
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2010, Article ID 243985, 16 pages
doi:10.1155/2010/243985

Research Article

Efficient Certification Path Discovery for MANET

Georgios Kambourakis, Elisavet Konstantinou, Anastasia Douma,
Marios Anagnostopoulos, and Georgios Fotiadis

Info-Sec-Lab Laboratory of Information and Communications Systems Security, University of the Aegean, 83200 Samos, Greece

Correspondence should be addressed to Georgios Kambourakis, gkamb@aegean.gr

Received 1 February 2010; Accepted 8 April 2010

Academic Editor: Nicholas Kolokotronis

Copyright © 2010 Georgios Kambourakis et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

A Mobile Ad Hoc Network (MANET) is characterized by the lack of any infrastructure, absence of any kind of centralized
administration, frequent mobility of nodes, network partitioning, and wireless connections. These properties make traditional
wireline security solutions not straightforwardly applicable in MANETs, and of course, constitute the establishment of a Public
Key Infrastructure (PKI) in such networks a cumbersome task. After surveying related work, we propose a novel public key
management scheme using the well-known web-of-trust or trust graph model. Our scheme is based on a binary tree formation
of the network’s nodes. The binary tree structure is proved very effective for building certificate chains between communicating
nodes that aremultihops away and the cumbersome problem of certificate chain discovery is avoided.We compare our schemewith
related work and show that it presents several advantages, especially when a fair balancing between security and performance is
desirable. Simulations of the proposed scheme under different scenarios demonstrate that it is effective in terms of tree formation,
join and leave occurrences, and certificate chain establishment.

1. Introduction

Mobile Ad hoc Networks (MANETs) consist of a number of
nodes which are typically unconfined and free to move and
utilize wireless interfaces to communicate with each other
without requiring any wireless infrastructure. The mobile
nodes of such networks incorporate routing capabilities
which give them the ability to construct multi-hop paths
linking nodes which are not within their radio range.
MANETs are currently employed in many areas of interest
ranging from schools and universities to disaster places,
while their use will be certainly widened in the near future.
The self-organizing and dynamic nature of these networks
however, makes the application of general-purpose protocols
a real challenge for researchers. While many routing proto-
cols have been proposed in the literature for MANETs, the
establishment of a Public Key Infrastructure (PKI) in these
networks has gathered little attention so far.

The absence of any fixed infrastructure and centralized
authorities makes public key management for MANETs a
very difficult task from both an algorithmic and computa-
tional point of view. Any public key-based security system

must be provided by an efficient way ofmaking the public key
of a node available to another and proving in the same time
the authenticity of this key. The solution to this problem in
wired, general-purpose networks comes from the use of on-
line or off-line servers that issue certificates to the nodes of
the network. In MANETs, the absence of centralized services
and the possible network partitions makes this problem hard
to deal with. Recently, some public key management schemes
for MANETs have been proposed. These schemes can be
roughly classified into two categories. The first approach uses
a set of nodes as servers that can provide partial certificates
to a combiner by utilizing the concepts of threshold secret
sharing [1–3]. Other server oriented solutions not utilizing
threshold cryptography also exist like the Kaman one [4]
which is based on Kerberos. The second category, which is
our topic of interest, is based on the web-of-trust model [5,
6]. According to this approach, every node issues certificates
only to the nodes it trusts. By considering every issued
certificate as an edge, a certification graph is formed. If
two nodes wish to exchange their public keys and form a
common secret, they find a certification path in the graph
and they can in this way authenticate each other. However,

2 EURASIP Journal on Wireless Communications and Networking

the major disadvantage of this approach is the cumbersome
problem of finding a certification path in the graph. A
solution to this problem is proposed in [7] where a virtual
hierarchy is built among the nodes in the graph. Finally, an
emerging third category attempts to combine trust graphs
and threshold cryptography [8] in a fully distributedmanner.

In this paper, we propose an approach similar to [9].
However, our scheme is based on a binary tree formation
of the network’s nodes rather on partitioning the network
into clusters. Specifically, two alternative methods for binary
tree formation are proposed each one having its pros and
cons. By using this structure, the certificate path discovery
problem is avoided and the place of each node in the tree
can be easily found. Moreover, the frequent join and leave
events in the network are efficiently dealt by modifying the
tree structure where it is needed. In a nutshell, the proposed
scheme has several advantages over other similar solutions,
being more effective in terms of join and leave procedures,
path discovery and certificate management, especially when
security is not of top priority. Simulations of the proposed
scheme under different scenarios show that it is affordable
in terms of service times as well. On the other hand, when
security is the prime focus, we offer a modified version
of the proposed scheme which can deliver robust security
services and effectively identify Denial of Service (DoS)
attacks not addressed by similar mechanisms until now.
Last but not least, we survey some methods for establishing
and maintaining trust between the nodes of a MANET.
Whilst this issue is very important, as it globally affects
nodes’ trustworthiness, it is not adequately addressed in the
literature so far.

The rest of the paper is organized as follows. In the next
section, we discuss how trust can be initially established and
maintained between the nodes of a MANET. In Section 3,
we present our binary tree-based protocol consisting of two
alternative tree formation methods. The certificate chain
discovery procedure is discussed in Section 4. Section 5
extensively surveys related work. Section 6 provides discus-
sions and a theoretical comparison with other mechanisms
that fall in the same category as our scheme. Simulation
parameters and performance results are given in Section 7.
Section 8 concludes the paper and gives some directions for
further research.

Notation. An earlier and shorter conference version of this
paper appeared in proceedings of IEEE ISWCS’08 [10].
This paper extends all sections of the aforementioned
paper, addresses previous work thoroughly, provides detailed
evaluation of the discussed scheme, and presents more
rigorous arguments in some of our analysis.

2. Establishing and Maintaining Trust between
Network Nodes

Most works in the field of public key management assume
either that some sort of trust among network entities
exists beforehand or that the nodes proceed with pairwise
certification faithfully or at random. For instance, after

certification, if a node is detected to behave aggressively or
does not obey to the network rules then its certificate is
revoked or left expired. Clearly, establishing trust among
network nodes in aMANET remains a very challenging issue.
Note that this issue is not themain focus of the current paper.
However, it is considered important for every scheme that
copes with trust in MANET, thus in this section, we address
related work.

Usually, there is no external prior context at all among the
participating entities. Bootstrapping from an existing infras-
tructure or exploiting proximity for expressing indexicality,
as they are presented in [11], can furnish partial solutions
towards solving this problem. For these reasons, trust and
ad hoc networks can be thought in a sense as contradicting
terms.

Inmany cases however, it is necessary to initialize security
from the scratch for protecting subsequent interactions
within the system. In this context, using Proofs of Work
(PoW) in initialization of trust, and reputation systems can
assist in establishing a certain degree of trustworthiness in
the network [12, 13]. The objective behind PoW systems
is that a verifier V can make sure that a prover P has
successfully performed a certain computational task. The
basic characteristic of a PoW system is that creating the proof
must entail a predictable amount of work, while verifying
the proof must be straightforward. Luo et al. [14] propose
another method called URSA to secure network access
control in a MANET. They propose a fully decentralized
scheme to grant access control using certified tickets. Every
prospective network member must acquire a ticket in order
to grant network access. Tickets are generated by a subset of
one or two-hops away neighbors that collaborate to enforce
access control. Moreover, Saxena et al. [15] describe an
admission control protocol based on bivariate polynomials
that permits an ad hoc node to negotiate and validate a
share-polynomial that can be used to establish a pairwise
key between it and other nodes in a MANET. Of course,
such schemes cannot fully guarantee that a node can be
trusted but they assist in automatically exclude some of the
malicious, misbehaving or selfish peers from joining the
network.

When no centralized authority exists, as in the case
of MANET, one popular method towards deriving positive
conclusions whether a given node can be trusted is to employ
a reputation rating [11, 16] or recommendation system [17].
The reputation ratings can be based on direct experience
or recommendations by others in the network community
or a combination of the two. Further down we describe in
short the major proposals in the field; however a detailed
analysis is beyond the scope of this paper. Work in [18],
proposes the CONFIDANT protocol based on the Dynamic
Source Routing (DSR) protocol. In CONFIDANT each node
continuouslymonitors the behavior of its one hop neighbors.
In order to isolate misbehaving nodes the noforwarding
or other selfish behavior of any node is monitored and
reported. The gathered information is forwarded to a
reputation system that calibrates the rating of the nodes. The
Watchdog and Pathrater mechanisms [19] are in fact two
extensions to DSR. Watchdog relies on promiscuous mode

EURASIP Journal on Wireless Communications and Networking 3

operation of the ad hoc nodes with the aim of observing
neighboring nodes behavior with respect to participation to
basic network functions. Actually, the Watchdog mechanism
comprises the basic assumption in any trust computational
model. Pathrater exploits the knowledge from the Watchdog
software module to select the most credible forwarding path
for data packets. Other mechanisms award the unselfish
nodes by giving them incentives.

