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The bit error rate (BER) of multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM)
systems with carrier frequency offset and channel estimation errors is analyzed in this paper. Intercarrier interference (ICI) and
interantenna interference (IAI) due to the residual frequency offsets are analyzed, and the average signal-to-interference-and-noise
ratio (SINR) is derived. The BER of equal gain combining (EGC) and maximal ratio combining (MRC) with MIMO-OFDM is
also derived. The simulation results demonstrate the accuracy of the theoretical analysis.

1. Introduction

Spatial multiplexing multiple-input multiple-output (MI-
MO) technology significantly increases the wireless system
capacity [1–4]. These systems are primarily designed for
flat-fading MIMO channels. A broader band can be used
to support a higher data rate, but a frequency-selective
fading MIMO channel is met, and this channel experiences
intersymbol interference (ISI). A popular solution is MIMO-
orthogonal frequency-divisionmultiplexing (OFDM), which
achieves a high data rate at a low cost of equalization and
demodulation. However, just as single-input single-output-
(SISO-) OFDM systems are highly sensitive to frequency
offset, so are MIMO-OFDM systems. Although one can
use frequency offset correction algorithms [5–10], residual
frequency offsets can still increase the bit error rate (BER).

The BER of SISO-OFDM systems impaired by frequency
offset is analyzed in [11], in which the frequency offset is
assumed to be perfectly known at the receiver, and, based on
the intercarrier interference (ICI) analysis, the BER is eval-
uated for multipath fading channels. Many frequency offset
estimators have been proposed [8, 12–14]. A synchronization
algorithm for MIMO-OFDM systems is proposed in [15],
which considers an identical timing offset and frequency

offset with respect to each transmit-receive antenna pair. In
[10], where frequency offsets for different transmit-receive
antennas are assumed to be different, the Cramer-Rao lower
bound (CRLB) for either the frequency offsets or channel
estimation variance errors for MIMO-OFDM is derived.
More documents on MIMO-OFDM channel estimation by
considering the frequency offset are available at [16, 17].

However, in real systems, neither the frequency offset
nor the channel can be perfectly estimated. Therefore, the
residual frequency offset and channel estimation errors
impact the BER performance. The BER performance of
MIMO systems, without considering the effect of both the
frequency offset and channel estimation errors, is studied in
[18, 19].

This paper provides a generalized BER analysis of
MIMO-OFDM, taking into consideration both the frequency
offset and channel estimation errors. The analysis exploits
the fact that for unbiased estimators, both channel and
frequency offset estimation errors are zero-mean random
variables (RVs). Note that the exact channel estimation
algorithm design is not the focus of this paper, and the main
parameter of interest is the channel estimation error. Many
channel estimation algorithms developed for either SISO or
MIMO-OFDM systems, for example, [20–22], can be used to
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perform channel estimation. The statistics of these RVs are
used to derive the degradation in the receive SINR and the
BER. Following [10], the frequency offset of each transmit-
receive antenna pair is assumed to be an independent and
identically distributed (i.i.d.) RV.

This paper is organized as follows. The MIMO-OFDM
system model is described in Section 2, and the SINR
degradation due to the frequency offset and channel esti-
mation errors is analyzed in Section 3. The BER, taking
into consideration both the frequency offset and channel
estimation errors, is derived in Section 4. The numerical
results are given in Section 5, and the conclusions are
presented in Section 6.

Notation. (·)T and (·)H are transpose and complex
conjugate transpose. The imaginary unit is j = √−1. R{x}
and I{x} are the real and imaginary parts of x, respec-
tively. arg{x} represents the angle of x, that is, arg{x} =
arctan(I{x}/R{x}). A circularly symmetric complex Gaus-
sian RV with mean m and variance σ2 is denoted by w ∼
CN (m, σ2). IN is the N × N identity matrix, and ON is the
N × N all-zero matrix. 0N is the N × 1 all-zero vector. a[i]
is the ith entry of vector a, and [B]mn is the mnth entry of
matrix B. E{x} and Var{x} are the mean and variance of x.

2. MIMO-OFDM Signal Model

Input data bits are mapped to a set of N complex symbols
drawn from a typical signal constellation such as phase-shift
keying (PSK) or quadrature amplitude modulation (QAM).
The inverse discrete fourier transform (IDFT) of these N
symbols generates an OFDM symbol. Each OFDM symbol
has a useful part of duration Ts seconds and a cyclic prefix of
length Tg seconds to mitigate ISI, where Tg is longer than
the channel-response length. For a MIMO-OFDM system
with Nt transmit antennas and Nr receive antennas, an N × 1
vector xnt represents the block of frequency-domain symbols
sent by the ntth transmit antenna, where nt ∈ {1, 2, . . . ,Nt}.
The time-domain vector for the ntth transmit antenna is
given by mnt =

√
Es/NtFxnt , where Es is the total transmit

power and F is the N × N IDFT matrix with entries [F]nk =
(1/
√
N)e j2πnk/N for 0 ≤ n, k ≤ N − 1. Each entry of xnt is

assumed to be i.i.d. RV with mean zero and unit variance;
that is, σ2x = E{|xnt [n]|2} = 1 for 1 ≤ nt ≤ Nt and
0 ≤ n ≤ N − 1.

The discrete channel response between the nr th receive
antenna and ntth transmit antenna is hnr ,nt = [hnr ,nt (0),

hnr ,nt (1), . . . ,hnr ,nt (Lnr ,nt − 1), 0TLmax−Lnr ,nt ]
T
, where Lnr ,nt is the

maximum delay between the ntth transmit and the nr th
receive antennas, and Lmax = max{Lnr ,nt : 1 ≤ nt ≤ Nt ,
1 ≤ nr ≤ Nr}. Uncorrelated channel taps are
assumed for each antenna pair (nr ,nt); that is,
E{h∗nr ,nt (m)hnr ,nt (n)} = 0 when n /=m. The corresponding
frequency-domain channel response matrix is given by

Hnr ,nt = diag{H(0)
nr ,nt ,H

(1)
nr ,nt , . . . ,H

(N−1)
nr ,nt } with H(n)

nr ,nt =
∑Lnr ,nt−1

d=0 hnr ,nt (d)e
− j2πnd/N representing the channel

attenuation at the nth subcarrier. In the sequel, the channel

power profiles are normalized as
∑Lnr ,nt−1

d=0 E{|hnr ,nt (d)|2} = 1
for all (nr ,nt). The covariance of channel frequency response

is given by

CH(n)
nr ,nt H

(l)
p,q
=

Lmax−1∑

d=0
E
{
h∗nr ,nt (d)hp,q(d)

}
e− j2πd(l−n)/N ,

0 ≤ d ≤ Lmax, 0 ≤ l,n ≤ N − 1.

(1)

Note that if nr /= p and nt /= q are satisfied simultaneously, we
assume that there is no correlation between hnr ,nt and hp,q.
Otherwise the correlation between hnr ,nt and hp,q is nonzero.

