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We consider the weighted sum-rate maximization problem in downlink Orthogonal Frequency Division Multiple Access
(OFDMA) systems. Motivated by the increasing popularity of OFDMA in future wireless technologies, a low complexity
suboptimal resource allocation algorithm is obtained for joint optimization of multiuser subcarrier assignment and power
allocation. The algorithm is based on an approximated primal decomposition-based method, which is inspired from exact primal
decomposition techniques. The original nonconvex optimization problem is divided into two subproblems which can be solved
independently. Numerical results are provided to compare the performance of the proposed algorithm to Lagrange relaxation
based suboptimal methods as well as to optimal exhaustive search-based method. Despite its reduced computational complexity,
the proposed algorithm provides close-to-optimal performance.

1. Introduction

Orthogonal Frequency Division Multiple Access (OFDMA)
plays a major role in the physical layer specifications of future
wireless technologies (e.g., 3G-LTE, WIMAX, IMT-A) [1–4].
In OFDMA systems, the transmit power and subcarriers are
dynamically assigned to the users, based on their channel
state information (CSI) to optimize a certain performance
criteria [5–22]. In general, this process requires solving
combinatorial optimization problems. Thus, the existing
convex optimization techniques cannot be directly applied,
and the complexity of the problem increases exponentially
with the number of subcarriers.

Two main radio resource allocation (RRA) problems
have been addressed in the literature. The first ones, consist
of maximizing an increasing function of the user rates
[5–13] subject to different power constraints, whilst the
second ones consist of minimizing the transmit power
subject to constraints on the minimum user rates [13–17]. A
suboptimal greedy method for maximizing the smallest rate
among the users has been proposed in [5]. A branch-and-
bound based algorithm for sum-rate maximization has been
proposed in [6]. However, in practice the branch-and-bound

method is still too computationally heavy for finding the
global solution [23]. Computationally efficient algorithms
for maximizing the sum-rate have been developed in [7, 8].
A suboptimal method for characterizing the achievable rate
region of the two-users frequency division multiple access
(FDMA) channel have been presented in [10]. The general
weighted sum-rate maximization problem has been used in
[9] to characterize FDMA capacity region for a broadcast
channel. Due to the nontractability of the original problem, a
modified convex problem formulation, FDMA-time division
multiple access (TDMA) was proposed (i.e., time sharing
among users). Authors also considered algorithms to obtain
optimal and suboptimal solutions to a particular variation of
the original problem where the total power is evenly divided
among the used set of subcarriers. Lagrangian relaxation-
based approaches to obtain suboptimal algorithms for the
weighted sum-power minimization problem has been intro-
duced in [13, 14]. A greedy algorithm is proposed in [15]
to obtain and approximate solutions for the same problem.
Recently, a Lagrangian relaxation-based method has been
proposed in [13] for the weighted sum-rate maximization
problem. A bisection search method was used to update
the dual variable until the algorithm converges. Due to the
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Figure 1: Downlink OFDMA system with K users and M subcarriers.

nonconvexity of the optimization problem the optimality of
the algorithm is not guaranteed.

In this paper, we propose an alternative method based
on the primal decomposition technique [24, 25]. Using
numerical simulations, its performance is compared to
Lagrangian relaxation based algorithm [13] as well as to the
optimal exhaustive search algorithm. Numerical results show
that the proposed algorithm converges very fast. Although,
the optimality of the final value cannot be guaranteed due
to the nonconvexity of the problem, the simulations show
that rate-region achieved by the proposed algorithm exactly
matches with the one obtained using optimal exhaustive
search algorithm.

The rest of the paper is organized as follows. In Section 2
we present the system model and problem formulation.
The proposed algorithm is presented in Section 3 and
convergence properties are discussed in Section 4. Section 5
compares the complexity of the proposed algorithm to
Lagrangian relaxation-based algorithm in [13] as well as to
the optimal exhaustive search based method. The numerical
simulation results are presented in Sections 6, and 7 con-
cludes our paper.