Work in [20] proposes the Secure and Objective
Reputation-based Incentive (SORI) method to promote
packet forwarding and control egotistic actions. A unified
network layer Token-based security solution for MANETs
is given in [21]. According to this scheme, a node should
hold a token in order to participate in any network operation
while its adjacent nodes monitor any misbehavior in data
packet forwarding functions. Another credit-based system
for MANETs called Sprite is proposed in [22]. Sprite uses a
credit system to provide incentives for nodes that collaborate
and report actions truthfully. RFSTrust [17] proposes a
trust model based on fuzzy recommendation similarity in
order to quantify and evaluate the trustworthiness of nodes.
RFSTrust includes five types of fuzzy trust recommendation
relationships based on the fuzzy relation theory and amathe-
matical description forMANETs. Generally, while reputation
systems work acceptably well in centralized realms their
application in MANET scenarios require a decentralized
reputation system, which in turn brings several issues in
the foreground mostly related with the recommendations
exchange system design and the avoidance of Sybil attacks.

Some other answers to the basic question “Who trust
whom in a MANET and why?” do exist in terms of device
authentication [23]. Yet, such solutions mandate in many
cases some a priori configured trust relationship between the
participating nodes. For example, every device joining the
network can carry a device certificate proving its genuine-
ness. Nevertheless, this requires a PKI infrastructure to sign
all the certificates during the so-called network initialization
phase. The same problem applies in the case of trusted
computing oriented solutions. In our opinion establishing
trust among network entities in a MANET remains very
much an open research problem.

3. Proposed Solutions

In this section, we describe two similar solutions for building
a binary tree of trust between the nodes of any MANET. The
binary tree approach can greatly contribute to path discovery
process optimization, and thus can facilitate the acquisition
of certificate chain between the involved nodes. The first
scheme starts from a single randomly chosen node, for
example, the root of the tree and continues cascading until
all willing-to-participate nodes join the tree. The other one
hastens the formation of the binary tree by starting building
tree branches from several different nodes simultaneously.

3.1. The Binary Tree-Based Scheme. The formation protocol
starts when a given node, say N0 sends a HELLO message to
its neighbours stating that it wants to initiate a tree-based

trust relationship with them. Taking ad hoc on-demand
distance vector (AODV) [24] as example, this is a Route
Reply (RREP) with TTL = 1. For the moment, assume that
there is no preestablished trust among all or some of the
network nodes that comprise the MANET. So, the adjacent
nodes may decide to accept the invitation or simply reject it.
Accepting such an invitation from a given node means that
the invited (peer) node is willing to proceed with a mutual-
certification process with the initiator. The purpose of the
protocol is to form a binary tree of trust between all network
entities. Therefore, each node can provide certificates to
a maximum of two neighboring nodes. All nodes have a
{public, private} key pair created locally, so for every node
pair each part signs the public key of the other using its
private key and sends the result towards the other part.
This tree forming procedure depicted in Figure 1 continues
cascading requests from the root of the tree (N0) down to
the leafs. Assuming that the network is dense enough the
probability of having some—willing to participate—nodes
(as N12 in Figure 1) left out of this process is negligible.

Figure 1(a) depicts the initial state of the network as well
as each node’s signal range. At some point, N0 initiates the
protocol by sending pairwise-certification requests towards
N1, N2 and N3 correspondingly. The latter nodes agree
to participate, so they are pairwise-certified with N0. After
that, they send pairwise-certification requests towards their
neighbours, for example, N3 invites N4, N5 and N6.
This situation is illustrated in Figure 1(b). The protocol
continues until the binary tree depicted in Figure 1(c) is
finally formed. When a given parent-node has completed
the mutual-certification procedure with two child-nodes, it
will drop any similar request coming from its neighbours.
For example, in Figure 1(b) node N0 sends requests to N1,
N2, and N3 but drops the reply from N3 since N1 and
N2 have answered quicker to its request and have already
been added in the binary tree. If a child-node has already
been mutually-certified with a parent-node ignores post-
dated pairwise certification requests send by others. To do
so, each node must send in its HELLO messages its current
state in the tree, that is, the bit 0 or 1 for non-members and
members correspondingly. This is necessary in order to avoid
redundant pairwise-certifications or loops between the leafs
of the same tree. For instance, asN6 has already established a
relationship withN2, drops the request originating fromN3.
It is worth noting that all nodes are supposed to be equal and
the notation “parent” or “child” denotes their position in the
tree. It is also stressed that for unsecured communications
the nodes can use any possible available route. For example,
if N5 is in the range of N9 they can exchange data directly.

However, to establish a secure relationship they must first
obtain the certificate one another via the binary tree of trust,
to setup a symmetric session key, and finally communicate
directly as the case may be.

As already mentioned in Section 2 the main question
of the certification procedure remains: “how can a node
be convinced that a given public key, say K(N0) truly
belongs to node N0, so as to proceed with certification?”
And, if certification succeeds, how one can rest assured
that a certified node will continue to obey the network

4 EURASIP Journal on Wireless Communications and Networking

Nodes' signal range

N0

N1
N2

N3

N4

N5
N6

N7

N8 N9
N10

N11

N12
Out of
range

(a)

N0

N1
N2

N3

N4

N5 N6

N7

N8 N9
N10

N11

N12

Request for mutual-certification

(b)

Mutually-certified nodes

N0

N1 N2

N3N4

N5

N6 N7

N8 N9 N10

N11
N12

0001

000011

10

1110

110
111

0

11

1

(c)

Figure 1: Formation of the binary tree of trust.

rules? Whilst all the approaches mentioned in Section 2 for
initializing trust can be applied in our case, we assume
a “friendship-based” and “commitment-driven” solution.
That is, trustworthiness among nodes may depend on the
existing friendship of users participating in the network.
If two users, say Alice and Bob, are friends, they trust
each other and their respective devices can exchange their
public keys. There may be numerous reasons for a node
Alice to believe that she is binding the Bob’s public key
to the real Bob and not Malloy. For example, nodes Alice
and Bob may have exchanged their public keys via a side
channel (e.g., over an infrared channel) at the time of a given
physical encounter. As presented in [25], we can assume a
bidirectional trustworthiness between two nodes, meaning
that, if Alice trusts Bob, then Bob trusts Alice as well. This
assumption stems from the statistical analysis of the Web of
trust showing that about 2/3 of the links in the large strongly
connected social network are bidirectional [26].

Overall, we can say that every node commits itself to the
scheme; to be friendly, disciplinarian and behave legitimately.
Otherwise, it will be isolated from the tree of trust and
would not be able to send any packet via its neighbours.
Also, to increase the level of trustworthiness, initially, every
node may certify any other for a short period of time,
say for a couple of hours. After that, if the “postulant”
node proves good intentions, its certificate is renewed with
a greater validity period. It is worth noting that detecting
misbehaving nodes among one-hop nodes is quite easy due
to the broadcast nature of wireless communications. The
detection of misbehaving nodes can also be enforced using
a reputation rating or recommendation system based on
observation and/or second-hand information as discussed
in Section 2. An already certified node must present a valid
certificate to get a new one. Otherwise, the renewal procedure
fails and implicitly the node is forced to disjoin from
the network. Even though the proposed method imposes
increased node overhead during its first stages, balances some

time later after achieving a relative high degree of trust level
between all the participants.

3.2. The Parallelized Binary Tree-Based Scheme. The binary
tree-based scheme described in the previous subsection, can
be easily parallelized in order to improve efficiency. Instead
of launching the protocol from a given node, one can initiate
the protocol by using simultaneously two ormore nodes. The
number of these nodes can be parameterized in the whole
network. Every such root node leads to the construction
of a small binary tree (which can be considered as a small
cluster) and all these subtrees can be linked together through
their root nodes forming a bigger network of trust. Linking
different binary trees into one also implies that every node
on each tree carries also the unique identity of the tree, that
is, the IP address of the root.