In this paper, ψnr ,nt and εnr ,nt are used to represent the
initial phase and normalized frequency offset (normalized
to the OFDM subcarrier spacing) between the oscillators
of the nt-th transmit and the nr th receive antennas. The
frequency offsets εnr ,nt for all (nr ,nt) are modeled as zero-
mean i.i.d. RVs. (Multiple rather than one frequency offset
are assumed in this paper, with each transmit-antenna pair
being impaired by an independent frequency offset. This
case happens when the distance between different transmit
or receive antenna elements is large enough, and this big
distance results in a different angle-of-arrive (AOA) of the
signal received by each receive antenna element. In this
scenario, once the moving speed of the mobile node is
high, the Doppler Shift related to different transmit-receive
antenna pair will be different.)

By considering the channel gains and frequency offsets,
the received signal vector can be represented as

y =
[
yT1 , y

T
2 , . . . , y

T
Nr

]T
, (2)

where ynr = √
Es/Nt

∑Nt
nt=1 Enr ,ntFHnr ,ntxnt + wnr , Enr ,nt =

diag{e jψnr ,nt , . . . , e j(2πεnr ,nt (N−1)/N+ψnr ,nt )} and wnr is a vector
of additive white Gaussian noise (AWGN) with wnr [n] ∼
CN (0, σ2w). Note that the channel state information is
available at the receiver, but not at the transmitter. Conse-
quently, the transmit power is equally allocated among all the
transmit antennas.

3. SINR Analysis inMIMO-OFDM Systems

This paper treats spatial multiplexing MIMO, where inde-
pendent data streams are mapped to distinct OFDM symbols
and are transmitted simultaneously from transmit antennas.
The received vector ynr at the nrth receive antenna is thus
a superposition of the transmit signals from all the Nt

transmit antennas. When demodulating xnt , the signals from
the transmit antennas other than the ntth transmit antenna
constitute interantenna interference (IAI). The structure of
MIMO-OFDM systems is illustrated in Figure 1, where Δ f
represents the subcarrier spacing.

Here, we first assume that εnr ,i and Hnr ,i for each (1 ≤
i ≤ Nt, i /=nt) have been estimated imperfectly; that is,
ε̂nr ,i = εnr ,i + Δεnr ,i and Ĥnr ,i = Hnr ,i + ΔHnr ,i, where Δεnr ,i
and ΔHnr ,i = diag{ΔH(0)

nr ,i, . . . ,ΔH
(N−1)
nr ,i } are the estimation

errors of εnr ,i and Hnr ,i (ΔH
(n)
nr ,i = Ĥ(n)

nr ,i − H(n)
nr ,i represents

the estimation error of H(n)
nr ,i), respectively. We also assume

that each xi /=nt is demodulated with a negligible error. After
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Figure 1: Structure of MIMO-OFDM transceiver.

estimating εnr ,nt , that is, ε̂nr ,nt = εnr ,nt + Δεnr ,nt , εnr ,nt can be
compensated for and xnt can be demodulated as

rnr ,nt = FH ÊHnr ,nt

⎛

⎝ynr −
√

Es
Nt

Nt∑

i=1,i /=nt

Ênr ,iFĤnr ,ixi

⎞

⎠

=
√

Es
Nt

FH ÊHnr ,ntEnr ,ntFHnr ,ntxnt︸ ︷︷ ︸
snr ,nt

+

√
Es
Nt

Nt∑

i=1,i /=nt

FH ÊHnr ,nt
(
Enr ,iFHnr ,i − Ênr ,iFĤnr ,i

)
xi

︸ ︷︷ ︸
Υnr ,nt

+ FH ÊHnr ,ntwnr︸ ︷︷ ︸
w̃nr ,nt

,

(3)

where Ênr ,i is derived from Enr ,i by replacing εnr ,i with
ε̂nr ,i and Υnr ,nt and ŵnr ,nt are the residual IAI and AWGN
components of rnr ,nt , respectively (When Nt is large enough
and the frequency offset is not too big (e.g.,� 1), from the
Central-Limit Theorem (CLT) [23, Page 59], the IAI can be
approximated as Gaussian noise.).

3.1. SINR Analysis without Combining at Receive Antennas.
The SINR is derived for the ntth transmit signal at the
nr th receive antenna. The signals transmitted by antennas
other than the ntth antenna are interference, which should
be eliminated before demodulating the desired signal of

the ntth transmit antenna. Existing interference cancelation
algorithms [24–27] can be applied here.

Let us first define the parameters m(n,l)
nr ,nt = (sin[π(l −

n − Δεnr ,nt )]/N sin[π(l − n − Δεnr ,nt )/N])e jπ(N−1)(l−n)/N ,
m(n,l)

nr ,i /=nt = (sin[π(l− n+ εnr ,i − ε̂nr ,nt )]/N sin[π(l− n+ εnr ,i −
ε̂nr ,nt )/N])e jπ(N−1)(l−n)/N , and m̂(n,l)

nr ,i /=nt = (sin[π(l− n+ ε̂nr ,i −
ε̂nr ,nt )]/N sin[π(l−n+ ε̂nr ,i− ε̂nr ,nt )/N])e jπ(N−1)(l−n)/N , 0 ≤ l ≤
N − 1. Based on (3), the nth subcarrier (0 ≤ n ≤ N − 1) of
the ntth transmit antenna can be demodulated as

rnr ,nt [n] =
√

Es
Nt

snr ,nt [n] +Υnr ,nt [n] + w̃nr ,nt [n]

=
√

Es
Nt

m(n,n)
nr ,ntH

(n)
nr ,ntxnt [n]

+

√
Es
Nt

∑

l /=n

m(n,l)
nr ,ntH

(l)
nr ,ntxnt [l]

︸ ︷︷ ︸
η(n)nr ,nt=H(n)

nr ,nt α
(n)
nr ,nt+β

(n)
nr ,nt

+

√
Es
Nt

Nt∑

i=1,i /=nt

m(n,n)
nr ,i H

(n)
nr ,ixi[n]

︸ ︷︷ ︸
λ(n)nr ,nt

−
√

Es
Nt

Nt∑

i=1,i /=nt

m̂(n,n)
nr ,i Ĥ

(n)
nr ,ixi[n]

︸ ︷︷ ︸
λ̂(n)nr ,nt
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+

√
Es
Nt

∑

l /=n

Nt∑

i=1,i /=nt

m(n,l)
nr ,i H

(l)
nr ,ixi[l]

︸ ︷︷ ︸
ξ(n)nr ,nt

−
√

Es
Nt

∑

l /=n

Nt∑

i=1,i /=nt

m̂(n,l)
nr ,i Ĥ

(l)
nr ,ixi[l]

︸ ︷︷ ︸
ξ̂(n)nr ,nt

+ w̃nr ,nt [n]

=
√

Es
Nt

m(n,n)
nr ,nt H

(n)
nr ,ntxnt [n] +H(n)

nr ,ntα
(n)
nr ,nt

+ β(n)nr ,nt + Δλ(n)nr ,nt + Δξ(n)nr ,nt + w̃nr ,nt [n],

(4)

where η(n)nr ,nt is decomposed as η(n)nr ,nt = H(n)
nr ,ntα

(n)
nr ,nt + β(n)nr ,nt ,

which is the ICI contributed by subcarriers other than the
nth subcarrier of transmit antenna nt. (The decomposition
of ICI into the format of Hα + β is referred to [11].) We can

easily prove that α(n)nr ,nt and β(n)nr ,nt are zero-mean RVs subject
to the following assumptions.

