal optimization problems
[15-18]. The PSO-based CDMA multiuser detection has
been reported in [19-21] where exponential complexity in
the number of users has been resolved by the PSO. Power
allocation problem in CDMA was solved by the PSO in
[22] where a few constraint handlings were investigated
and extensive studies on the parameters of PSO were given.
PSO was applied in PTS for OFDM PAPR reduction in
[23] to achieve much lower complexity. In [24], exponential
complexity in the number of sensors was solved by the
PSO in a sensor scheduling problem which optimizes a
group of sensors for target tracking under the performance
and cost constraints. More recently, PSO was exploited in
determining linear precoding for a linear MMSE multiuser
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Ficure 1: Interference band, interference tones, and AIC tones. The
computed AIC tones replace the interference tones and the two
tones beside them.

MIMO receiver, and it was shown to outperform the block
diagonalization approach [25].

This paper proposes a PSO as a suboptimal approach to
optimize weighting factors for PTS-AIC with the main pur-
pose of reducing complexity. Unlike [23], both continuous
and discrete (binary) version [16] of PSO are considered. It
is shown that PSO can be applied to PTS-AIC effectively and
can approach the performance of optimal PTS-AIC in many
cases with much lower complexity. The PSO algorithm allows
us to enhance the performance of PTS-AIC by using a larger
number of subblocks whose complexity is prohibitive for the
optimal exhaustive search.

The paper is organized as follows. Section 2 provides
the background on AIC. Section 3 reviews the PTS-AIC as
well as two types of subblock partitioning proposed in [12].
Section 4 discusses PSO in both continuous and discrete
versions as well as their complexity analysis. Section 5 shows
the simulation results and discussion. Conclusion is given in
Section 6.

Notations. Bold letters represent matrices or vectors. (-)" is a

transpose. (-)" is a Hermitian transpose. | - | is an absolute
value. || - || is the L,-norm of a vector.
2. AIC

We hereby describe the AIC algorithm in a matrix formula-
tion. Detailed description can be found in the original paper
[7].

Some definitions are required as follows. Interference
band is the frequency band that overlaps with the narrow-
band spectrum. Interference tones are the UWB OFDM
subcarriers that are present in the interference band. AIC
tones obtained by the AIC algorithm are to replace the
interference tones and two subcarriers beside the interference
tones. Figure 1 shows an example of interference band,
interference tones, and AIC tones.

Let X = [X(0),...,X(N — 1)I', where X(k),k =
0,...,N — 1 represents original frequency-domain data
symbols and N is the number of subcarriers (FFT size). We
can write

1
Y = -PX, 1
S M
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FiGuRe 2: PTS-AIC transmission model.

where Y = [Y(0),...,Y(MN — 1)]' is an upsampled
symbol vector with an upsampling factor M and P is an
upsampling matrix of size MN x N with element P([,k) =
SN exp(j2m(n/N) (k — I/M)).

Suppose the interference tones start from the pthto (p +
N; — 1)th subcarriers, where N; is the number of interference
tones. Define a nulling matrix T which is constructed from
an N X N identity matrix, and put zeros at the (p — 1)th to
(p + Nj)th diagonal elements. The (upsampled) interference
generated from the sidelobes of the other subcarriers can be
computed as

d; = P,TX, (2)

where P; is a submatrix of P by taking its row corresponding
to upsampled spectrum in the interference band, that is,
from the (Mp + 1)th to (M(p + N; — 1) + 1)th rows of P.
Thus, the size of Psis (M(N;—1)+1) X N. Let a new set of AIC
subcarriers be a column vector h of length N; + 2. The AIC
subcarriers are computed to generate “negative interference”
to cancel dj, that is,

P,h = —d,, (3)

where P, is a submatrix of P, by taking its column
corresponding to the positions of AIC tones, that is, from the
pth to (p + N; + 1)th columns of P;. The size of P, is then
(M(N; —1)+1) X (N;+2). Since P,, is not a square matrix, to
solve (3), one constructs a least-squares problem which finds
h that minimizes the squared error [7],

SE = ||P,h +d; . (4)

A well-known least-squares solution to (4) is the Moore-
Penrose generalized inverse (pseudoinverse) [26], in the form

-1

h=—(PI'P,) Pd; = -VIX, (5)
where V. = (PHP,)"'PHP, is of size (N; + 2) x N and
can be precomputed. Then, h is inserted at the nulled tone

positions. IFFT performs on this new block with the AIC
tones in place to construct an OFDM symbol.