Notations. |x| denotes the absolute value of complex num-
ber x. xT represents the transpose of vector x and ei denotes
the ith standard unit vector. CN (c, σ2) stands for circularly
symmetric complex Gaussian distribution with mean c,
variance σ2/2 per dimension. For any real number r, [r]+

denotes max{0, r}.

2. SystemModel and Problem Formulation

Consider a single antenna (Note that, under OFDMA
assumption, extension to the multiple antennas case is
straightforward [26].) OFDMA downlink transmission with
K users and M subcarriers as shown in Figure 1. The signal
received by user k in subcarrier m can be expressed as

rkm = hkmxkm
√
pkm + wkm, k = 1, . . . ,K , m ∈ Sk, (1)

where k is the user index, m is the subcarrier index, Sk

denotes the set of subcarriers allocated to user k, xkm is the
transmitted signal, pkm is the power allocated, hkm is channel
frequency response, andwkm is the received noise. We assume
that hkm is time-invariant and its value is available at the base
station. The noise samples are assumed to be independent
and identically distributed as wkm ∼ CN (0, σ2

km). We denote
by ckm = |hkm|2/σ2

km the channel signal-to-noise ratio
(SNR) of kth user in subcarrier m and by βk the weight
associated with the rate of user k. The weighted sum-rate
maximization problem subject to a sum-power constraint PT
can be formulated as [13]

maximize
K∑

k=1

∑

m∈Sk
βklog2

(
1 + pkmckm

)

subject to
K∑

k=1

∑

m∈Sk
pkm = PT

Sk ∩ Sl = ∅, ∀k /= l

pkm ≥ 0, k = 1, . . . ,K , m = 1, . . . ,M,

(2)

where variables are pkm and Sk.
It is also useful to introduce a virtual system where each

subcarrier can be used by all users in the same time. This
results in a general OFDMA downlink channel where the
signal received by user k in subcarrier m is given by

rkm = hkmxkm
√
pkm + hkm

K∑

i /= k

xim
√
pim + wkm (3)

and the second term in the right-hand side represents the
interference from other users. Assuming independent chan-
nel coding across users at the transmitter and independent
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decoding at receivers, the weighted sum-rate maximization
problem for the virtual system can be formulated as

maximize
K∑

k=1

M∑

m=1

βklog2

⎛

⎝1 +
pkm

∑K
j=1, j /= k p jm + c−1

km

⎞

⎠

subject to
K∑

k=1

M∑

m=1

pkm = PT

pkm ≥ 0, k = 1, . . . ,K , m = 1, . . . ,M,

(4)

where the optimization variables are pkm. The constraints
associated with orthogonal subcarrier allocations in problem
(2) have been dropped out and the interference among users
allocated to the same subcarrier is reflected in the objective.

Here we can make several observations. First, any
solution of problem (4) is such that the second constraint in
problem (2) is automatically satisfied, for reasons that will be
explained in the beginning of Section 3.2. In other words, any
solution of problem (4) is feasible for problem (2). Moreover,
at any of these solutions the objective function of problem (4)
will be exactly the same as the objective function of problem
(2). Based on these observations it can be concluded that any
solution of the auxiliary problem (4) is a solution for the
original problem (2) as well.

The original problem (2) is combinatorial and it requires
exponential complexity to find a global optimum. Although
problem (4) is still nonconvex it is noncombinatorial. Thus,
in the following, we focus on solving problem (4) instead
of solving the original problem (2). A similar approach
has been used in [7] to solve the (nonweighted) sum-rate
maximization problem, that is, for the particular case βk =
1, k = 1, . . . ,K . However, the methods proposed there do not
apply to the general case of arbitrary weights, for reasons that
will become clear in Section 3.3. Due to the nonconvexity
of problem (4) finding the global optimum is intractable.
Thus, an approximative method inspired from the primal
decomposition technique is presented in Section 3.