(1) εnr ,nt is an i.i.d. RV with mean zero and variance σ2ε
for all (nr ,nt).

(2) Δεnr ,nt is an i.i.d. RV with mean zero and variance σ2res
for each (nr ,nt).

(3) H(n)
nr ,nt ∼ CN (0, 1) for each (nr ,nt,n).

(4) ΔH(n)
nr ,nt is an i.i.d. RV with mean zero and variance

σ2ΔH for each (nr ,nt,n).

(5) εnr ,nt , Δεnr ,nt , H
(n)
nr ,nt , and ΔH(n)

nr ,nt are independent of
each other for each (nr ,nt).

Given these assumptions, let us first define Δλ(n)nr ,nt = λ(n)nr ,nt −
λ̂(n)nr ,nt as the interference contributed by the nth subcarrier of
the interfering transmit antennas, that is, the co-subcarrier

inter-antenna-interference (CSIAI), and define Δξ(n)nr ,nt =
ξ(n)nr ,nt − ξ̂(n)nr ,nt as the ICI contributed by the subcarriers other
than the nth subcarrier of the interfering transmit antennas,
that is, the intercarrier-interantenna interference (ICIAI).
Then we derive Var{α(n)nr ,nt} and Var{β(n)nr ,nt} as

Var
{
α(n)nr ,nt

}

= Es
Nt
· E
⎧
⎨

⎩

∣
∣∣
∣C

−1
H(n)

nr ,nt H
(n)
nr ,nt

∣
∣∣
∣
2∑

l /=n

∣
∣
∣m(n,l)

nr ,ntCH(l)
nr ,nt H

(n)
nr ,nt

∣
∣
∣
2

⎫
⎬

⎭

∼= Es
Nt
· E
⎧
⎨

⎩

∑

l /=n

∣
∣
∣∣

sin(πΔεnr ,nt )
N sin[π(l − n)/N]

∣
∣
∣∣

2

·
∣
∣∣
∣
∣∣

Lmax−1∑

d=0
E
{∣
∣hnr ,nt (d)

∣
∣2
}
e− j2πd(l−n)/N

∣
∣∣
∣
∣∣

2
⎫
⎪⎬

⎪⎭

= π2σ2resEs
Nt

∑

l /=n

∣
∣
∣CH(n)

nr ,nt H
(l)
nr ,nt

∣
∣
∣
2

N2sin2[π(l − n)/N]
,

(5)

Var
{
β(n)nr ,nt

}

= Es
Nt

· E
⎧
⎨

⎩

∑

l /=n

∣
∣
∣m(n,l)

nr ,nt

∣
∣
∣
2

×
(
CH(l)

nr ,nt H
(l)
nr ,nt

− C−1
H(n)

nr ,nt H
(n)
nr ,nt

∣
∣
∣CH(l)

nr ,nt H
(n)
nr ,nt

∣
∣
∣
2
)}

∼= π2σ2resEs
3Nt

−Var
{
α(n)nr ,nt

}
,

(6)

where CH(l)
nr ,nt H

(n)
nr ,nt

is given by (1). The demodulation of xnt [n]

is degraded by either η(n)nr ,nt or IAI (CSIAI plus ICIAI). In
this paper, we assume that the integer part of the frequency
offset has been estimated and corrected, and only the
fractional part frequency offset is considered. Considering
small frequency offsets, the following requirements are
assumed to be satisfied:

(1) |εnr ,i| � 1 for all (nr , i),

(2) |εnr ,nt | + |εnr ,i| < 1 for all (nr ,nt, i),

(3) |ε̂nr ,nt | + |ε̂nr ,i| < 1 for all (nr ,nt, i).

Condition 1 requires that each frequency offset should be
much smaller than 1, and conditions 2 and 3 require that
the sum of any two frequency offsets (and the frequency
offset estimation results) should not exceed 1. The last two
conditions are satisfied only if the estimation error does
not exceed 0.5. If all these three conditions are satisfied
simultaneously, we can represent λ(n)nr ,nt , λ̂

(n)
nr ,nt , ξ

(n)
nr ,nt , and ξ̂(n)nr ,nt

as

λ(n)nr ,nt =
√

Es
Nt

Nt∑

i=1,i /=nt

m(n,n)
nr ,i H

(n)
nr ,ixi[n]

=
√

Es
Nt

Nt∑

i=1,i /=nt

sin
[
π
(
εnr ,i − ε̂nr ,nt

)]

N sin
[
π
(
εnr ,i − ε̂nr ,nt

)
/N
]H(n)

nr ,ixi[n],

(7)

λ̂(n)nr ,nt =
√

Es
Nt

Nt∑

i=1,i /=nt

m̂(n,n)
nr ,i Ĥ

(n)
nr ,ixi[n]

=
√

Es
Nt

Nt∑

i=1,i /=nt

sin
[
π
(
ε̂nr ,i − ε̂nr ,nt

)]

N sin
[
π
(
ε̂nr ,i − ε̂nr ,nt

)
/N
] Ĥ(n)

nr ,ixi[n],

(8)
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ξ(n)nr ,nt =
√

Es
Nt

∑

l /=n

Nt∑

i=1,i /=nt

m(n,l)
nr ,i H

(l)
nr ,ixi[l]

∼=
√

Es
Nt

∑

l /=n

Nt∑

i=1,i /=nt

(−1)(l−n) sin[π(εnr ,i − ε̂nr ,nt
)]

N sin[π(l − n)/N]

× e jπ(N−1)(l−n)/NH(l)
nr ,ixi[l],

(9)

ξ̂(n)nr ,nt =
√

Es
Nt

∑

l /=n

Nt∑

i=1,i /=nt

m̂(n,l)
nr ,i Ĥ

(l)
nr ,ixi[l]

∼=
√

Es
Nt

∑

l /=n

Nt∑

i=1,i /=nt

(−1)(l−n) sin[π(ε̂nr ,i − ε̂nr ,nt
)]

N sin[π(l − n)/N]

× e jπ(N−1)(l−n)/N Ĥ(l)
nr ,ixi[l].