Consider for example, the network in Figure 2(a). Sup-
pose that nodes N0, N4, and N11 are randomly selected
and they start the execution of the binary tree-based scheme.
After, the first step of the protocol, three subtrees have been
created (see Figure 2(b)). Every subtree should have a unique
tree ID, for example, the IP address of the root node. When
a node receives an invitation from one of its neighbours,
it should check whether this node has the same tree ID.
If the communicating nodes’ tree IDs are the same, then
the invited node does not accept the invitation (otherwise
a cycle would be formed). In the case that the tree IDs are
different, then both nodes agree randomly in one of the
tree IDs and inform all the other nodes in the two subtrees
in order to all adopt the same tree ID. For example, in
Figure 2(c) node N8 has sent an invitation to node N11. The
latter has accepted it, since N8 and N11 belong to different
subtrees, and the rest of the nodes are notified that they
belong now in the same binary tree. After that, if N8 sends
an invitation to its other neighbour (N5), then this request
will be denied since both nodes belong now in the same
subtree.

EURASIP Journal on Wireless Communications and Networking 5

N0

N8
N10

N9

N6

N1

N5

N7

N2

N3

N4

N11

N12

(a) The initial state of the network

N0

N8

N10
N9

N6

N1

N5

N7

N2

N3

N4

N11

Root 1

Root 3

N12

Root 2

(b) First phase

N0

N8

N10

N9

N6

N1

N5 N7

N2

N3

N4

N11

Re
qu
es
t

de
ni
ed

N12

(c) Second phase

N0

N8

N10

N9

N6

N1

N5

N7

N2 N3

N4

N11

0

0100

010
011

01

110111

11

1

1111 1100

N12

(d) Finalization

Figure 2: Example of the parallelized binary tree-based scheme.

However, there is another one parameter that should
be taken care of in order to guarantee that a binary tree is
created. A node that has already accepted three invitations
should not accept another one, even in the case that this
request is coming from a different subtree node. If this
restriction is not satisfied, then the formed tree would not
be binary. When all nodes in the network have been visited
(Figure 2(c)), a node having two adjacent edges should be
chosen to be the root. For example, if node N4 is chosen
in Figure 2(c) then the formed tree is the one depicted in
Figure 2(d). Generally, this scheme performs faster when
compared to those described in the previous subsection.
However, this comes at a cost in complexity, that is, the
merging process of different subtrees.

3.3. Handling Join and Leave. According to the proposed
schemes the join and leave procedures are straightforward.
Briefly, when a node leaves or an entrant joins the network
only a branch of the tree is affected. More specifically,
supposing that N4 in Figure 1(c) leaves the community,
for example, moves out of range, nodes N8, N5 will seek

parent in N3 or N6 depending on the topology and signal
strength.

On the other hand, thinking of a scenario where N12
joins the network near the range of N3 it will establish a
relationship with either N3, N5, N6, or N9. It is implied
that in the rare case a newcomer cannot immediately find
an association it must wait for some time until some other
node roams out of that specific coverage area (a parent loses
one child). In such occasions there is always the possibility
for the node to roam to a new position until it finds a pair.

Lastly, the most complex leave situation is when the root
node, say N0 in Figure 1(c), leaves the tree for some reason.
ThenN1 orN2, that is, the nodes closer to him, must replace
N0. Assuming that N1 takes over the role of the root it must
abandon N3, keep the connection with N4, and establish
a direct relationship with N2. Consequently, N3 must seek
for another parent. Even in this case, the join procedure is
expected to complete after very few interactions, that is, new
mutual-certifications between the corresponding nodes. A
performance evaluation of join and leave for our scheme is
given in Section 7.

6 EURASIP Journal on Wireless Communications and Networking

4. Certificate Chain Discovery Procedure

For secure communication, any two nodes must be authen-
ticated mutually. This means that each part must acquire
and verify the certificate of the other. This can be fulfilled
by constructing a certificate chain between them. In the
following we consider an approach based on AODV [24].
However, our method can be embedded through proper
extensions or slight modifications to any existing routing
mechanism like Dynamic Source Routing (DSR), Highly
Dynamic Destination-Sequenced Distance-Vector Routing
(DSDV) and Cluster-based Routing Protocol (CBRP) to
mention just a few.

AODV defines four message types which are Route Re-
quest (RREQs), Route Reply (RREPs), Route Error (RERRs),
and Route Reply Acknowledgment (RREP-ACK). All mes-
sage types are received via UDP, and normal IP header
processing applies. According to AODV, every time a route
to a new destination is needed, the node broadcasts a RREQ
to discover it. Note that a route can be determined either
when the RREQ finally reaches its intended destination,
or an intermediate node that has a fresh route to the
destination [24]. Upon that, the route is made available
to the initiator of the RREQ by unicasting a RREP back
to him. This is possible because each node receiving the
initial request caches a route back to the originator. The
binary structure further assists route discovery as each
branch of the tree can be quickly identified by a binary
sequence. For instance, referring to Figure 1(c) and starting
from the root, the route to N5 is “110”, where “1” means
left and “0” right. This fact actually revokes the need
for route optimization in every hop making the whole
procedure particularly effective. Moreover, the length of
the longest route in the binary tree will have on average
O(log 2n) order, where n is the total number of nodes in
the tree. This is easily concluded from [27] where it is
shown that the mean value of the height of a randomly
constructed binary tree with n nodes is equal to aln n −
bln ln n + O(1) for constants a = 4.311 · · · and b =
1.953 · · · .

Taking Figure 1(c), for example, in the following we
describe the necessary steps for N8 (initiator) to build a
certification chain with N10 (peer).

(a) To build the required certificate chain N8 needs
to broadcast a special request message towards
N10.This is necessary in order (i) to explicitly
indicate to the peer that it asks for a certificate chain
establishment, and (ii) to indicate to the intermediate
nodes that they must forward the packet toward its
final destination. AODV per se does not offer such
message so we can consider at least two alternatives.
First, insert the value “5” in the Type field of a
standard RREQmessage as shown in Figure 3(a); this
field identifies the type of the message and is assigned
values between 1 and 4 in AODV [24]. Second, use
a special value, say “11”, in the reserved field of a
standard RREQ; this field is always sent as “0” in
AODV and ignored on reception. In the following
we choose to use the former option. Also, assume

that the IP address of N10 is already known due to
a previous RREQ.

(b) Upon reception of the RREQ message, N10 con-
structs the corresponding special type of RREP.
Similarly to (a) it may insert the value “6” in
the type field meaning that the packet must be
treated as a certificate chain reply. Finally, N10
appends its own certificate to the message, signs the
{RREP||Cert(N10)} block using its private key and
appends it to the RREP. The format of the modified
RREP packet is depicted in Figure 3(b). According to
the local routing table, the resultant packet is sent
back to N8 as a reply.

(c) All intermediate nodes must inspect every RREP
that contains “6” in the type field. Specifically, N7
will validate the signature Sig(RREP||Cert(N10))N10

contained in the received message. Note, that N7 has
the public key of N10, so it can securely verify the
signature. Every attempt by means of a man-in-the-
middle attack to alter the certificate of N10 or the
original RREP will produce an error. Assuming that
the signature check returns true, N7 will sign the
{RREP||Cert(N10)} using his own private key and
forward the result along with the {RREP||Cert(N10)}
block to N2. All the nodes in the path, that is,
N2, N0, N1, N4 will repeat the same steps, as N7
did, until RREP reaches N8. If an error occurs at
a given hop, that is the signature is not valid, the
process is halted, and an RERR is generated and
forwarded back to the initiator. We should mention
that it is important for every node in the chain to
digitally sign not only the original RREP but also the
certificate of the target node (N10 in our case). This
is done to prevent DoS attacks where the certificate
of say N10 is altered when in transit by a man-
in-the-middle attacker. So, N8 will receive a bogus
certificate of N10. Later on, N8 and N10 having
the certificates one another will try to establish a
symmetric key by utilizing, for example, a challenge-
response protocol. Naturally, the process will fail
because the public key of N10 is invalid. This natu-
rally leads to a DoS and consequently, the nodes must
repeat the certificate chain discovery procedure from
the ground up.