3. PTS-AIC

Figure 2 illustrates the transmission model for PTS-AIC.
First, )N(, a symbol block of length N, is partitioned into N,

subblocks of equal size N/N,. Each subblockXy, is multiplied
by a weighting factorWy,. The weighting factor in this
paper is chosen from a usual unit-energy complex PSK
constellation @ of size N,,, for example, ® = {1,—1} when
N, = 2,and ®© = {1,j,-1,—j} when N,, = 4. Then,
a symbol block is reconstructed from each subblock as X
before it is processed with the AIC algorithm. The PTS-AIC
algorithm determines an optimum Nj-tuple weighting factor
WOPt = {W,, Wy,..., Wy, } such that the remaining interfer-
ence power inside the interference band after performing the
AIC is minimum, that is,

W' = arg min |~P,VIX(W) + BTXW)[,  (¢)
weo

where X(W) is a reconstructed symbol block computed by
an Nj-tuple weighting factor W and ®™ is a set of Nj-tuple
weighting factor where its element is chosen from @.

The PTS-AIC algorithm is characterized by the param-
eters N and N,,. We can adjust both parameters such that
the interference cancellation performance meets the target
while the complexity is affordable. As either N, or N,,
increases, the performance improves while the complexity
increases. The complexity of PTS-AIC is determined by the
number of all possible weighting factors to find WP', which
is (N,,)"". Since the complexity grows exponentially with
Nj, one cannot increase the number of subblocks to a very
large value to improve the performance, as the number of
comparisons is prohibitive.

There are two types of subblock partitioning considered
in this paper. The first type is adjacent subblock partition-
ing in which each subblock is constructed from adjacent
subcarriers of the original symbol block. The second type
is interleaved subblock partitioning in which each subblock
is constructed from the subcarriers of distance N, in
the original symbol block. Both types of partitioning are
depicted in Figure 3.

Since PTS-AIC modifies the transmission block by the
weighting factors, the receiver must be aware which set of
weighting factors is applied so that it can recover the original
symbol block. This can be done by sending the index of the
optimum weighting factor as side information that amounts
to Nplog,(N,,) bits. Once the receiver knows the applied
weighting factors, multiplication of their complex conjugates
to the received signal block after FFT returns the original data
block.

Note one major difference between PTS conventionally
applied to reduce PAPR and the proposed PTS-AIC. While
the conventional PTS measures the PAPR of the (upsampled)
time-domain signal after IFFT, the proposed PTS-AIC
measures the interference power of the upsampled frequency
spectrum before IFFT.

3.1. Performance Measure. In interference avoidance mech-
anisms, it is interesting to know how much interference
power is remaining inside the interference band. For AIC
and PTS-AIC, this is equivalent to the squared error terms
after performing interference cancellation as defined in (4).
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Generally, the “instantaneous” remaining signal power inside
the interference band can be found as

M(p+N;—1)

1= 3 |Yo

I=Mp

2
5

(7)

where Y (1) is the upsampled frequency-domain signal with
AIC or PTS-AIC processed. I is the remaining power of the
upsampled spectrum at the interference band after AIC or
PTS-AIC being performed on a particular symbol block.

Although the mean of the remaining interference power,
E[I], is normally used to compare the algorithms as in
[11], a more complete picture is captured by computing the
complementary cumulative distribution function (CCDF),
P(I > I;), where I is a target remaining interference power.
This bears an analogy with the performance measure of a
PAPR reduction algorithm of OFDM for which the CCDF
is widely used. With a given I, the CCDF determines the
probability of remaining interference power above the target
I;. We refer to I, of which P(I > I,) = x% as x%-excess
interference power.

4. Particle Swarm Optimization (PSO)

PSO algorithm was described in analogy with an activity
of bird flocking or fish schooling [17]. Imagine a group of
birds trying to locate a position in the field with the highest
concentration of food. Each bird flies over the field and
detects the concentration of food at its location. Each bird
has an ability to remember its own best location and is aware
of the group’s best location. Its flying path depends on the
previously observed location and is influenced by its own
best location and the group’s best location. Each bird has
a chance to “fly over” the best location previously found
and therefore observes the surrounding for a possibly better
location. As time passes, most birds will be crowded at the
best location they found as a group.

In the optimization problem, each bird is called a
particle and its location represents an n-dimension solution
candidate in the n-dimensional solution space. In the context
of the PTS-AIC, a particle represents a vector of weighting
factors W. The location of the particle is reflected in the
elements of W. The concentration of food corresponds to
the remaining interference power of PTS-AIC which is an
objective value of the objective function in (6). The best
location corresponds to the particle whose objective value is
the minimum among other particles.