(10)

Therefore, the interference due to the nth subcarrier of
transmit antennas (other than the ntth transmit antenna, i.e.,
the interfering antennas) is

Δλ(n)nr ,nt = λ(n)nr ,nt − λ̂(n)nr ,nt

=
√

Es
Nt

·
Nt∑

i=1,i /=nt

⎡

⎣π
2
(
εnr ,i − ε̂nr ,nt +

(
Δεnr ,i/2

))
H(n)

nr ,iΔεnr ,i
3

−
(

1− π2
(
ε̂nr ,i − ε̂nr ,nt

)2

6

)

ΔH(n)
nr ,i

⎤

⎦xi[n]

+ o
(
Δεnr ,i,ΔHnr ,i

)
,

(11)

Δξ(n)nr ,nt = ξ(n)nr ,nt − ξ̂(n)nr ,nt

=
√

Es
Nt

∑

l /=n

Nt∑

i=1,i /=nt

(−1)l−n+1e jπ(N−1)(l−n)/N
N sin[π(l − n)/N]

·
[
π cos

(
π
(
εnr ,i − ε̂nr ,nt +

Δεnr ,i
2

))
H(l)

nr ,iΔεnr ,i

+ sin
(
π
(
ε̂nr ,i − ε̂nr ,nt

))
ΔH(l)

nr ,i

]
xi[l]

+ o
(
Δεnr ,i,ΔHnr ,i

)

(12)

with o(Δεnr ,i,ΔHnr ,i) representing the higher-order item of

Δεnr ,i and ΔHnr ,i. It is easy to show that Δλ(n)nr ,nt and Δξ(n)nr ,nt

are zero-mean RVs and that their variances are given by

E
{∣
∣
∣Δλ(n)nr ,nt

∣
∣
∣
2
}

= Es
Nt

Nt∑

i=1,i /=nt

× E

⎧
⎪⎨

⎪⎩

⎡

⎣π
2
(
εnr ,i − ε̂nr ,nt +

(
Δεnr ,i/2

))
H(n)

nr ,iΔεnr ,i
3

⎤

⎦

2
⎫
⎪⎬

⎪⎭

+
Es
Nt

Nt∑

i=1,i /=nt

E

⎧
⎨

⎩

[(

1− π2
(
ε̂nr ,i − ε̂nr ,nt

)2

6

)

ΔH(n)
nr ,i

]2
⎫
⎬

⎭

∼= (Nt−1)π4Es
9Nt

⎛

⎝2σ2εσ
2
res+σ

4
res+

E
{
Δε4nr ,i

}

4

⎞

⎠+
(Nt−1)Es

Nt

· σ2ΔH ·
⎡

⎣1 +
π4
(
E
{
ε4nr ,i

}
+ 8σ2εσ

2
res + 2σ4ε + 2σ4res

)

18

−2π2
(
σ2ε + σ2res

)

3

⎤

⎦,

(13)

E
{∣
∣∣Δξ(n)nr ,nt

∣
∣∣
2
}

= Es
Nt

∑

l /=n

Nt∑

i=1,i /=nt

1

N2sin2[π(l − n)/N]

· E
{[

π cos
(
π
(
εnr ,i − ε̂nr ,nt +

Δεnr ,i
2

))
H(l)

nr ,iΔεnr ,i

+ sin
(
π
(
ε̂nr ,i − ε̂nr ,nt

))
ΔH(l)

nr ,i

]2}

∼= (Nt − 1)Es
3Nt

⎡

⎣π2σ2res − π4

⎛

⎝2σ2εσ
2
res + σ4res +

E
{
Δε4nr ,i

}

4

⎞

⎠

⎤

⎦

+
2(Nt − 1)π2Es

3Nt

(
σ2ε + σ2res

)
σ2ΔH ,

(14)

respectively. After averaging out frequency offset εnr ,nt ,
frequency offset estimation error Δεnr ,nt , and channel estima-

tion error ΔH(n)
nr ,nt for all (nr ,nt), the average SINR of rnr ,nt [n]
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(parameterized by only H(n)
nr ,nt ) is

γnr ,nt

(
n | H(n)

nr ,nt

)

�
E
{∣
∣∣
√
Es/Ntm

(n,n)
nr ,nt H

(n)
nr ,ntxi[n]

∣
∣∣
2
}

E
{∣
∣
∣η(n)nr ,nt + Δλ(n)nr ,nt + Δξ(n)nr ,nt + w̃nr ,nt [n]

∣
∣
∣
2
}

∼=
Es/Nt · σ2m ·

∣
∣
∣H(n)

nr ,nt

∣
∣
∣
2

∣∣
∣H(n)

nr ,nt

∣∣
∣
2 ·Var

{
α(n)nr ,nt

}
+ ν

,

ν = π2σ2resEs/3Nt

−Var
{
α(n)nr ,nt

}
+ E

{∣
∣∣Δλ(n)nr ,nt

∣
∣∣
2
}

+ E
{∣
∣∣Δξ(n)nr ,nt

∣
∣∣
2
}
+ σ2w

(15)

where σ2m = E{|m(n,n)
nr ,nt |

2} ∼= 1−π2σ2res/3+π4E{Δε4nr ,i}/36 and
ν, independent of (nr ,nt,n).

For signal demodulation in MIMO-OFDM, signal
received in multiple receive antennas can be exploited to
improve the receive SINR. In the following, equal gain
combining (EGC) and maximal ratio combining (MRC) are
considered.

3.2. SINR Analysis with EGC at Receive Antennas. In order
to demodulate the signal transmitted by the ntth transmit
antenna, the Nr received signals are cophased and combined
to improve the receiving diversity. Therefore, the EGC output
is given by

rEGCnt [n] =
Nr∑

nr=1
e− jθ(n)nr ,nt rnr ,nt [n]

=
Nr∑

nr=1

√
Es
Nt

e− jθ(n)nr ,nt m(n,n)
nr ,nt H

(n)
nr ,ntxnt [n]

+
Nr∑

nr=1
e− jθ(n)nr ,nt

(
η(n)nr ,nt + Δλ(n)nr ,nt + Δξ(n)nr ,nt + w̃nr ,nt [n]

)
,

(16)

where θ(n)nr ,nt = arg{m(n,n)
nr ,ntH

(n)
nr ,nt}. After averaging out εnr ,nt ,

Δεnr ,nt , and ΔH(n)
nr ,nt for each (nr ,nt), the average SINR of

rEGCnt [n] is given by

γEGCnt

(
n | H(n)

1,nt , . . . ,H
(n)
Nr ,nt

)

�
E
{∣
∣∣
∑Nr

nr=1
√
Es/Nte− jθ(n)nr ,nt m(n,n)

nr ,nt H
(n)
nr ,ntxnt [n]

∣
∣∣
2
}

E
{∣
∣
∣
∑Nr

nr=1 e
− jθ(n)nr ,nt

(
η(n)nr ,nt+Δλ

(n)
nr ,nt+Δξ

(n)
nr ,nt+w̃nr ,nt [n]

)∣∣
∣
2
}

∼=
Es/Nt · σ2m ·

(
∑Nr

nr=1
∣
∣
∣H(n)

nr ,nt

∣
∣
∣
2
+
∑

nr /= l

∣
∣
∣H(n)

nr ,nt

∣
∣
∣ ·

∣
∣
∣H(n)

l,nt

∣
∣
∣

)

∑Nr
nr=1

∣
∣
∣H(n)

nr ,nt

∣
∣
∣
2 ·Var

{
α(n)nr ,nt

}
+Nrν

.

(17)

When Nr is large enough, (17) can be further simplified as

γEGCnt

(
n | H(n)

1,nt , . . . ,H
(n)
Nr ,nt

)

∼=
Es/Nt · σ2m ·

(
∑Nr

nr=1
∣
∣
∣H(n)

nr ,nt

∣
∣
∣
2
+Nr(Nr − 1)π/4

)

∑Nr
nr=1

∣
∣
∣H(n)

nr ,nt

∣
∣
∣
2 ·Var

{
α(n)nr ,nt

}
+Nrν

.