(d) As soon as the {RREP||Cert(N10)||Sig(RREP||Cert(N
10))N4} arrives to its final destination, N8 will check
the validity of the signature using the local copy
of N4’s public key. If everything is correct N8 will
prepare his special type of RREP to be sent towards
N10. The procedure is exactly the same as before
but in the reverse order. This will allow N10 to
successfully acquire the certificate of N8. Figure 4
provides an overview of all the aforementioned
steps.

(e) After the two ends have acquired the certificate of
each other they can agree on a per session shared
secret (symmetric key) to communicate securely.

EURASIP Journal on Wireless Communications and Networking 7

Type (5) J R G D U Reserved Hop count

RREQ ID

Destination IP address (N10 IP)

Destination sequence number

Originator IP address (N8 IP)

sequence numberOriginator

(a)

Type (6) R A Reserved Prefix Sz Hop count

Destination IP address (N8 IP)

Destination sequence number

Originator IP address (N10 IP)

Lifetime

(b)

Figure 3: RREQ towards N10 and RREP towards N8.

N0N1 N2N4 N7N8 N10

RREQ 1

{RREP ‖
Cert (N10) ‖
Sig (RREP ‖

Cert (N10))N10}

{RREP ‖
Cert (N10) ‖
Sig (RREP ‖

Cert (N10))N7}

{RREP ‖
Cert (N10) ‖
Sig (RREP ‖

Cert (N10))N2}

{RREP ‖
Cert (N10) ‖
Sig (RREP ‖

Cert (N10))N0}

{RREP ‖
Cert (N10) ‖
Sig (RREP ‖

Cert (N10))N1}

{RREP ‖
Cert (N10) ‖
Sig (RREP ‖

Cert (N10))N4}

{RREP ‖
Cert (N10)}

{RREP ‖
Cert (N8) ‖
Sig (RREP ‖

Cert (N8))N8}

{RREP ‖
Cert (N8) ‖
Sig (RREP ‖

Cert (N8))N7}

{RREP ‖
Cert (N8) ‖
Sig (RREP ‖

Cert (N8))N2}

{RREP ‖
Cert (N8) ‖
Sig (RREP ‖

Cert (N8))N0}

{RREP ‖
Cert (N8) ‖
Sig (RREP ‖

Cert (N8))N1}

{RREP ‖
Cert (N8) ‖
Sig (RREP ‖

Cert (N8))N4}
{RREP ‖
Cert (N8)}

D
es
ti
n
at
io
n

(p
ee
r)

where Sig (x)y is the signature of block x signed by the private key of node y and Cert (x) is the public key certificate of node x.

In
it
ia
to
r

3

2

Figure 4: Certificate chain discovery procedure between N8 and N10.

5. RelatedWork

As already pointed out in the introduction, several mecha-
nisms for self-organized public key management inMANETs
have been proposed in the literature so far. In this section,
we categorize them at a high level in partially centralized
(usually found in hybrid MANETs) and infrastructureless or
ad hoc ones. In a next section we compare our solution with
similar typical schemes that subsume in the second category.

5.1. Partially Centralized Schemes. Works in the first category
are based on some kind of Trusted Third Party (TTP), for
example, special PKI servers, and Kerberos to issue and dis-
tribute digital certificates and public key pairs. The authors
in [1] were the first to propose a partially distributed Certifi-
cation Authority (CA) consisted of servers, combiners, and a
dealer. Their scheme was based on threshold cryptography,
that is, assuming that all partial signatures are collected a
newcomer can compute the complete signature locally to
acquire the public key certificate. In [3] the authors also
propose a distributed CA based on threshold cryptography.
They distribute the CA functionality over specially selected
nodes based on the security and the physical characteristics
of nodes. The selected nodes are called MObile Certificate
Authority (MOCA) servers. Communication overheads are
reduced by caching routes to MOCA servers. Work in [28]
proposes the so called Distributed certification authority
with probabilistic freshness for ad hoc networks (DICTATE)
scheme. DICTATE is based on a combination of threshold

and identity-based cryptosystems to guarantee the security,
availability, and scalability of the certification function. To
do so, it employs a hierarchical CA between one “mother”
CA residing in the wired network, and a group of distributed
CA in ad hoc network. Also, ensures that the distributed
CA always processes a certificate update request in a finite
amount of time and that an adversary cannot forge a
certificate. Moreover, it guarantees that the same entity
responds to a query request with the most recent version of
the queried certificate in a certain probability.

The authors in [29] present IKM an ID-based Key
Management system as a novel combination of ID-based
and threshold cryptography. Actually, IKM is a certificateless
solution in that public keys of mobile nodes are directly
derivable from their known IDs plus some common infor-
mation. Therefore, IKM eliminates the need for certificate-
based authenticated public-key distribution indispensable
in conventional public-key management schemes. Also,
IKM features a novel construction method of ID-based
public/private keys. Work in [30] proposes a solution
of a distributed CA based on threshold cryptography as
well. The authors derive their idea from the fact that
in distributed CA when the number of neighbors of a
node, also called node degree, reduces there is a substantial
increase in the certification service delays. Their solution
is based on the observation that when the node degree
varies, the delays involved in obtaining certificates may be
reduced by dynamically varying the threshold value. This
can dynamically adjust the threshold value by monitoring

8 EURASIP Journal on Wireless Communications and Networking

the average node degree of the network and thereby prevent
an increase in certification service delay. The authors in
[31] suggest a CA cluster-based architecture by dividing
the network into clusters. Eventually, each cluster head is
able to maintain a CA information table, which contains
a list of CA nodes in the local cluster as well as in the
other ones. The distributed CA information is maintained
among cluster heads, which reduces service response delay
and the overall system overhead. Work in [32] proposes a
system called mixed NETworks Trust infrastRUcture baSed
on Threshold cryptography (NetTRUST). NetTRUST uses
two CAs that ensure public key management, that is, central
CAs in wired network, and mobile CAs in ad hoc network.
Mobile CA servers emulate the CA role by using a (k,n)
scheme, and the central CA servers delegate the CA role
to mobile CA servers by using a (t,m) scheme. NetTRUST
is decentralized, supports node mobility, and resists against
mobile CA failures.

5.2. Infrastructureless Schemes. On the other hand, in infras-
tructureless or fully distributed solutions, like the one we
propose here, security does not rely on TTPs or special kind
of servers but on self-organization of nodes. Here, trust
is usually propagated through a trust graph like the one
employed by the well known PGPmodel. The authors of [33]
propose a self-organized trust model for MANETs, in which
trust among nodes is derived via physical contact. According
to the authors every node issues public key certificates to
other trustworthy nodes from its own domain. Nodes can
authenticate each others using chains of trust. All nodes are
assumed to store as many certificates as possible. In this
model, trust establishment is originating from “offline trust
relationships, which in turn are generated from general social
relationships. A modified version of [33] is proposed in [34].
The authors introduce a boot server in order to initialize the
system. This server calculates and distributes to each node
a list of bindings (identifiers and public keys) and each of
them generates the corresponding certificates. Upon that,
a web-of-trust relationships is generated leading to a fully
distributed system, that is, all nodes authenticate themselves
via certificates chains. In [6] the authors describe an on-
demand, fully localized, and hop-by-hop public key man-
agement scheme for MANETs. According to their method
the network nodes self-generate public/private key pairs,
issue certificates to any adjacent nodes, keep these certificates
in their certificate repositories, and provide authentication
service adaptively and quickly to the dynamic topology of
the network without relying on any centralized entities.
Another work that does not use threshold cryptography but
assumes a self-organized PKI among the nodes of a MANET
as proposed by [5] is given in [7]. The authors propose a
protocol that establishes a virtual hierarchy in a peer-to-peer
PKI. This protocol is suitable for the dynamic environments
ofMANETs since it is executed in a short time. Their protocol
does not require to issue new certificates among PKI entities,
facilitates the certification path discovery process and the
maximum path length can be adapted to the characteristics
of mobile terminals with limited processing and storage
capacity. A very recent work that proposes a fully distributed

public key certificate management system based on a hybrid
approach, that is, in trust graphs and threshold cryptography,
is given in [8]. The described solution permits users to issue
public key certificates and to perform authentication via
certificates’ chains without the presence of any centralized
management or trusted authorities. Due to the use of
threshold cryptography the proposed system is able to resist
against false public keys certification.