3. Approximated Primal
Decomposition- (APD-) Based Algorithm

3.1. Primal Decomposition. To reveal the complicating con-
straints [24], we introduce M new variables pm =

∑K
k=1 pkm,

m = 1, . . . ,M, and reformulate the problem (4) as follows:

maximize
K∑

k=1

M∑

m=1

βklog2

(

1 +
pkm

pm − pkm + c−1
km

)

subject to
M∑

m=1

pm = PT

K∑

k=1

pkm = pm, m = 1, . . . ,M

pkm ≥ 0, k = 1, . . . ,K , m = 1, . . . ,M,

(5)

where the optimization variables are pkm and pm. Note that
pm represents the total power on subcarrier m. Treating pm

as complicating variables, problem (5) can be decomposed
[24, 25] into a master problem and M subproblems, one
subproblem for each subcarrier m = 1, . . . ,M. For a given
subcarrier m, the subproblem is given by

maximize
K∑

k=1

βklog2

(

1 +
pkm

pm − pkm + c−1
km

)

subject to
K∑

k=1

pkm = pm

pkm ≥ 0, k = 1, . . . ,K ,

(6)

where variables are pkm, k = 1, . . . ,K . The master problem
can be expressed as

maximize
M∑

m=1

f �m
(
pm
)

subject to
M∑

m=1

pm = PT

pm ≥ 0, m = 1, . . . ,M,

(7)

where variables are pm and f �m (pm) represents the optimal
value of subproblem (6) for fixed pm.

3.2. Algorithm Derivation. Let us denote by P the feasible
set of problem (6). Note that subproblem (6) is not a
convex optimization problem (Since we maximize a convex
function.). However, its objective function is convex with
respect to (w.r.t.) optimization variables p1m, . . . , pKm, its
feasible set is a nonempty convex polyhedral set (i.e., a
simplex [27]) and its objective is bounded above on P .
Thus, by following the approach of [7, Section III], from [28,
Corollary 32.3.4] (If a convex function f is bounded above
on a convex set X ⊆ dom f , then the maximum of f relative
to X is attained at one of the finitely many extreme points
of X.) it follows that the solutions of subproblems (6) must
be achieved at one of the vertices of the polyhedral set P .
Consequently, the solutions of the M subproblems can be
expressed as

[
p�1m, . . . , p�Km

] = pme
T
jm , m = 1, . . . ,M, (8)

where jm represents the index of the user allocated to mth
subcarrier, that is,

jm = arg max
k

(
1 + pmckm

)βk
, m = 1, . . . ,M. (9)

Solution (8) confirms that, even though in subproblems (6)
all users are allowed to use all subcarriers, the optimal power
allocation consists of allocating only one user per subcarrier.
This guarantees that solution (8) is feasible for the original
problem (2).

By substituting (8) and (9) in the objective of (6),
f �m (pm) can be expressed as

f �m
(
pm
)
= βjm log2

(
1 + pmcjmm

)
(10)

= max
k

βk log2

(
1 + pmckm

)
, m = 1, . . . ,M. (11)
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We note that the index jm depends on pm according to (9)
and the function f �m (pm) is the pointwise maximum of a
set of concave functions. Therefore f �m (pm) is not a concave
function w.r.t. pm [27] in general. Thus, standard convex
optimization tools (e.g., subgradient-based methods) cannot
be directly applied to solve master problem (7).

We propose an iterative method, where at each iteration
i we first solve the M subproblems (6) to obtain an user-to-
carrier allocation j(i)m for a given subcarrier power allocation
p(i)
m , m = 1, . . . ,M. Then, the objective of the master problem

is approximated by the following lower bound

M∑

m=1

βj(i)m
log2

(
1 + pmcj(i)m m

)

≤
M∑

m=1

f �m
(
pm
)

, [p1, . . . , pM]T ∈ P ,

(12)

where P denotes the feasible set of the master problem (7).
The lower bound is concave w.r.t. p1, . . . , pM and the solution
of the approximated master problem can be found by
multilevel waterfilling algorithm [9]. The resulting solution
is used as subcarrier power allocation for the next iteration.
The proposed algorithm can be summarized as follows.

Algorithm 1. Approximated primal decomposition (APD)
for OFDMA weighted sum-rate maximization.

(1) initialization: i = 1, pm
(i) = PT/M.