(18)

3.3. SINR Analysis with MRC at Receive Antennas. In a
MIMO-OFDM system with Nr receive antennas, based on

the channel estimation Ĥ(n)
nr ,nt = H(n)

nr ,nt + ΔH(n)
nr ,nt for each

(nr ,nt,n), the received signal at all the Nr receive antennas
can be combined by using MRC, and therefore the combined
output is given by

rMRC
nt [n]

=
∑Nr

nr=1 ωnr ,ntrnr ,nt [n]
∑Nr

nr=1
∣
∣ωnr ,nt

∣
∣2

=
√
Es/Nt

∑Nr
nr=1

∣
∣
∣H(n)

nr ,nt

∣
∣
∣
2∣∣
∣m(n,n)

nr ,nt

∣
∣
∣
2
xnt [n]

∑Nr
nr=1

∣
∣ωnr ,nt

∣
∣2

+

√
Es/Nt

∑Nr
nr=1 ΔH

(n)H
nr ,nt H

(n)
nr ,nt

∣
∣
∣m(n,n)

nr ,nt

∣
∣
∣
2
xnt [n]

∑Nr
nr=1

∣
∣ωnr ,nt

∣
∣2

+

∑Nr
nr=1 ωnr ,nt

(
η(n)nr ,nt + Δλ(n)nr ,nt + Δξ(n)nr ,nt + w̃nr ,nt [n]

)

∑Nr
nr=1

∣
∣ωnr ,nt

∣
∣2

,

(19)
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where ωnr ,nt = (Ĥ(n)
nr ,ntm

(n,n)
nr ,nt )

∗
. After averaging out εnr ,nt ,

Δεnr ,nt , and ΔH(n)
nr ,nt for each (nr ,nt), the average SINR of

rMnt [n] is

γMRC
nt

(
n | H(n)

1,nt , . . . ,H
(n)
Nr ,nt

)

�
E

{∣
∣
∣∣
√
Es/NtA

∣∣
∣m(n,n)

nr ,nt
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2
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∣
∣
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2
}

E
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∣
∣∣
√
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nr ,nt H

(n)
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∣
2
xnt [n]

∣
∣
∣∣
2
}

+ ℵ′

∼= Es/Nt · σ2m ·A(
A−∑nr /= l A

∣∣
∣H(n)

l,nt

∣∣
∣
2
/A
)
Var
{
α(n)nr ,nt

}
+ν′+Nr ·ν·σ2ΔH/A

,

A =
Nr∑

nr=1

∣
∣
∣H(n)

nr ,nt

∣
∣
∣

2

(20)

where we have defined ν′ = [ν + (Es/Nt + Var{α(n)nr ,nt})σ2ΔH],
and the noise part can be represented as ℵ′ =
E{|∑Nr

nr=1 ω
∗
nr ,nt (η

(n)
nr ,nt + Δλ(n)nr ,nt + Δξ(n)nr ,nt +wnr ,nt [n])|

2}. Wh-
en Nr is large enough, (20) can be further simplified as

γMRC
nt

(
n | H(n)

1,nt , . . . ,H
(n)
Nr ,nt

)

∼= Es/Nt · σ2m ·A(
A−∑nr /= l

∣
∣
∣H(n)

nr ,nt

∣
∣
∣
2∣∣
∣H(n)

l,nt

∣
∣
∣
2
/A
)
Var
{
α(n)nr ,nt

}
+ν′+Nr·ν·σ2ΔH/A

∼= Es/Nt · σ2m ·A
(A− (Nr − 1))Var

{
α(n)nr ,nt

}
+ ν′ + ν · σ2ΔH

.

A =
Nr∑

nr=1

∣
∣
∣H(n)

nr ,nt

∣
∣
∣

2

(21)

4. BER Performance

The BER as a function of SINR in MIMO-OFDM is derived
in this section. We consider M-ary square QAM with Gray
bit mapping. In the work of Rugini and Banelli [11], the BER
of SISO-OFDM with frequency offset is developed. The BER
analysis in [11] is now extended to MIMO-OFDM.

As discussed in [11, 28, 29], the BER for the ntth transmit
antenna with the input constellation being M-ary square
QAM (Gray bit mapping) can be represented as

PBER
(
γnt
) =

√
M−1∑

i=1
aMi erfc

(√
bMi γi

)
, (22)

where aMi and bMi are specified by signal constellation, γnt is
the average SINR of the ntth transmit antenna, and erfc(x) =
(2/
√
π)
∫∞
x e−u2du is the error function (Please refer to [28]

for the meaning of aMi and bMi .).

Note that in MIMO-OFDM systems, the SINR at each
subcarrier is an RV parameterized by the frequency offset
and channel attenuation. In order to derive the average SINR
of MIMO-OFDM systems, (22) should be averaged over the
distribution of γi as

PBER
(
γnt
) =

√
M−1∑

i=1
aMi

∫

γnt

erfc
(√

bMi γnt

)
f
(
γnt
)
dγnt

=
√
M−1∑

i=1
aMi

∫

Hnt

∫

Ent

∫

vnt

∫

Φnt

erfc
(√

bMi γnt

)
· f (Hnt

)
f
(
Ent
)
f
(
vnt
)

× f
(
Φnt

)
dHntdEntdvntdΦnt ,

(23)

where Hnt = [H1,nt , . . . ,HNr ,nt ], Ent = [ε1,nt , . . . , εNr ,nt ]
T ,

vnt = [Δε1,nt , . . . ,ΔεNr ,nt ]
T , and Φnt = [ΔH1,nt , . . . ,ΔHNr ,nt ].

Since obtaining a close-form solution of (23) appears impos-
sible, an infinite-series approximation of PBER is developed.
In [11], the average is expressed as an infinite series of
generalized hypergeometric functions.

From [30, page 939], erfc(x) can be represented as an
infinite series:

erfc(x) = 2√
π

∞∑

m=1
(−1)(m+1) x(2m−1)

(2m− 1)(m− 1)!
. (24)

Therefore, (23) can be rewritten as

PBER
(
γnt
) = 2√

π

√
M−1∑

i=1
aMi

∞∑

m=1

(−1)(m+1)
(
bMi
)(m−1/2)

(2m− 1)(m− 1)!
·Dnt ;m,

Dnt ;m =
∫

Hnt

∫

Ent

∫

vnt

∫

Φnt

(
γnt
)(m−1/2)

f
(
Hnt

)

× f
(
Ent
)
f
(
vnt
)
f
(
Φnt

)
dHidEntdvntdΦnt

(25)

where Dnt ;m depends on the type of combining. Note that γnt
has been derived in Section 3 and that for the nth subcarrier
(0 ≤ n ≤ N − 1), εnr ,nt , Δεnr ,nt and ΔH(n)

nr ,nt for each (nr ,nt)
have been averaged out. Therefore, γnt in (25) can be replaced
by γnt (n); that is, the average BER can be expected over
subcarrier n (0 ≤ n ≤ N − 1), and finally PBER can be
simplified as

PBER

(
γnt (n)

)

= 2√
π

√
M−1∑

i=1
aMi

∞∑

m=1

(−1)(m+1)
(
bMi
)(m−(1/2))

(2m− 1)(m− 1)!
·Dnt ;m,

(26)

where Dnt ;m is based on γnt (n) instead of γnt . We first define

� = Es/Nt · σ2m and μ = Var{α(n)nr ,nt}, which will be used in the
following subsections. We next give a recursive definition for
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Dnt ;m for the following reception methods: (1) demodulation
without combining, (2) EGC, and (3) MRC.