Work in [35] is also based on web-of-trust approach.
Here, nodes act as CAs without the presence of any TTP.
The system divides the network into clusters, such that nodes
are assigned into different groups with unique identifiers.
Authentication can be performed in a distributed manner,
and newcomers are introduced by any trustable nodes of the
same group. Nodes in the network monitor the behavior of
each other and continuously update their trust tables. This
endures the false certificate issued by dishonest users and
malicious nodes, and avoids them to be selected as intro-
ducing nodes. The approach described in [36] is also based
on distributed clustering and relies on trust values metric
and behavior monitoring in order to distribute the role of
certification authority (CA) in each cluster. It employs fully
self-organized security and monitoring process to supervise
behaviors of nodes with low trust level. Furthermore, the
authors introduce a new concept to protect CAs and avoid
the single point of failure in each cluster. Another Cluster-
based approach is presented in [9]. The authors propose a
practical model of public key certificate chain for MANET.
Their scheme does not rely on a central server, but rather
on Cluster-Based Routing Protocol (CBRP). CBRP is used
to issue certificates in a distributed fashion. The certificates
are chained effectively and the signed messages can be
transferred over a certificate chain.

6. Comparison and Discussion

As already stated in the previous section, the focus of this
paper is on fully distributed or decentralized schemes and
in particular to those that are based on the web-of-trust
model. So, to be able to compare our scheme with others we
briefly categorize all solutions that carry that properties into
localized schemes [6, 33], Cluster-based [9] and hierarchical
ones [7]. In particular, the scheme in [7] builds a virtual hier-
archy over an already fixed web-of-trust between the nodes
in order to facilitate path discovery. Note, that here we only
consider schemes that are directly comparable with ours.
Hence, threshold cryptography schemes, hybrid approaches
and the virtual hierarchy approach of [7] are left out.
Naturally, our solution is also classified into the hierarchical
category. According to localized schemes, each node must
be mutually-certified with all its neighbours. As a result, the
overhead for issuing, storing, and maintaining certificates is
far larger when compared to our method. Moreover, join
and leave procedures for localized mechanisms are generally
more complex and require frequent interplay between many
nodes of the network. According to our solution, each node
is associated with maximum three other nodes and the join
and leave procedures are straightforward, excluding that of
which the root node leaves the tree (see Section 3.3).

EURASIP Journal on Wireless Communications and Networking 9

Table 1: Comparison between schemes.

Properties Our scheme Localized [6]
Cluster-based

[9]

Size of Replies (e.g.,
RREP)

Small Large Small

Scalable (certificate
management)

Yes No Yes

Number of paths
between two nodes

One Multiple Multiple

Path discovery Easy Hard Mediocre

Resistance to DoS
attacks

Yes No No

Join-leave Easy Hard Mediocre

Another important issue is that localized schemes build
one-way trust relationship, not mutual. Putting it another
way, only the certificate of the peer is acquired by the ini-
tiator, not the opposite as our scheme mandates. However, in
order for the two entities to become mutually authenticated
each one of them must successfully obtain the public key
certificate of the other. Moreover, according to localized
schemes, the certificates of all the involved in the chain nodes
are stacked all the way back to the initiator. Therefore, the
more nodes in the certification path the bigger the RREP
message towards the initiator will be. On the downside, our
mechanism copes with this problem similarly to [9] which
is a Cluster-based protocol. Specifically, each node in the
path must locally authenticate any certification path message
received from a previous node in the path. If this check fails
then an error message is instantly sent towards the initiator.
Furthermore, according to [9] each node in the path must
send its certificate to the next mode for validating the RREP’s
signature. However, this is not necessary (on the contrary
it creates extra overhead to each node) because every node
retains a pairwise-certification relationship with the previous
and next one in the path. So, every node uses its local copy of
the certificate of the previous node to validate the signature.
Actually, this is the safest way to do this.

To the best of our knowledge, localized schemes do not
protect the integrity of the critical parts of the certificate
chain messages by having each node signing them, thus
they are prone to DoS attack scenarios. Another issue with
Cluster-based oriented solutions like [9] is that only the
RREP is integrity protected (signed); not the certificate of
the peer node. This of course can lead to DoS attacks as
already described in Section 4.Moreover, the certificate chain
discovery procedure in [9], which as already mentioned
is Cluster-based, requires route optimization in each hop,
which is also avoided by our scheme; actually all routes
are already optimized due to the (virtual) binary-tree-style
topology. Table 1 compares the basic properties of each
abovementioned scheme.

One possible problem with all the aforementioned solu-
tions arises when a node in the path becomes com-
promised. Naturally, this issue is even harder, if not
impossible, to tackle if the attacker is very powerful
and owns a large number of nodes in the MANETs at

some point. In such an event, a malicious node could
falsify the certificate of the peer, construct as normal
the Sig(RREP||bogus Cert(peer))private key of malicious node ypart
and forward the message toward the next hop as normal.
The next node in the chain is not able to detect the forgery,
so the initiator will eventually receive a bogus certificate.
This situation also leads to a DoS incident and breaks down
the whole chain. Note, that no solution proposed so far
deals with such an attack. Actually, similar scenarios can be
repelled with a significant extra overhead. More analytically,
each node in the path, after placing its own certificate, must
resign the Sig(RREP||Cert(peer))y part over again with its
private key and also append each own certificate to the
message before forwarding it to the next node.

For instance, referring to the example of Figure 4, the
corresponding message for N7 to be sent towards N2 will be:
{RREP||Cert(N10)||Cert(N7)||Sig(Sig(RREP||Cert(N10))N10

||Cert(N7))N7}. By doing so, the initiator (N8) will finally
receive a reencapsulated signature from all nodes in the
path as well as all nodes’ certificates. Starting from the inner
signature, N8 can sequentially recalculate all the signatures
until the outer one. Actually, N8 is able to detect the point
of failure and alert other nodes to exclude the misbehaving
member. Although this procedure adds more overhead,
has also a positive outcome. That is, each node acquires
valid certificates of all other nodes in the chain. Storing the
certificates until they become expired can accelerate future
communications. In every case one must balance wisely
between performance and security. So, if security is terminus
then the aforementioned solution must be followed.

7. Performance Evaluation

The performance of the basic binary tree scheme described in
Section 3.1 is simulated and the results are presented in this
section.

7.1. General Considerations and Testbed Setup. In order to
evaluate the proposed scheme we employ the well known
NS/2 simulator [37]. However, we were forced to implement
several additional routines either in TCL or C++ as follows.

(a) create tree. The simulator employs this routine to
build the binary tree. Tree construction begins from
nodeN0. Using the procedure check neighbors a given
node discovers its adjacent nodes and sends them
a message inviting them to join the tree. Note that
initially, due to the ad hoc network topology, no
node knows the status of its neighbors, so the only
way to become aware is by sending them messages
as described in Section 3.1. The first two nodes that
will reply to the invitation will become the initiator
node’s children. All nodes that have already joined the
tree do not answer to any invitation. This procedure
is repeated for all network nodes.

(b) check neighbors. Using this routine a node is able
to discover its adjacent nodes. The procedure first
checks the distance between two nodes and the signal
strength to be able to decide if the nodes are in range.

10 EURASIP Journal on Wireless Communications and Networking

(c) send tree message. This procedure creates two agents,
one for the sending and one for the receiv-
ing node, and associates them. The C++ class
Agent/tree message manages the transmission and
receiving of such messages.

(d) recv peer/recv source. These TCL procedures provide
the appropriate functionality when a node dispatches
a send tree message.

(e) traverse tree. Used to display the final tree structure.
To do so it traverses the tree and outputs the parent
node and its children (if any).

(f) lost my child. It is called upon a leave event.

(g) find my parent. It is called either upon a join event
(newcomer) or by a node that lost its parent and
seeking for a new one in order to rejoin the tree.

(h) add binary string. Every time a given node joins the
tree it acquires a binary label that designates its exact
position in the tree. The label of the root node is null.
This procedure is responsible to administer the label
for each joining node.

(i) start secure communication. It implements the secure
communication between two nodes (called the initia-
tor and the peer).More specifically, when the initiator
wants to securely communicate with a peer sends
him its binary label in the tree. The peer sends its
certificate along the tree towards the initiator.

(j) use certificate chain. It is used to discover the certifi-
cate path from a node called initiator to another node
called peer.

The pseudocode for each one of the aforementioned
routines is given in the appendix. The source code is also
available upon request from the authors.