(2) solve the M subproblems (6) for pm = p(i)
m and return

j(i)m , m = 1, . . . ,M computed according to (9).

(3) solve the following approximation of master problem
(7)

maximize
M∑

m=1

βj(i)m
log2

(
1 + pmcj(i)m m

)

subject to
M∑

m=1

pm = PT

pm ≥ 0, m = 1, . . . ,M,

(13)

and return the solution p�m; let pm
(i+1) = p�m.

(4) check a stopping criteria; if it is satisfied EXIT,
otherwise let i = i + 1 and go to step (2).

The solution of problem (13) solved at step (3) is given
by the following multilevel waterfilling expression [9]:

p�m =
(
Lβj(i)m

− c−1
j(i)m m

)+

, m = 1, . . . ,M, (14)

where L is chosen such that the power constraint is satisfied
with equality, that is,

L =
PT +

∑
{m|p�m>0} c

−1
j(i)m m

∑
{m|p�m>0} βj(i)m

. (15)

3.3. Particularization to the Sum-Rate Maximization. The
problem of the sum-rate maximization (i.e., βk = 1 for all
k = 1, . . . ,K) in downlink OFDMA systems is solved in [7,
Section III]. The solution method is exactly equivalent to
only one iteration of the APD algorithm. Unlike the general
weighted sum-rate maximization, in which user weights βk’s
are different, in the sum-rate maximization (i.e., βk = 1
for all k = 1, . . . ,K) the index jm will not depend on pm
according to (9). Thus, by using (10) and (11) the function
f �m (pm) can be found as f �m (pm) = log2(1 + pmcjmm) =
log2(1 + pm ·maxkckm) which is concave w.r.t. pm (recall that
the function f �m (pm) is not concave w.r.t. pm when the user
weights βk’s are different). As a result, the inequality given in
(12) holds with equality and solving problem (7) gives the
optimal subcarrier power allocation [7, Section III].

4. Convergence Behavior and Exit Criterion

In this section, we start by investigating the monotonicity
of the proposed algorithm. Then we provide a specific
exit criterion which certifies that algorithm converged to a
fixed power and subcarrier allocation followed by a simple
graphical illustration.

4.1. Monotonic Behavior. The following theorem states the
monotonic behavior of the proposed algorithm.

Theorem 1. For any iteration i ≥ 1,

M∑

m=1

f �m
(
p(i)
m

)
≤

M∑

m=1

f �m
(
p(i+1)
m

)
, (16)

that is, the proposed APD method is an ascent algorithm.

Proof. From (10) and (11), it follows that the solution of (6)
in iteration i is given by,

f �m
(
p(i)
m

)
= max

k
βklog2

(
1 + p(i)

m ckm
)

,

= βj(i)m
log2

(
1 + p(i)

m cj(i)m m

)
, m = 1, . . . ,M.

(17)

Now we can write the following chain of relations,

M∑

m=1

f �m
(
p(i)
m

)
≤

M∑

m=1

βj(i)m
log2

(
1 + p(i+1)

m cj(i)m m

)

≤
M∑

m=1

max
k

βklog2

(
1 + p(i+1)

m ckm
)

=
M∑

m=1

f �m
(
p(i+1)
m

)
,

(18)

where the first inequality follows from (13), the second one
follows trivially from the maximization over the users, and
the last equality follows from (11) and (10), respectively.

4.2. Exit Criterion. The exit criterion for such ascent algo-
rithm is typically chosen heuristically, for example, the
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increasing in the objective between two successive iterations
is below a certain predefined threshold. However, for the
proposed algorithm we are able to find an exit criterion
which certifies that algorithm converged to a fixed power
and subcarrier allocation and further improvement is not
possible. This is described by the following theorem.

Theorem 2. If at iteration n+1, (n ≥ 1) we have j(n)
m = j(n+1)

m ,
m = 1, . . . ,M then the following holds:

(1) j(i)m = j(n)
m , for all i ≥ n,m = 1, . . . ,M,

(2) p(i)
m = p(n+1)

m , for all i ≥ n + 1,m = 1, . . . ,M,

(3)
∑M

m=1 f �m (p(i)
m )−∑M

m=1 f �m (p(n+1)
m ) = 0, for all i ≥ n+1.