One round of observations from all particles corresponds
to one iteration in the PSO. Suppose P is the number
of particles and Q is the number of iterations. The nth
dimension of the current location of the particle p is x
while that of the particle’s best location is pbesth. The
nth dimension of the group’s best location is gbest,. The
PSO is initialized by generating random locations for every
particle. In one iteration, each particle evaluates the objective
function and replaces its own best and the group’s best
locations if a better solution is found. The particle’s best
and the group’s best locations will determine the change of

location for the next iteration through a velocity variable
which indicates the amount and direction (positive or
negative) of change in distance from the current location.
The update of the location for the next iteration is done by
updating the velocity of each dimension

Vii+1) =co-vE)+cp -1 - (pbestﬁ —xﬁ(i))
(8)
+c 1o <gbest,, - xﬁ(i)),

where v (i) is the velocity of the nth dimension of the pth
particle at the ith iteration. The velocity is initialized to be
zero in the first iteration. ¢y, ¢1, and ¢, are parameters of the
PSO used to adjust the influence to the path of solutions from
a particle’s best location and the group’s best location. 71,7,
are uniform random variables whose values are between 0
and 1 so as to introduce uncertainty of the influence. The
update of the location is simply

LG+ 1) =@+ v+ 1), 9)

where the time duration (supposed to be multiplied with
the velocity) is assumed to be one. This completes the task
for one particle in one iteration. The algorithm is repeated
from the point of evaluation of the objective function for all
particles and for Q iterations.

The original PSO algorithm was designed for a problem
with continuous parameters. Since the optimization parame-
ters in PTS-AIC are the weighting factors which are discrete,
the location of a particle has to be quantized to the nearest
point in the constellation set before the objective function is
evaluated. This is done after the location update. The number
of dimensions of each location in PTS-AIC (for the binary
case) is Np. PSO for PTS-AIC with N,, = 2 (binary case) can
be described by Algorithm 1.

Another way to tackle discrete parameters is to apply
the PSO algorithm modified for binary parameters proposed
in [16]. The idea is to work with dummy continuous
parameters, transform them to have the range from 0 to 1,
and consider the results as probabilities of the optimization
parameters taking value 0 or 1. Therefore, there is no need
to round off the parameters as in the previous algorithm.
The transformation function proposed in [16] is a sigmoid
limiting function, S(v) = 1/(1 + "), whose domain is
(—c0,00) and whose range is (0,1). SWh(i + 1)) is the
probability of x4(i + 1) equal to one, and the location
is updated by generating a random number uniformly
distributed over [0, 1] and comparing it with SWEG + 1)).
We refer to this discrete version as discrete PSO (DPSO). The
only change from Algorithm 1 is at Step (6), which should
be replaced by the location update algorithm according to
Algorithm 2.

To handle nonbinary parameters (N,, > 2) for both
PSO and DPSO, we can simply extend the dimension of
location and velocity vectors and convert the binary tuples
into symbols on the constellation. For example, for N,, =
4, the dimension of each vector will be 2 - N, and two
dimensions in the location are converted into one QPSK
symbol.
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FIGURE 3: (a) Adjacent subblock partitioning. (b) Interleaved subblock partitioning.

Nj-dimension binary vector.
(3) Consider the first particle.

(9) Repeat from 3: for Q iterations.

(1) Initialize parameters P, Q, ¢y, ¢1, 2. Reset the vectors

pbest(p),gbest for particle best and group best locations.

Reset I pbest(p),Igbest for particle best and group best objective values.
(2) Generate P random locations, x(p). Each location is an

(4) Evaluate the objective function (7) with x(p) as weighting
factors and update pbest(p), gbest, I pbest(p), Igbest if necessary.
(5) Update the velocity according to (8) for each dimension.
(6) Update the location according to (9) for each dimension.
(7) Quantize the location to the nearest binary vector.
(8) Repeat from 4: for the next particle until all P particles are considered.

(10) Return gbest as the solution of a vector of weighting factors.

ALcoriTHM 1: PSO PTS-AIC.

4.1. Complexity Analysis. The main complexity of PTS-AIC
lies in computing the remaining interference power in (7).
For PTS-AIC, exhaustive search requires this computation
and comparison for (N, times. For PSO/DPSO PTS-AIC,
the number of computations and comparisons of (7) is P- Q.
The updating operations of PSO/DPSO PTS-AIC require
further consideration. For PSO PTS-AIC, updating location
and velocity variables in (8), (9) requires 5 multiplications,
5 additions/subtraction, and 1 comparison in quantization,
per dimension. For DPSO PTS-AIC, updating velocity
variables in (8) requires 5 multiplications, 4 additions,
and updating location variables requires computing the
sigmoid function and generating a random binary variable,
per dimension. For PSO/DPSO, two more comparisons are
needed for updating each particle’s best value and the group’s
best value per particle per iteration. The complexity of PTS-
AIC and PSO/DPSO PTS-AIC is summarized in Table 1.