The simulation parameters are given in Table 2. We
simulated 6 different scenarios in total by varying the
number and the topology of nodes randomly. Specifically,
we used 8, 20, 40, 60, 80, and 100 nodes for each scenario
accordingly. A sample topology for the last 4 scenarios is
depicted in Figure 5. The purpose of the evaluation is three-
fold: (a) to estimate the overall time to construct the binary-
tree under different scenarios, (b) to estimate the overall time
to reconstruct the tree after leave and join events, and (c) to
estimate the network time required to build up a certification
chain.

7.2. Results and Discussion. Figure 6 depicts the overall time
needed to construct the binary tree depending on the
scenario. The time seems to significantly increase when the
number of nodes in the network grows; for example, from
20 to 60 one can spot an additional time penalty of 29
seconds. This is actually expected but it is not the only time-
affecting parameter. The density (topology) of the nodes and
the distance between them also affects the overall time to
build up the binary tree structure. This can be inferred from
the plot as the time of 29.7 seconds needed for 60 nodes
unexpectedly diminishes to 17.2 when the number of nodes
becomes 80. Therefore, it is projected that the time needed

Table 2: Simulation parameters.

Parameter Meaning

set val(chan)
Channel/WirelessChannel;

channel type

set val(prop) Propaga-
tion/TwoRayGround;

radio-propagation model

set val(netif)
Phy/WirelessPhy;

network interface type

set val(mac) Mac/802 11; # MAC type

set val(ifq)
Queue/DropTail/PriQueue;

interface queue type

set val(ll) LL; # link layer type

set val(ant)
Antenna/OmniAntenna;

antenna model

set val(x) [depending on
the scenario];

X dimension of topology

set val(y) [depending on
the scenario];

Y dimension of topology

set val(cp) “”; # node movement model

file set val(sc) “”; # traffic model file

set val(ifqlen) 50; # max packet in ifq

set val(nn) [depending on
the scenario];

number of mobile nodes

set val(seed) 0.0 set
val(stop) 1000.0;

simulation time

set val(rp) AODV; # routing protocol

to construct the tree will be affected by two major factors;
firstly the number of nodes participating in the network, and
secondly the exact topology of the network.

The tree reconstruction times after multiple join and
leave events happening nearly at the same time are given
in Table 3 (see the fourth line of Table 3 in each scenario).
We consider 3 different scenarios where a 10, 20, and 30%
of randomly chosen tree nodes are involved in join or leave
operations almost simultaneously. Each scenario considers
6 variations according to the number of nodes in the tree
as the case may be. The recorded total times seem to be
highly spanned in some cases, for example, for the 40 nodes
case and the 20% variation the time is 0.26 seconds but for
the 30% it climbs to 7.33. The same situation is perceived
for several other scenarios, for example, for the 80 nodes
case there is a large difference of approximately 12.5 seconds
between the 10, 20% variations and the 30% one. On the
other hand, we must consider the fact that these times are
severely affected by the tree topology and the randomness
of the scenario, that is, how many nodes leave/join the tree
each time and the exact position of every node involved in
a leave/join incident. These factors may affect one or several
other nodes depending on the case. That is, if the root node
leaves the tree then it is expected to affect several other nodes
(see Section 3.3). Of course, this is not the case for a leaf
node. Also note that the 30% scenario is not common even
in highly dynamic MANETs, but it is considered here as an
overstressing case.

EURASIP Journal on Wireless Communications and Networking 11

(a) (b)

(c) (d)

Figure 5: The simulation topology for 20 (a), 60 (b), 80 (c), and 100 (d) nodes.

Table 3: Timings and metrics for join/leave scenarios.

1 Number of nodes in tree 8 20

2 Percent of nodes engaged in join/leave operations 10% 20% 30% 10% 20% 30%

3 Number of messages sent 9 9 14 3 4 13

4 Total time to reconstruct the tree (seconds) 0.08 0.06 0.12 0.03 0.06 0.20

5 Mean time (milliseconds) 8.4 7.0 8.4 10.6 14.2 15.3

6 St. Deviation (milliseconds) 2.4 1.9 3.7 1.5 6.8 11.7

7 Confidence interval (80%) (7.4, 9.4) (6.2, 7.8) (7.1, 9.7) (9.4, 11.7) (9.9, 18.5) (11.2, 19.5)

1 Number of nodes in tree 40 60

2 Percent of nodes engaged in join/leave operations 10% 20% 30% 10% 20% 30%

3 Number of messages sent 24 28 40 33 58 49

4 Total time to reconstructthe tree (seconds) 0.28 0.26 7.33 8.05 7.85 1.56

5 Mean time (milliseconds) 11.5 9.3 183.3 244.1 135.3 31.9

6 St. Deviation (milliseconds) 5.6 3.5 710.4 904.2 630.1 144.4

7 Confidence interval (80%) (10, 13) (8.5, 10.2) (39.3, 327.2) (42.3, 445.8) (29.3, 241.4) (5.5, 58.3)

1 Number of nodes in tree 80 100

2 Percent of nodes engaged in join/leave operations 10% 20% 30% 10% 20% 30%

3 Number of messages sent 41 69 70 60 89 89

4 Total time to reconstructthe tree (seconds) 0.53 0.84 13.07 3.37 5.25 11.12

5 Mean time (milliseconds) 13.0 12.2 186.8 56.2 59.0 124.9

6 St. Deviation (milliseconds) 8.3 7.6 1028.9 311.7 316.1 736.1

7 Confidence interval (80%) (11.4, 14.7) (11.1, 13.4) (29.2, 344.4) (4.6, 107.8) (16.1, 101.9) (24.9, 224.9)

The aforementioned situation of—in some cases—high
deviations in the results is confirmed by the timings and
associated metrics provided in Table 3. The third line of
the table gives the total number of roundtrip messages
required in each subscenario to reconstruct the tree. These

messages were sent from all the affected nodes (i.e., nodes
that lost their parent and/or others seeking to join the tree)
in each sub-scenario in order for them to (re)join the binary
tree. Note that an affected node may send one or more
messages towards other nodes in an effort to eventually

12 EURASIP Journal on Wireless Communications and Networking

1.1
0.7

19

29.7

17.2

18.1

−1
4

9

14

19

24

29

8 20 40 60 80 100

T
im

e
(s
ec
on

ds
)

Number of nodes

Figure 6: Binary tree construction timings.

(re) join the tree. For instance, the 8 nodes case and the
10% variation as executed (1 node left) led to a total of 9
messages to be sent. These 9 messages required 0.08 seconds
(75.5 milliseconds) altogether ending up to reforming the
binary tree structure. For the 20 nodes scenario and the
10% variation only 3 messages were required and thus the
overall time diminishes to 0.03 seconds (31.7 milliseconds).
However, as the tree grows and the percentage of simultane-
ously join/leave incidents increases the number of messages
required to reconstruct the tree tend—as a general rule—
to augment. For example, the 100 nodes scenario with the
20, 30% variations required 89 messages to rebuild the
binary tree, while the 10% variation triggered 60 messages
from affected nodes. Also, message roundtrip times may
differ significantly from sub-scenario to sub-scenario, and in
some cases present unexpected peaks. This is justified by the
unreliability of the wireless medium and channel allocation
mechanisms (in our case these conditions are provided by
NS/2). Besides, this situation is confirmed by the mean and
standard deviation times given in the fifth and sixth line
of Table 3 respectively. For instance, the 80 nodes scenario
and the 30% variation produces a standard variation time of
almost 1 second. Nevertheless, the spread of node message
timings around the mean time is not certain to grow as
the number of nodes increases. Therefore, we provide an
80 percent confidence interval metric to provide a better
estimation of the range within which the true value of the
statistic parameters of Table 3 lie. Generally, one can say
that these timings heavily depend on the randomness of
each scenario and the topology of the tree as noted again
earlier.

Figure 7 presents the overall time needed for two nodes
to exchange their certificates as described in Section 4. More
specifically, from an edge leaf node to another; taking
Figure 1 as an example from N11 to N10. This time is also
proportional to the number of nodes in the network, that
is, the depth of tree. Here, we only consider the network
time to fulfill such a request for the worst case scenario. This
is justified by the fact that the cryptographic functions (see
Section 4) involved heavily rely on the device employed as the
case may be. This gives one the advantage to easily recalculate
the total times when changing the hardware characteristics of
a device or the security algorithm employed. For instance,
when speaking for modern processors, for example, an

16.1

72.4

102.3

148.9

143.3

203.6

0

50

100

150

200

250

8 20 40 60 80 100

T
im

e
(m

ill
is
ec
on

ds
)

Number of nodes

Figure 7: Certificate exchange timings (network only).