That is, the algorithm converges to a fixed power and subcarrier
allocation.

Proof. Since ckm’s are continuous random variables, the
probability to have multiple solutions for (9) is zero. Thus,
in the following we assume that jm given by (9) is unique
(Equation (9) has multiple solutions if and only if ckm = clm
for some l /= k. When pm = 0 we assign jm any arbitrarily user
index.).

Note that the objective function of (13) is strictly
concave. Thus it has a unique solution [27]. Therefore,
for all m, j(n)

m = j(n+1)
m implies that p(n+1)

m = p(n+2)
m . Since

(9) has a unique solution as well, p(n+1)
m = p(n+2)

m further

implies that j(n+1)
m = j(n+2)

m . Since we have shown that j(n)
m =

j(n+1)
m implies that j(n+1)

m = j(n+2)
m , item (1) follows directly by

induction. Furthermore, item (2) follows from item (1) by
the uniqueness of the solution of problem (13). Finally, item
(3) follows trivially from item (2).

Thus the exit criterion checks if the subcarrier allocation
between two successive iterations remains unchanged. Such
point is a local optimum (possible global) in the sense that
the objective cannot be increased by changing the power
allocation or subcarrier allocation only.

As a specific example, consider the simple OFDMA
system with two subcarriers (i.e., m = 1, 2). By
performing the variable transformations p1 = (1 −
t)PT and p2 = tPT , t ∈ [0, 1], we can express the variation
of
∑2

m=1 f �m (pm) on P as,

h(t) = max
k

βklog2(1 + (1− t)PTck1)

+ max
k

βklog2(1 + tPTck2),
(19)

which is plotted in Figure 2. According to Figure 2(a) global
optimal is achieved at the iteration (i + 3). Achieving global
optimality is not always possible because, quasiconcavity
[27] of h(t) cannot be guaranteed with random channel SNR,
ckm. Consequently the APD algorithm can converge to a local
optimal solution as shown in Figure 2(b).

5. Complexity Analysis

In this section, we analyze and compare the computational
complexity of the proposed APD algorithm to Lagrangian

h(t)

0 t(i) t(i+1) t(i+2) t� = t(i+3) = t(i+4). . . 1 t

j(i)m

j(i+1)
m

j�m = j(i+2)
m = j(i+3)

m = j(i+3)
m = j(i+4)

m . . .

(a) Convergence to the global optimal solution

h(t)

0 t(i) t(i+1) t(i+2) = t(i+3) 1t� t

j(i)m

j(i+1)
m

j(i+2)
m = j(i+3)

m . . .

j�m

(b) Convergence to a local optimal solution

Figure 2: Convergence of APD algorithm.

relaxation-based algorithm [13] as well as to the opti-
mal exhaustive search algorithm. With K users and M
subcarriers, altogether we have KM user-subcarrier combi-
nations. Therefore finding optimal subcarrier and power
assignment requires KM searches. Combined with multi-
level waterfilling at each instance of subcarrier assignment,
O(MKM) operations are required to find the solution.
The algorithm proposed in [13] for the weighted sum-
rate maximization problem requires O(MK) operations to
obtain a suboptimal solution. The proposed APD algorithm
described in Section 3 requires O(MK) operations in step
(2) and O(Mlog2M) operations (This is the number of
operations required in ordering.) in step (3). In practice, it
is reasonable to assume that K 
 log2M (The assumption
is reasonable since the number of users simultaneously
serviced by the system can be very large. For example, in
a Wi-Max system M can be up to 2048 [29]. However, the
value of log2M will not become very large (in a WiMax
system log2M = 11 at most).). Therefore the complexity of
the APD algorithm can be approximated by O(MK).