5. Simulation Results and Discussion

Random QPSK symbols are generated to form OFDM data
blocks. Each block contains 128 symbols corresponding to
the 128-point FFT/IFFT. The subcarrier indices from the
85th to 87th are assumed to be the interference tones.
From the AIC algorithm, the 84th to 88th subcarriers are
removed and replaced by the AIC tones. The frequency-
domain upsampling factor is four. To compute CCDF of
the remaining interference power, I, 10,000 data blocks are
simulated in each case.

The parameters of PSO are set as ¢y = 1, ¢; = 2, and
¢ = 2 resulting in equal influence from its own particle and

from the group. This choice of parameters was recommended
in an early work on PSO [15].

Figure 4 compares CCDF of I among PSO, DPSO, ran-
dom and optimal PTS-AIC. Adjacent subblock partitioning
is assumed. The parameters for PTS-AIC are N = 16,N,, =
2, and the parameters for PSO are P = 30,Q = 20. Optimal
PTS-AIC exhaustively searches for the best weighting factors
from the whole solution space of 2!® = 65536 candidates.
The optimal PTS-AIC serves as the best performance limit.
The performance of the random scheme, which randomly
chooses weighting factors and selects the best one, is plotted
to illustrate the benefit of using the PSO/DPSO algorithms.
For the random scheme, 600 random weighting factors are
compared. This amount is equivalent to the number of
comparisons in PSO/DPSO (P - Q).

From the plots, the PSO and DPSO outperform the ran-
dom scheme, and the DPSO can approach the performance
of the optimal PTS-AIC at high interference power. At low
interference power, however, the gain of PSO over the ran-
dom scheme is small. Therefore, DPSO will be applied to the
PTS-AIC for the rest of this section. The complexity of DPSO
PTS-AIC is only about one percent (30 - 20/2'°) of the opti-
mal PTS-AIC in terms of the number of comparisons. Table 2
shows the average CPU time per realization of the considered
algorithms taking into account all the required operations. It
is shown that the PSO/DPSO has lower CPU times than the
optimal scheme by almost two orders of magnitude.

To gain further insight on the complexity, Figure 5 shows
the plots of average CPU time for optimal PTS-AIC, DPSO,
and PSO. The CPU time of the optimal PTS-AIC is plotted
versus the number of subblocks while the CPU times of
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(1) Compute a probability mass function from S(v) = 1/(1 +e™")
where v is the updated velocity for each dimension.
(2) Update the location by generating a random binary vector
where each component is generated from the distribution
computed in Step (1).
ArcoritHM 2: Location update for DPSO.
TasLE 1: Complexity of optimal, PSO/DPSO PTS-AIC.
Technique No. of computing/comparison of (7) Updating variables (per particle per iteration)
Optimal (N,)™ times —
PSO P - Q times (5%,5+, lcmp)Nlog, (N,,) + 2cmp
DPSO P - Q times (5%, 4=+, 1cmp, sigmoid & gen) - Nylog,(N,,) + 2cmp

% is multiplication. + is addition/subtraction. cmp is comparison. “sigmoid & gen” represents the operations required for computing a sigmoid function and

generating a binary random variable.

10° ,
Optimal — andom, 600 points
DPSO, P = 30, Q = 20
107! F
=
N -
210 2t
= PSO, P = 30, Q = 20
1073 f
N
!
\
1
1074 ;

-85 —80 —75 —70 —65 —60 —55 —50 —45 —40 -35
I; (dB)

— PSO,P =30,Q=20
-~ DPSO, P = 30,Q = 20

—— Optimal
--- Random, 600 points

FiGurg 4: Comparisons of optimal, random and PSO/DPSO PTS-
AIC. Adjacent subblock partitioning with N}, = 16, N,, = 2.

TasLE 2: CPU time of Optimal, random and PSO/DPSO PTS-AIC.