Note that the SINR for each combining scenario (i.e.,
without combining, EGC, or MRC) is a function of the
second-order statistics of the channel and frequency offset
estimation errors (although the interference also comprises
the fourth-order statistics of the frequency offset estimation
errors, they are negligible as compared to the second-
order statistics for small estimation errors). Any probability
distribution with zero mean and the same variance will result
in the same SINR. Therefore, the exact distributions need
not be specified. However, when the BER is derived by using
an infinite-series approximation, the actual distribution of
the frequency offset estimation errors is required. In [31], it
is shown that both the uniform distribution and Gaussian
distribution are amenable to infinite-series solutions with
closed-form formulas for the coefficients. In the following
sections, the frequency offset estimation errors are assumed
to be i.i.d. Gaussian RVs with mean zero and variance σ2ε
[10].

4.1. BER without Receiving Combining. The BER measured
at the nr th receive antenna for the ntth transmit antenna can
be approximated by (25) with Dnr

nt ;m instead of Dnt ;m being
used here; that is,

P
nr
BER

(
γnr ,nt

(
n | H(n)

nr ,nt

))

= 2√
π

√
M−1∑

i=1
aMi

∞∑

m=1

(−1)(m+1)
(
bMi
)(m−1/2)

(2m− 1)(m− 1)!
·Dnr

nt ;m.

(27)

Whenm > 2, we haveDnr
nt ;m = �[(2m−3)μ+ν]/μ2(m−3/2)·

Dnr
nt ;m−1−�2/μ2 ·Dnr

i;m−2, as derived in Appendix A. The initial
condition is given by

Dnr
nt ;1 =

∫∞

0

�1/2h1/2
(
μh + ν

)1/2 e
−hdh. (28)

4.2. BER with EGC. For a MIMO-OFDM system with EGC
reception, the average BER can be approximated by (25) with
DEGC

nt ;m instead of Dnt ;m being used here; that is,

P
EGC
BER

(
γEGCnt

(
n | H(n)

1,nt , . . . ,H
(n)
Nr ,nt

))

= 2√
π

√
M−1∑

i=1
aMi

∞∑

m=1

(−1)(m+1)
(
bMi
)(m−1/2)

(2m− 1)(m− 1)!
·DEGC

nt ;m.

(29)

Defining νE = Nrν, σ2EGC = (Nr !)
2/8[(Nr − (1/2)) · · · 1/2]2,

ν̃E = νE − μNr(Nr − 1)π/4, and μ̃ = 2σ2EGC · μ, when m > 2,
we have

DEGC
nt ;m =

2σ2EGC�
[
(2m +Nr − 4)μ̃(Nr − 1)! + ν̃E

]

μ̃2(m− 3/2)(Nr − 1)!

·DEGC
nt ;m−1 −

(
2σ2EGC�

)2
(m +Nr − 5/2)

μ̃2(m− 3/2)
·DEGC

nt ;m−2

(30)

Table 1: Parameters for BER simulation in MIMO-OFDM systems.

Subcarrier modulation QPSK; 16QAM

DFT length 128

σ2
res 10−3;10−4

σ2
ΔH 10−4

MIMO parameters (Nt = 1, 2; Nr = 1, 2, 4)

Receiving combining Without combining; EGC; MRC

as derived in Appendix B. The initial condition is given by

DEGC
nt ;1 =

(
2σ2EGC�

)1/2

(Nr − 1)!

∫∞

0

h(Nr−1/2)
(
μ̃h + ν̃E

)1/2 e
−hdh. (31)

4.3. BER with MRC. For a MIMO-OFDM system with
channel knowledge at the receiver, the receiving diversity can
be optimized by using MRC, and the average BER can be
approximated by (25) with DMRC

nt ;m instead of Dnt ;m being used
here; that is,

P
MRC
BER

(
γMRC
nt

(
n | H(n)

1,nt , . . . ,H
(n)
Nr ,nt

))

= 2√
π

√
M−1∑

i=1
aMi

∞∑

m=1

(−1)(m+1)
(
bMi
)(m−1/2)

(2m− 1)(m− 1)!
·DMRC

nt ;m .

(32)

By defining νM = ν′ + ν · σ2ΔH , DMRC
nt ;m withm > 2 is given by

DMRC
nt ;m = �

[
(2m +Nr − 4)μ(Nr − 1)! + ν̃M

]

μ2(m− 3/2)(Nr − 1)!
·DMRC

nt ;m−1

− �2(m +Nr − 5/2)e−(Nr−1)

μ2(m− 3/2)
·DMRC

nt ;m−2,

(33)

as derived in Appendix C. The initial condition is given by

DMRC
nt ;1 = e−(Nr−1)�1/2

(Nr − 1)!

∫∞

0

h(Nr−1/2)
(
μh + ν̃M

)1/2 e
−hdh. (34)

4.4. Complexity of the Infinite-Series Representation of BER.
Infinite-series BER expression (27), (29), or (32) must be
truncated in practice. The truncation error is negligible
if the number of terms is large enough: Reference [31]
shows that when the number of terms is as large as 50, the
finite-order approximation is good. In this case, a total of
151

√
M multiplication and 101

√
M summation operations

are needed to calculate the BER for each combining scheme.

5. Numerical Results

Quasistatic MIMOwireless channels are assumed; that is, the
channel impulse response is fixed over one OFDM symbol
period but changes across the symbols. The simulation
parameters are defined in Table 1.

The SINR degradation due to the residual frequency
offsets is shown in Figure 2 for σ2ΔH = 0.01 and SNR = 10 dB.
The SINR degradation increases with σ2res. Because of IAI due
to the multiple transmit antennas, the SINR performance of
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Figure 2: SINR reduction by frequency offset in MIMO-OFDM
systems.
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Figure 3: BER degradation due to the residual frequency offset in
MIMO-OFDM systems.
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Figure 4: BER with QPSK when (Nt = 1,Nr = 1).
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Figure 5: BER with 16QAM when (Nt = 1,Nr = 1).

MIMO-OFDM with (Nt = 2,Nr = 2) is worse than that
of SISO-OFDM, even though EGC or MRC is applied to
exploit the receiving diversity. IAI in MIMO-OFDM can be
suppressed by increasing the number of receive antennas.
In this simulation, when Nr = 4, the average SINR with
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Figure 6: BER with QPSK when (Nt = 2,Nr = 2).

either EGC or MRC will be higher than that of SISO-OFDM
system. For each MIMO scenario, MRC outperforms EGC.

The BER degradation due to the residual frequency
offsets is shown in Figure 3 for σ2ΔH = 10−3 and Eb/N0 =
10 dB (Eb/N0 is the bit energy per noise per Hz). The BER
for 4-phase PSK (QPSK) or 16QAM subcarrier modulation
is considered. Just as with the case of SINR, the BER degrades
with large σ2res. For example, when (Nt = 2,Nr = 2) and
σ2res = 10−5 for QPSK (16QAM), a BER of 7 × 10−3 (2.5 ×
10−2) or 6 × 10−3 (2 × 10−2) is achieved with EGC or MRC
at the receiver, respectively. When σ2res is increased to 10−2, a
BER of 2 × 10−2 (6 × 10−2) or 1 × 10−2 (5.5 × 10−2) can be
achieved with EGC or MRC, respectively.