6. Numerical Results

The performance of the proposed APD algorithm is com-
pared to the dual decomposition-based algorithm proposed
in [13], denoted as WSRmax, as well as to the optimal algo-
rithm based on exhaustive search. The WSRMax algorithm
uses a bisection search method to update the dual variable λ
[13, Section IV]. For initializing the bisection search interval,
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[λmin, λmax], we exploit the fact that the subgradient of the
dual function can be analytically computed. Since the dual
function is convex, the sign of its subgradients changes as we
pass through the minimum point of the dual function [13,
equation (11)]. Therefore, we use a grid search (with step size
1) to identify the interval in which the subgradient of dual
function changes its sign, and it is used as initial bisection
search interval. Thus, the interval [λmin, λmax] is guaranteed
to contain the optimal value of the the dual function and the
width of the initial interval is one, that is, (λmax − λmin) =
1. The proposed APD algorithm is initialized by allocating
equal power to all subcarriers.

In what follows, we compare the convergence behavior of
the APD and the WSRMax algorithms. For a fair comparison,
we define the following metric:

ΔCweighted sum = E

⎧
⎨

⎩

∣∣
∣Copt − Ĉsubopt

∣∣
∣

Copt

⎫
⎬

⎭, (20)

the average normalized weighted sum-rate deviation, where
Copt is the optimal weighted sum-rate value obtained using

optimal exhaustive search, Ĉsubopt is the estimated objective
value from either the APD algorithm or the WSRMax
algorithm, and expectation E{·} is taken w.r.t. channel
realization. An OFDMA system with M = 8 subcarriers
and a uniform power delay profile with 4 channel taps
is considered. We assume σ2

km = σ2, k = 1, . . . ,K , m =
1, . . . ,M and define SNR per subcarrier as PT/(M · σ2).

Figure 3 shows the convergence behavior of the consid-
ered algorithms with SNR= 10 dB for K = 2 and K =
4 users. The weights of the users are [1, 2] for K = 2
and [1, 2, 1, 2] for K = 4. The floor of the curves is due
to the suboptimality of the algorithms. The results show
that the APD algorithm converges faster than the WSRMax
algorithm and provides smaller average normalized weighted
sum-rate deviations. Specifically, for both cases, K = 2 and
K = 4, the APD algorithm requires only 3 iterations on
average to achieve an average normalized weighted sum-rate
deviation of 10−4 whilst the WSRMax algorithm requires
around 15 iterations to reach the same accuracy level. It is
intuitively obvious that the number of iterations required by
the APD algorithm is sensitive to the nature of the surface
of the objective function

∑M
m=1 f �m (pm) of problem (7), for

example, see Figure 2. In general, it is a hard to quantify
the number of iterations before convergence (or any bounds
on the number of iterations) due to the nonconvexity of
problem (5). However, the numerical results suggest that
the APD algorithm often converges very fast in practice.
It should be emphasized that the number of iterations
required in the initialization of the WSRmax algorithm
(i.e., the number of iterations required to find the initial
bisection search interval) is not considered when drawing
the curves. In particular, for the initialization process, the
WSRMax algorithm requires a several number of steps
(each step has complexity of O(MK)) and the proposed
APD algorithm requires none. Moreover, it is hard to find
good initialization methods for the WSRMax algorithm (i.e.,
initialization for bisection search method) compromising
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Figure 3: Average normalized weighted sum-rate deviation versus
iterations for K = 2 and 4 users, M = 8 subcarriers, and SNR =
10 dB.

between the number of steps required in the initialization
and the width of the initial searching interval (λmax −
λmin). Consequently, additional precautions are required and
therefore, in practical implementations the APD algorithm is
more favorable compared to the WSRMax algorithm.

In the sequel, we compare the behavior of the APD and
the WSRMax algorithms using the following metric:

Pε = Prob
{∣∣
∣Copt − Ĉsubopt

∣
∣
∣ > ε

}
, (21)

the probability of missing the global optimal, where ε is
a small number which quantifies the maximum admissible
deviation between Copt and Ĉsubopt. It is considered that the

global optimum is missed if Ĉsubopt is more than ε away from
Copt.