Technique CPU time (ms)
Optimal 6542
Random 61.6
PSO 80.1
DPSO 85.9

DPSO and PSO are plotted versus the number of particles.
Note that the y-axis of Figure 5(a) is in a logarithmic scale.
Since the curve is a straight line, it reflects an exponential
complexity with respect to the number of subblocks in the
case of the optimal PTS-AIC. In Figure 5(b), the CPU times
of DPSO are slightly larger than those of PSO. From Table 1,
given Q, the complexity is linear with P and vice versa. This

is reflected in the results in Figure 5(b). For a fixed Q, the
curves are linear in P. When Q is double, the slopes of the
curves are also double.

Figure 6 shows the effect of different number of particles,
P, to the performance of DPSO PTS-AIC. By increasing the
number of particles, the performance is improved regardless
of the interference power. The performance of interleaved
subblock partitioning is more sensitive to the number
of particles than that of adjacent subblock partitioning.
Nevertheless, increasing the number of particles beyond 30
seem does not to achieve much further gain. Therefore, we
limit the maximum number of particles at 30 in the following
simulations.

Figure 7 shows the average interference power of DPSO
PTS-AIC as a function of the number of iterations, Q. The
average interference power decreases sharply at small Q’s
while it decreases gradually at large Q’s. The Q value where
the average interference power starts to decrease gradually
depends on N,. When Ny is larger, this value gets larger, since
the solution space becomes larger, so it takes more iterations
to find a near-optimal solution. Increasing the number of
iterations beyond 20 does not significantly improve the
performance in our considered cases. Therefore, we limit
the maximum number of iterations at 20 in the following
simulations.

Figure 8 illustrates I for 100 realizations of the optimal
PTS-AIC and DPSO PTS-AIC with P = 20,30 performing
on the same data block for each realization. It is clear that
DPSO PTS-AIC does not outperform the optimal PTS-AIC.
Since DPSO PTS-AIC is suboptimal, the P = 20 case can
sometimes outperform the P = 30 case (the particles are
newly generated for P = 20,30, so they are different from
each other).

Figure 9 shows the CCDF of I when N, = §,N,, = 4.
The DPSO PTS-AIC with P = 30,Q = 20 approaches
the optimal PTS-AIC performance in the case of adjacent
subblock partitioning. However, in the case of interleaved
subblock partitioning, the DPSO PTS-AIC is still much
worse than the optimal PTS-AIC.
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FIGUre 6: DPSO PTS-AIC with different number of particles, P.
N, = 16,N,, = 2. Q = 20.

0 5 10 15 20 25 30

Number of iterations

—— Interleaved, N, = 16, N,, = 2
—6— Interleaved, N, = 8, N,, = 2
—*— Adjacent, N, = 16, N,, =2
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Figure 7: DPSO PTS-AIC with different number of iterations, Q.
P = 30.

Figure 10 shows the CCDF of I when N, = 4,N,, = 8.
The DPSO PTS-AIC with P = 30,Q = 20 approaches the
optimal PTS-AIC performance in both cases of adjacent and
interleaved subblock partitionings.

Another potential benefit of PSO is apparent when N,
is very large: the optimal PTS-AIC becomes prohibitive.
Figure 11 shows that, at 0.1%—excess interference power, 5-
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FIGURE 9: Optimal PTS-AIC and DPSO PTS-AIC, N, = §,N,, = 4.
P =30,Q = 20.

dB gain over the optimal PTS-AIC with N, = 16,N,, = 2
is achieved by the DPSO with N, = 32,N,, = 2. Similarly,
about 10-dB gain over the optimal PTS-AIC with N, =
8,N,, = 4 is achieved by DPSO with N, = 16,N,, = 4.
This outcome is attained by the DPSO PTS-AIC with the
complexity only about 1% of the optimal PTS-AIC.

6. Conclusion

We propose a suboptimal algorithm, called particle swarm
optimization (PSO), for partial transmit sequence active
interference cancellation (PTS-AIC) used for interference
avoidance feature for UWB OFDM transmitter, to reduce the
computational complexity significantly. The PTS-AIC with
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FIGure 10: Optimal PTS-AIC and DPSO PTS-AIC N, = 4,N,, = 8.
P =30,Q = 20.
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FiGure 11: DPSO PTS-AIC with a larger N, than that of the optimal
PTS-AIC.

PSO becomes more attractive when the number of subblocks
and/or the constellation set for the weighting factors are large
for PTS-AIC. The discrete version of PSO is a better choice
for the suboptimal algorithm compared to the continuous
version and is able to approach the performance of the
optimal PTS-AIC in many cases at much lower complexity.
The benefit that is, brought from PSO to PTS-AIC becomes
more attractive when the number of subblocks for PTS-AIC
is large and makes PTS-AIC implementable in hardware.
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