Figures 4 to 9 compare BERs of QPSK and 16QAM
with different combining methods. Figures 4 and 5 consider
SISO-OFDM. The BER is degraded due to the frequency
offset and channel estimation errors. For a fixed channel
estimation variance error σ2ΔH , a larger variance of frequency
offset estimation error, that is, σ2res, implies a higher BER. For
example, if σ2ΔH = 10−4, Eb/N0 = 20 dB and σ2res = 10−4, the
BER with QPSK (16QAM) is about 1.8 × 10−3 (5.5 × 10−3);
when σ2res increases to 10−3, the BER with QPSK (16QAM)
increases to 4.3× 10−3 (1.5× 10−2).
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IAI appears with multiple transmit antennas, and the
BER will degrade as IAI increases. Note that since IAI cannot
be totally eliminated in the presence of the frequency offset
and channel estimation errors, a BER floor occurs at the
high SNR. IAI can be reduced considerably by exploiting the
receiving diversity by using either EGC or MRC, as shown
in Figures 6, 7, 8, and 9. Without receiver combining, the
BER ismuchworse than that in SISO-OFDM, simply because
of the SINR degradation due to IAI. For example, when
Nt = Nr = 2 and σ2ΔH = 10−4, the BER with QPSK is about
5.5 × 10−3 when σ2res = 10−4, which is three times of that
of SISO-OFDM (which is about 1.8 × 10−3), as shown in
Figure 6. For a given number of receive antennas, MRC can
achieve a lower BER than that achieved with EGC, but the
receiver requires accurate channel estimation. For example,
in Figure 7, when σ2ΔH = 10−4 with Nt = Nr = 2 and
16QAM, the performance improvement of EGC (MRC) over
that without combining is about 5.5 dB (6 dB), and that
performance improvement increases to 7.5 dB (8.5 dB) if σ2res
is increased to 10−3. By increasing the number of receive
antennas to 4, this performance improvement is about 8.2 dB
(9 dB) for EGC (MRC), with σ2ΔH = 10−4, or 11 dB (13.9 dB)
for EGC (MRC), with σ2ΔH = 10−3, as shown in Figure 9.
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Figure 8: BER with QPSK when (Nt = 2,Nr = 4).

Our theoretical BER approximations are accurate at
low SNR with/without diversity combining. However, the
simulation and theory results diverge as the SNR increases,
especially when σ2res is large. For example, in Figure 9, with
16QAM, when (Nt = 2, Nr = 4) and σ2res = 10−3,
about 1 dB difference exists between the simulation and
the theoretical result for either EGC or MRC at high SNR.
This discrepancy is due to several reasons. As the SNR
increases, the system becomes interference limited. When
N , Nt, and Nr are not large enough, the interferences may
not be well approximated as Gaussian RVs with zero mean.
In addition, with either EGC or MRC reception, the phase
rotation or channel attenuation of the receive substreams
should be estimated, and their estimation accuracy will also
affect the combined SINR. The instant large phase or channel
estimation error also contributes a deviation to the BER
when using EGC or MRC.

6. Conclusions

The BER of MIMO-OFDM due to the frequency offset
and channel estimation errors has been analyzed. The BER
expressions for no combining, EGC, and MRC were derived.
These expressions are in infinite-series form and can be
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truncated in practice. The simulation results show that the
truncation error is negligible if the number of terms is large
than 50.

Appendices

A. BER without Combining

Without loss of generality, the signal transmitted by the
ntth transmit antenna is assumed in this subsection to be
demodulated at the nr th receive antenna. For each (nr ,nt,n),
H = |H(n)

nr ,nt | has a probability density function (PDF)
f (H) = 2H · e−H2

. When the number of receive antennas
m is larger than 2, Dnr

nt ;m can be represented as

Dnr
nt ;m =

∫∞

0

(√

γnr ,nt

(
n | H(n)

nr ,nt

)
)2m−1

f (H)dH

=
∫∞

0

�(m−1/2)H(2m−1)
(
μH2 + ν

)(m−1/2) e
−H2

dH2

= �(m− 1/2)
μ(m− 3/2)

·Dnr
nt ;m−1

− �(m−1/2)

μ(m− 3/2)

∫∞

0

h(m−1/2)e−h
(
μh + ν

)(m−3/2) dh,

(A.1)
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where ν is defined in (15), h = H2, � = Es/Nt · σ2m, and
μ = Var{α(n)nr ,nt}. Equation (A.1) can be further derived as

Dnr
nt ;m =

�(m− (1/2))
μ(m− (3/2))

·Dnr
nt ;m−1

+
�(m−1/2)ν

μ2(m− 3/2)

∫∞

0

h(m−3/2)e−h
(
μh + ν

)(m−3/2) dh

− �(m−1/2)

μ2(m− 3/2)

∫∞

0

h(m−3/2)e−h
(
μh + ν

)(m−5/2) dh

︸ ︷︷ ︸
Znr
nt

= �(m− 1/2)
μ(m− 3/2)

·Dnr
nt ;m−1 +

�ν

μ2(m− 3/2)

·Dnr
nt ;m−1 −

�(m−1/2)

μ2(m− 3/2)
· Znr

nt .

(A.2)

From the last step of (A.1), Dnr
nt ;m−1 can be represented as a

function of Dnr
nt ;m−2 and Znr

nt :

Dnr
nt ;m−1 =

�(m− 3/2)
μ(m− 5/2)

·Dnr
nt ;m−2 −

�(m−3/2)

μ(m− 5/2)
· Znr

nt . (A.3)

By resolving (A.3), Znr
nt can be represented as

Znr
nt =

�(m− 3/2) ·Dnr
nt ;m−2 − μ(m− 5/2) ·Dnr

nt ;m−1
�(m−3/2) . (A.4)

By replacing Znr
nt in (A.2) with (A.4), Dnr

nt ;m can be finally
simplified as

Dnr
nt ;m =

�(m− 1/2)
μ(m− 3/2)

·Dnr
nt ;m−1 +

�ν

μ2(m− 3/2)

·Dnr
nt ;m−1 −

�(m−1/2)

μ2(m− 3/2)
· Z

= �
[
(2m− 3)μ + ν

]

μ2(m− 3/2)
·Dnr

nt ;m−1 −
�2

μ2
·Dnr

nt ;m−2.

(A.5)

B. BER of EGC

Without loss of generality, consider the demodulation of the
signal transmitted by the ntth transmit antenna. Define

νE =
Nr∑

nr=1

(
π2σ2resEs
3Nt

−Var
{
α(n)nr ,nt

}
+ E

{∣
∣∣Δλ(n)nr ,nt

∣
∣∣
2
}

+E
{∣
∣∣Δξ(n)nr ,nt

∣
∣∣
2
}
+ σ2w

)
= Nrν

(B.1)

and HEGC =
∑Nr

nr=1 |H(n)
nr ,nt |. As in Appendix A, when m > 2,

DEGC
nt ;m can be represented as

DEGC
nt ;m =

∫∞

0

(√

γEnt

(
n | H(n)

1,nt , . . . ,H
(n)
Nr ,nt

))2m−1

× f (HEGC)dHEGC

=
∫∞

0

�(m−1/2)H(2m−1)
EGC

(
μ
(
H2

EGC −Nr(Nr − 1)π/4
)
+ νE

)(m−1/2)

· H(2Nr−2)
EGC

2Nr σ2Nr
EGC(Nr − 1)!