Intel Core 2 1.83GHz processor under Windows Vista
in 32-bit mode an RSA 1024 plain signature/verification
requires 1.48 and 0.07 milliseconds, respectively, (see
http://www.cryptopp.com/benchmarks.html). For a rather
obsolete mobile device like the Sharp Zaurus SL-5500G
(206MHz Intel SA-1110 StrongARM) the RSA 1024 plain
generation/verification time is 78.0 and 4.3milliseconds,
respectively, [38]. Additional signature generation timings
for different hardware settings and key lengths can be
found in [39]. In a nutshell we can argue that our scheme
requires few hundreds ofmilliseconds to build up a certificate
chain between two nodes. This is because the network
time is minimized due to the binary-tree structure (i.e.,
for 80 nodes it only requires 143ms), while the public
key operations take up the biggest portion requiring two
signature operations per node except the initiator and the
peer. However, in all cases, the signature verification time can
be considered negligible. Overall, the binary tree formation
procedure and maintenance may be time consuming but
it really compensates when certificate exchange comes into
play.

8. Conclusions

It is common ground that a MANET environment must
be self-organizing and highly adaptive. When focusing on
security, trust relationship between nodes in such network
dynamically changes due to several causes including tem-
porary problem, join/leave occurrence, hostile or selfish
behavior, and so forth. The high-level contribution of this
work is to propose and evaluate a public key management
scheme based on a binary tree formation of the network’s
nodes. The motivation here is that the binary tree structure
is able to boost any certificate chaining transaction and
accelerate the re-assemble of the “trust graph” after join/leave
events. We discuss and analyze two versions of the same
method for building and maintaining a binary tree of trust
between the nodes of a MANET. The first one triggers
the formation procedure from a single randomly selected
node, while the other hastens the creation of the binary
tree by starting concurrently from several different nodes.
We consider related work to a great extend and theoretically
compare our proposal with schemes that classify in the same
category. While our analysis does not concentrate on how

EURASIP Journal on Wireless Communications and Networking 13

the nodes acquire an initial level of trust and how they
maintain it we survey the literature for solutions to this
problem. Evaluation facts of the proposed scheme under
different scenarios via simulations are also provided. Results
show that the binary tree (re)structure is attainable and
affordable in terms of service times while at the same time
achieves optimal performance in case of certificate chain
establishment. As a statement of direction, we are currently
working on refining and simulating the parallelized binary
tree-based scheme in order to obtain a better view on the
performance of our schemes.

Appendix

A. Pseudocode of NS/2 Custom Routines

A.1. Procedure create tree

create tree()
Creates the whole tree structure of the ad hoc network
for each node find neighbors node and send them a message
to ask if they can be a child
for each node i {
for each node j, i /= j {
call procedure check neighbors(node i, node j)
if node i and node j are neighbors

call procedure send tree message(i, j, “child”)
}

}

A.2. Procedure check neighbors

check neighbors(node a, node b)
Check if node a is neighbor of node b
compute the distance between node a and node b
if distance <= antenna range

return a is neighbor of b
else
return a is not neighbor of b

A.3. Procedure send tree message

send tree message(source node, peer node, message
type)
Send a message from source to peer to invite him as a child

Create Agent/tree message for source node
Create Agent/tree message for peer node

Connect the agents

if {$message type = = “child”} {
the source node invites peer node to be his child
call tree messageAgent(“child”)

} else {
the source node invites peer node to be his parent
call tree messageAgent(“search parent”)
}

}

A.4. Procedures used by a node to become parent or child node.

a. Procedure Recv Peer Parent

recv peer parent(source node)
This function is executed when a node receive a request to be
parent

if peer node is not in the same subtree of source node {
if peer node has not left child {
set source node as peer node’s left child

}
else if peer node has not right child {
set source node as peer node’s right child

}
else {
cannot be a parent
return failure

}
}

b. Procedure Recv Source Parent

recv source parent(peer node)
This function is executed when a node receives the answer of
a candidate parent

if peer node accepts to be a parent {
set peer node as parent of source node
add binary label to specify the position of the node in the

tree
call add binary string(source)

}

c. Procedure Recv Peer Child

recv peer child(source node)
This function is executed when a node receives a message to
be a child

if peer node has not a parent {
Accept to be child
set peer node as child of source node
return success

}
else {

return failure
}

d. Procedure Recv Source Child

recv source child(return, peer node)
This function is executed when a node receives the answer of
a candidate child

if return is success {
if source node has not left child {
set peer node as source node’s left child
set binary label “1”

}

14 EURASIP Journal on Wireless Communications and Networking

else if source node has not right child {
set peer node as source node’s right child
set binary label “0”

}
}

A.5. Procedure traverse tree

traverse tree()
This function traverses the tree. For each node display the
parent,
the children and the binary label.

for each node i {
print parent node
if node i has left child

print left child
if node i has right child

print right child
print node’s binary label

}

A.6. Procedure Lost My Child

lost my child()
Remove children nodes that are not neighbors anymore

for each node i {
if node i has left child {
call procedure check neighbors(node i, left child)
if node i and left child are not neighbors {

set node i’s left child as null
}

}

if node i has right child {
call procedure check neighbors(node i, right child)
if node i and right child are not neighbors {

set node i’s right child as null
}

}
}

A.7. Procedure find my parent

find my parent()
If a new node joins the tree or an existing node is not anymore
neighbour with his parent, look for a new parent (recreate the
tree structure)

for each node i {

if the current node has lost his parent or a new node is
coming
call procedure check neighbors(node i, parent)
if (node i and his parent are not neighbors) or (node i has

not parent) {

for each node j {
if i /= j {
call procedure check neighbors(node i, node j)
if (node i and node j are neighbors) {

call procedure send tree message(i, j, “parent”)
}
}

}
}

}

A.8. Procedure add binary string

add binary string(node id)
Define a binary string for each node in relation with its
position
in the tree. Left child of root node has 1 and right child of root
node has 0

the node is leaf
If node id = “null” {
return

}

set parent binary label as the binary label of node id’s parent
if node id is left child {
set node id’s binary label as parent binary label + “1”

}
else {

set node id’s binary label as parent binary label + “0”
}

Recursively call
call procedure add binary string(node id’s left child)
call procedure add binary string(node id’s right child)

A.9. Procedure start secure communication

start secure communication(source node, peer node)
A node send its IP address to another node in order to
communicate safely using certificate chain

call procedure use certificate chain(source node, binary
label of peer node)

A.10. 10. Procedure use certificate chain

use certificate chain(source node,
peer node binary label)
Discover the certificate path from a node to another node
Decide the next node in the path according to the binary string
(position) of the peer node

call procedure where to give certificate(source node, peer
node binary label)

if (next path=“parent”) {

EURASIP Journal on Wireless Communications and Networking 15

call procedure send certificate message(source node,
parent)
}
else if (next path=“left child”) {
call procedure send certificate message(source node, left

child)
}
else
call procedure send certificate message(source node, right
child)
}

References

[1] L. Zhou and Z. J. Haas, “Securing ad hoc networks,” IEEE
Network, vol. 13, no. 6, pp. 24–30, 1999.

[2] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang, “Providing
robust and ubiquitous security support for mobile ad-hoc
networks,” in Proceedings of the International Conference on
Network Protocols (ICNP ’01), pp. 251–260, November 2001.

[3] S. Yi and R. Kravets, “MOCA: mobile certificate authority for
wireless ad-hoc networks,” in Proceedings of the 2nd Annual
PKI Research Workshop (PKI ’03), 2003.

[4] A. Pirzada and C. McDonald, “Kerberos assisted authentica-
tion in mobile ad-hoc networks,” in Proceedings of the 27th
Australasian Computer Science Conference, vol. 26, pp. 41–46,
2004.

[5] J.-P. Hubaux, L. Buttyán, and S. Čapkun, “The quest for
security in mobile ad hoc networks,” in Proceedings of the ACM
International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc ’01), pp. 146–155, ACM, 2001.

[6] R. Li, J. Li, P. Liu, and H.-H. Chen, “On-demand public-
key management for mobile ad hoc networks,” Wireless
Communications andMobile Computing, vol. 6, no. 3, pp. 295–
306, 2006.