Figure 4 uses the same simulation setup as that in
Figure 3 and depicts the variation of probability of missing
the global optimal, Pε with the number of iterations. The
floor of probability Pε is again due to the suboptimality of
both algorithms. The influence of ε on Pε is totally indistin-
guishable in case of the APD algorithm. This behavior shows
that the proposed algorithm APD can arrive very close-to-
optimal solutions within a very small number of iterations
and then it remains there. The results further show that the Pε
evaluated using the WSRMax algorithm is highly dependent
on ε. That is, the smaller the deviations in the Ĉsubopt from
the optimal Copt, the larger the number of iterations required
by the WSRMax algorithm to reach the expected target value
Pε. Therefore, independent from the ε, the APD algorithm
allows to find a suboptimal solution within a small number
of iterations at the expense of a slight increase in Pε. These
observations are very useful in practice since they carry sig-
nificant information in the system design point of view. For
example, consider a design requirement P10−4 ≤ 0.3. Here,
the WSRmax algorithm requires 18 iterations. If we tight
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Figure 4: Probability of missing global optimum versus iterations
for K = 2 users, M = 8 subcarriers, and SNR = 10 dB.

more the design requirement as P10−6 ≤ 0.3, then the number
of iterations required by the WSRmax increases to 24. In con-
trast, the APD algorithm always requires just one iteration.

Figure 5 shows the rate region (The standard way to
characterize the boundary points in the 2-user rate region is
by solving problem (4) for β1 = α and β2 = 1− α, where α ∈
[0, 1] [30].) computed by using all considered algorithms.
The same simulation setup as in [13] was used where M = 8,
K = 2, PT = 16 and the channel SNR vectors for users 1

and 2 are 10[12, 22, . . . ,M2]T and 10[M2, (M − 1)2, . . . , 12]
T

,
respectively. Although the computational complexity of the
proposed algorithm is much smaller compared to that of
optimal exhaustive search-based method, Figure 5 indicates
that the rate region obtained by the APD algorithm almost
coincides with the optimal rate region. This behavior is
expected since the average normalized weighted sum-rate
deviation, (20) is in the order of 10−4 as shown in Figure 3.

In the following we compare the behavior of the APD
and the WSRmax algorithm for large number of subcarriers
and users. Since, for large number of users and subcarriers
the complexity of evaluating Copt is prohibitively high, the
metrics defined in (20) and (21) are not used. The behavior
of the APD algorithm is compared with that of the WSRmax
algorithm.

In Figure 6, the evolution of the expected weighted
sum-rate provided by the APD algorithm is compared to
the resulting expected weighted sum-rate from the WSRmax
algorithm, where the expectation is taken w.r.t. channel
realization. An OFDMA system with M = 256 subcarriers, a
uniform power delay profile with 128 channel taps, and K =
8, 16, 32, 64 users is considered. The weights of the users are
taken from the sequence {1, 2, 1, 2, . . . , 1, 2}, (e.g., when K =
8, weights are [1, 2, 1, 2, 1, 2, 1, 2]). The SNR is assumed to be
10 dB. The results show that even for a large number of car-
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riers, the APD algorithm converges very fast as compared to
the WSRMax algorithm independent of the number of users.

7. Conclusions

A joint subcarrier and power allocation algorithm which is
inspired from primal decomposition techniques has been
proposed for maximizing the weighted sum-rate in multiuser
OFDMA downlink systems. Although the original problem
is nonconvex, the proposed APD algorithm finds fast a
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suboptimal, but still very close-to-optimal solution with
very high probability (i.e., more than 90% of the time).
Unlike the recently proposed WSRMax algorithm [13], the
APD algorithm requires no additional precautions in the
initialization, and convergence to a suboptimal solution is
possible within a very small number of iterations. Although
the proposed primal decomposition-based solution method
does not rely on zero duality gap for proving the optimality
in the case of large number of subcarriers, our computational
experience with larger number of subcarriers suggests that
the proposed APD algorithm is capable of finding the same
solution as the WSRmax algorithm (which is asymptotically
optimal when the number of carriers grows to ∞) even with
very few iterations.
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