· e−H2
EGC/2σ

2
EGCdH2

EGC

= 2σ2EGC�(m +Nr − 3/2)
μ̃(m− 3/2)

·DEGC
nt ;m−1

−
(
2σ2EGC�

)(m−1/2)

μ̃(m− 3/2)(Nr − 1)!

∫∞

0

h(m+Nr−3/2)e−h
(
μ̃h + ν̃E

)(m−3/2) dh,

(B.2)

where ν̃E = νE − μNr(Nr − 1)π/4, h = H2
EGC/2σ

2
EGC, σ

2
EGC =

(Nr !)
2/8[(Nr − 1/2) · · · 1/2]2, and μ̃ = 2σ2EGC · μ. Equation

(B.2) can be further simplified as

DEGC
nt ;m =

2σ2EGC�(m +Nr − 3/2)
μ̃(m− 3/2)

·DEGC
nt ;m−1

−
(
2σ2EGC�

)(m−1/2)
ν̃E

μ̃2(m− 3/2)(Nr − 1)!

∫∞

0

h(m+Nr−5/2)e−h
(
μ̃h + ν̃E

)(m−3/2) dh

− �(m−1/2)

μ2(m− 3/2)(Nr − 1)!

∫∞

0

h(m+Nr−5/2)e−h
(
μh + νE

)(m−5/2) dh

︸ ︷︷ ︸
ZEGC
i

= 2σ2EGC�(m +Nr − 3/2)
μ̃(m− 3/2)

·DEGC
nt ;m−1

+
2σ2EGC�ν̃E

μ̃2(m− 3/2)(Nr − 1)!
·DEGC

nt ;m−1

−
(
2σ2EGC�

)(m−1/2)

μ̃2(m− 3/2)(Nr − 1)!
· ZEGC

nt .

(B.3)

From the last step of (B.2), DEGC
nt ;m−1 can be represented as a

function of DEGC
nt ;m−2 and ZEGC

nt :

DEGC
nt ;m−1 =

2σ2EGC�(m +Nr − 5/2)
μ̃(m− 5/2)

·DEGC
nt ;m−2

−
(
2σ2EGC�

)(m−3/2)

μ̃(m− 5/2)(Nr − 1)!
· ZEGC

nt .

(B.4)

By resolving (B.4), ZEGC
nt can be represented as

ZEGC
nt = 2σ2EGC�(m +Nr − 5/2)(Nr − 1)! ·DEGC

nt ;m−2
(
2σ2EGC�

)(m−3/2)

− μ̃(m− 5/2)(Nr − 1)! ·DEGC
nt ;m−1

(
2σ2EGC�

)(m−3/2)

(B.5)
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By replacing ZEGC
nt in (B.3) with (B.5), DEGC

nt ;m can be finally
simplified as

DEGC
nt ;m =

2σ2EGC�
[
(2m +Nr − 4)μ̃(Nr − 1)! + ν̃E

]

μ̃2(m− 3/2)(Nr − 1)!
·DEGC

nt ;m−1

−
(
2σ2EGC�

)2
(m +Nr − 5/2)

μ̃2(m− 3/2)
·DEGC

nt ;m−2.

(B.6)

C. BER of MRC

Without loss of generality, consider the demodulation of
the signal transmitted by the ntth transmit antenna. Define

HMRC =
√
∑Nr

nr=1 |H(n)
nr ,nt |

2
. When m > 2, DMRC

nt ;m can be
represented as

DMRC
nt ;m =

∫∞

0

(√

γMi

(
n|H(n)

1,i , . . . ,H
(n)
Nr ,i

))2m−1
f (HMRC)dHMRC

= 2Nr

∫∞

0

�(m−1/2)H(2m−1)
MRC

(
μ
[
H2

MRC − (Nr − 1)
]
+ νM

)(m−1/2)

· H(2Nr−2)
MRC

(Nr − 1)!
· e−H2

MRCdH2
MRC

= �(m +Nr − 3/2)e−(Nr−1)

μ(m− 3/2)
·DMRC

nt ;m−1

− 2Nr e−(Nr−1)�(m−1/2)

μ(m− 3/2)(Nr − 1)!

∫∞

0

h(m+Nr−3/2)e−h
(
μh + ν̃M

)(m−3/2) dh,

(C.1)

where h = H2
MRC and ν̃M = νM − μ(Nr − 1). (C.1) can be

further simplified as

DMRC
nt ;m = �(m +Nr − 3/2)e−(Nr−1)

μ(m− 3/2)
·DMRC

nt ;m−1

− 2Nr e−(Nr−1)�(m−1/2)ν̃M

μ2(m− 3/2)(Nr − 1)!

∫∞

0

h(m+Nr−5/2)e−h
(
μh + ν̃M

)(m−3/2) dh

− 2Nr e−(Nr−1)�(m−1/2)

μ2(m− 3/2)(Nr − 1)!

∫∞

0

h(m+Nr−5/2)e−h
(
μh + ν̃M

)(m−5/2) dh

︸ ︷︷ ︸
ZMRC
nt

= �(m +Nr − 3/2)e−(Nr−1)

μ(m− 3/2)
·DMRC

nt ;m−1

+
�ν̃Me−(Nr−1)

μ2(m− 3/2)(Nr − 1)!
·DMRC

nt ;m−1

− 2Nr e−(Nr−1)�(m−1/2)

μ2(m− 3/2)(Nr − 1)!
· ZMRC

nt .

(C.2)

From the last step of (C.1), DMRC
nt ;m−1 can be represented as a

function of DMRC
nt ;m−2 and ZMRC

nt :

DMRC
nt ;m−1 =

�(m +Nr − 5/2)e−(Nr−1)

μ(m− 5/2)
·DMRC

nt ;m−2

− 2Nr e−(Nr−1)�(m−3/2)

μ(m− 5/2)(Nr − 1)!
· ZMRC

nt .

(C.3)

By resolving (C.3), ZMRC
nt can be represented as

ZMRC
nt = �(m +Nr − 5/2)(Nr − 1)! ·DMRC

nt ;m−2
2Nr�(m−3/2)

− μ(m− 5/2)(Nr − 1)!e(Nr−1) ·DMRC
nt ;m−1

2Nr�(m−3/2)

(C.4)

By replacing ZMRC
nt in (C.2) with (C.4), DMRC

nt ;m can be finally
simplified as

DMRC
nt ;m = �

[
(2m +Nr − 4)μ(Nr − 1)! + ν̃M

]

μ2(m− 3/2)(Nr − 1)!
·DMRC

nt ;m−1

− �2(m +Nr − 5/2)e−(Nr−1)

μ2(m− 3/2)
·DMRC

nt ;m−2.

(C.5)
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