[7] C. Satizábal, J. Hernández-Serrano, J. Forné, and J. Pegueroles,
“Building a virtual hierarchy to simplify certification path
discovery in mobile ad-hoc networks,” Computer Communi-
cations, vol. 30, no. 7, pp. 1498–1512, 2007.

[8] M. Omar, Y. Challal, and A. Bouabdallah, “Reliable and
fully distributed trust model for mobile ad hoc networks,”
Computers and Security, vol. 28, no. 3-4, pp. 199–214, 2009.

[9] G. Hahn, T. Kwon, S. Kim, and J. Song, “Cluster-based
certificate chain for mobile ad hoc networks,” in Proceedings
of the International Conference on Computational Science
and Applications (ICCSA ’10), vol. 3981 of Lecture Notes in
Computer Science, pp. 769–778, Springer, 2006.

[10] G. Kambourakis, E. Konstantinou, and S. Gritzalis, “Binary
tree based public-key management for mobile ad hoc net-
works,” in Proceedings of the IEEE International Symposium on
Wireless Communication Systems (ISWCS ’08), pp. 687–692,
IEEE, Reykjavik, Iceland, October 2008.

[11] N. Asokan and L. Tarkkala, “Issues in initializing security,” in
Proceedings of the 5th IEEE International Symposium on Signal
Processing and Information Technology (ISSPIT ’05), pp. 460–
465, IEEE, 2005.

[12] C. Dwork and M. Naor, “Pricing via processing or com-
bating junk mail,” in Proceedings of the 12th Annual Inter-
national Cryptology Conference on Advances in Cryptology
(CRYPTO ’92), vol. 740 of Lecture Notes in Computer Science,
pp. 139–147, Springer, 1992.

[13] M. Abadi, M. Burrows, M. Manasse, and T. Wobber, “Moder-
ately hard, memory-bound functions,” ACM Transactions on
Internet Technology, vol. 5, no. 2, pp. 299–327, 2005.

[14] H. Luo, J. Kong, P. Zerfos, S. Lu, and L. Zhang, “URSA:
ubiquitous and robust access control for mobile ad hoc
networks,” IEEE/ACM Transactions on Networking, vol. 12, no.
6, pp. 1049–1063, 2004.

[15] N. Saxena, G. Tsudik, and J. H. Yi, “Efficient node admission
for short-lived mobile ad hoc networks,” in Proceedings of
the 13th IEEE International Conference on Network Protocols
(ICNP ’05), pp. 269–278, Boston, Mass, USA, November 2005.

[16] G. F. Marias, D. Flitzanis, K. Mandalas, and P. Georgiadis,
“Cooperation enforcement schemes for MANETs: a survey,”
Jouranl of Wireless Communications and Mobile Computing,
vol. 6, no. 3, pp. 319–332, 2006.

[17] J. Luo, X. Liu, and M. Fan, “A trust model based on fuzzy
recommendation for mobile ad-hoc networks,” Computer
Networks, vol. 53, no. 14, pp. 2396–2407, 2009.

[18] S. Buchegger and J.-Y. L. Le Boudec, “Performance analysis
of the confidant protocol,” in Proceedings of the 3rd ACM
International Symposium on Mobile Ad Hoc Networking and
Computing (MOBIHOC ’02), pp. 226–236, ACM, New York,
NY, USA, 2002.

[19] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating routing
misbehavior in mobile ad hoc networks,” in Proceedings of the
6th Annual International Conference on Mobile Computing and
Networking (MOBICOM ’00), pp. 255–265, IEEE, New York,
NY, USA, 2000.

[20] Q. He, D. Wu, and P. Khosla, “SORI: a secure and objective
reputation-based incentive scheme for ad-hoc networks,” in
Proceedings of the IEEE Wireless Communications & Network-
ing Conference (WCNC ’04), vol. 2, pp. 825–830, March 2004.

[21] H. Yang, J. Shu, X. Meng, and S. Lu, “SCAN: self-organized
network-layer security in mobile ad hoc networks,” IEEE
Journal on Selected Areas in Communications, vol. 24, no. 2, pp.
261–273, 2006.

[22] S. Zhong, J. Chen, and Y. R. Yang, “Sprite: a simple, cheat-
proof, credit-based system for mobile ad-hoc networks,” in
Proceedings of the IEEE Communications Society Conference on
Computer Communications (INFOCOM ’03), vol. 3, pp. 1987–
1997, IEEE, 2003.

[23] G. Kambourakis, S. Gritzalis, and J.-H. Park, “Device authen-
tication in wireless and pervasive environments,” Intelligent
Automation and Soft Computing, vol. 16, no. 3, pp. 399–418,
2010.

[24] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand
Distance Vector (AODV) Routing,” IETF RFC 3561, July 2003.

[25] C. Zhang, Y. Song, and Y. Fang, “Modeling secure connectivity
of self-organized wireless ad hoc networks,” in Proceedings of
the 27th IEEE Communications Society Conference on Computer
Communications (INFOCOM ’08), pp. 825–833, April 2008.

[26] “Keyanalyze—analysis of a large OpenPGP ring,” analysis by
Drew Streib, 2009.

[27] B. Reed, “The height of a random binary search tree,” Journal
of the ACM, vol. 50, no. 3, pp. 306–332, 2003.

[28] J. Luo, J.-P. Hubaux, and P. T. Eugster, “DICTATE: distributed
certification authority with probabilistic freshness for ad
hoc networks,” IEEE Transactions on Dependable and Secure
Computing, vol. 2, no. 4, pp. 311–323, 2005.

[29] Y. Zhang, W. Liu, W. Lou, and Y. Fang, “Securing mobile ad
hoc networks with certificateless public keys,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 3, no. 4, pp.
386–399, 2006.

16 EURASIP Journal on Wireless Communications and Networking

[30] S. Raghani, D. Toshniwal, and R. Joshi, “Dynamic support for
distributed certification authority in mobile ad hoc networks,”
in Proceedings of the International Conference on Hybrid
Information Technology (ICHIT ’06), pp. 424–432, November
2006.

[31] Y. Dong, A.-F. Sui, S. M. Yiu, V. O. K. Li, and L. C. K. Hui,
“Providing distributed certificate authority service in cluster-
based mobile ad hoc networks,” Computer Communications,
vol. 30, no. 11-12, pp. 2442–2452, 2007.

[32] M. Omar, Y. Challal, and A. Bouabdallah, “NetTRUST:
mixed networks trust infrastructure based on threshold
cryptography,” in Proceedings of the 3rd International Con-
ference on Security and Privacy in Communication Networks
(SecureComm ’07), pp. 2–10, 2007.

[33] S. Capkun, L. Buttyan, and J.-P. Hubaux, “Self-organized
public-key management for mobile ad hoc networks,” IEEE
Transactions on Mobile Computing, vol. 2, no. 1, pp. 52–64,
2003.

[34] K. Ren, T. Li, Z. Wan, F. Bao, R. H. Deng, and K. Kim, “Highly
reliable trust establishment scheme in ad hoc networks,”
Computer Networks, vol. 45, no. 6, pp. 687–699, 2004.

[35] E. C. H. Ngai and M. R. Lyu, “Trust- and clustering-
based authentication services in mobile ad hoc networks,” in
Proceedings of the 24th International Conference on Distributed
Computing Systems Workshops, pp. 582–587, 2004.

[36] A. Rachedi and A. Benslimane, “Trust and mobility-based
clustering algorithm for secure mobile ad hoc networks,” in
Proceedings of the 2nd International Conference on Systems
and Networks Communications (ICSNC ’06), pp. 72–78, IEEE,
October 2006.

[37] “NS-2, Network Simulator 2,” http://www.isi.edu/nsnam/ns/.
[38] D. Westhoff, B. Lamparter, C. Paar, and A. Weimerskirch, “On

digital signatures in ad hoc networks,” European Transactions
on Telecommunications, vol. 16, no. 5, pp. 411–425, 2005.

[39] X. Ding, D. Mazzocchi, and G. Tsudik, “Equipping smart
devices with public key signatures,” ACM Transactions on
Internet Technology, vol. 7, no. 1, pp. 1–3, 2007.

	1. Introduction
	2. Establishing and Maintaining Trust between Network Nodes
	3. Proposed Solutions
	4. Certificate Chain Discovery Procedure
	5. Related Work
	6. Comparison and Discussion
	7. Performance Evaluation
	8. Conclusions
	Appendix
	A. Pseudocode of NS/2 Custom Routines

	References

