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In this paper, the problem of channel-aware opportunistic resource allocation for the downlink in code division multiple access
wireless networks supporting simultaneously real-time multimedia and non-real-time data services is addressed. In order to treat
different types of services with diverse QoS prerequisites through common optimization formulation a utility-based power and
rate allocation framework is adopted. Emphasis is placed on real-time services’ strict short-term QoS prerequisites, the fulfillment
of which requires a significantly more different treatment than the use of static utility functions, traditionally used to address long-
term QoS or fairness prerequisites of delay-tolerant data services. To that end, we introduce a novel generic framework that enables
the dynamic adaptation of real-time multimedia users’ utilities as the system evolves, with respect to the corresponding short-term
throughput service performance variations. The corresponding nonconvex network utility maximization (NUM) problem is then
formulated and solved to obtain optimal downlink power and rate allocation. Via simulation and analysis, it is demonstrated that
significant performance improvements are achieved in terms of real-time user’s short-term throughput requirement satisfaction,
without any considerable loss in the total system throughput. Finally, an essential tradeoff between efficiently fulfilling real-time
services’ short-term QoS prerequisites and maximizing overall system performance, under an opportunistic scheduling wireless
environment, is revealed and quantified.

1. Introduction

With the growing demand for high data rate and support
of multiple services with various quality of service (QoS)
requirements, the scheduling policy plays a key role in
the efficient resource allocation process in future wireless
networks. Moreover, users’ time and location-dependent
channel conditions limit the system’s available resources and
hence its ability to satisfy their QoS properties. Therefore,
a flexible power and rate allocation scheme is essential for
optimizing the system’s performance.

Considerable research efforts have been devoted to the
combined problem of power and rate allocation for the
downlink of a code division multiple access (CDMA) system
(e.g., [1–3]) aiming at the exploitation of multiuser diver-
sity (i.e., users’ time-varying channel conditions) towards

optimizing the system’s performance, while satisfying vari-
ous QoS constraints [4–9]. Moreover, due to the heterogene-
ity of the wireless environment and the need for the support
of diverse QoS requirements, the concept of utilities from
the field of economics has been adopted for devising profi-
cient opportunistic resource allocation algorithms. A utility
function reflects a users’ degree of satisfaction with respect
to their service performance in a normalized and transparent
way, allowing services with assorted QoS prerequisites to be
represented, by forming appropriate utilities [10–15], under
a common utility-based optimization framework. Hence,
Network Utility Maximization (NUM) theory provides the
foundations and mathematical tools for setting and treating
such problems.

In a typical NUM formulation, user’s utilities are static,
predetermined functions, associated to specific services or
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service classes, emphasizing mainly on the support of non-
real-time users’ long-term requirements. Therefore, users’
utilities mainly define a continuous relationship between
their service performance and their actual achieved through-
put (i.e., goodput that reflects the number of reliable
bits transmitted) over the wireless opportunistic CDMA
paradigm, while considering long-term user’s fairness issues
[16], minimum performance requirements [17] and/or
appropriate constraints imposed by the devices’ physical
limitations [18].

On the other hand, the delay-sensitive nature of real-time
multimedia services poses additional demands on accessing
the system resourses within short time intervals. Therefore,
the adoption of probabilistic short-term delay [19, 20] or
throughput [21, 22] constraints have been proposed towards
efficiently expressing real-time services’ QoS prerequisites
over a time-varying wireless environment. However, the
conventional use of static predefined users utilities does not
permit the efficient integration of the latter probabilistic
short-term constraints within a NUM problem formulation
and thus in the system’s resource scheduling policy.

In this paper, we study the problem of jointly scheduling
multiple services, that is, delay-sensitive, real-time, and
delay-tolerant high-throughput non-real-time services, over
a heterogeneous CDMA wireless system via NUM opti-
mization. Towards achieving our goal, this paper makes the
following contributions.

(a) We design real-time users’ utilities that dynamically
adjust with respect to users’ service short-term QoS
satisfaction levels fulfillment, enabling them to effi-
ciently reflect real-time services strict, instantaneous
resource demands at the scheduling policy. We refer
to the above novel approach as Dynamic Utility
Adaptation (DUA) framework. DUA serves as an
extension to current NUM theory in order to mainly
treat and overcome issues that arise from the use
of static utilities, when aiming at introducing users’
short-term goals or prerequisites under a NUM
optimization setting.

(b) We adopt and exploit probabilistic short-term
throughput constraints, instead of myopic proba-
bilistic delay constraints, in order to introduce the
essential requirements of real-time users (requesting
multimedia services) in the resource allocation pro-
cess of a CDMA wireless network.

(c) Through the proper use of static and dynamic utilities
according to the respective service types, we aim
at:(a) meeting various types of user services’ QoS
requirements, namely, real-time and non-real-time,
under a common optimization framework and (b)
exploiting the benefits emerging by the scheduler’s
opportunistic character, not only individually per
type of users but also in a collaborative manner
as well. In this way, a scheduling policy is devised
that avoids the problem where the optimization
of the performance of users of a specific type of
service leads to the corresponding degradation of the
performance of other types of services. Thus, several

inherent system and users’ limitations in satisfying
services’ short-term QoS requirements, caused by
the corresponding physical hardware constraints,
under an interference limited opportunistic wireless
environment are highlighted and discussed.

(d) Finally, two simple iterative algorithms are proposed.
The first one, residing at the base station, attains
an asymptotically optimal (in the number of users)
power and rate allocation of systems’ non-convex
optimization problem, which is continuously reset
at the beginning of each time slot with respect to
users’ utilities adaptation. The second one, residing
at the mobile node, dynamically adapts a real-time
user’s utility by realizing a control loop which: (a)
constantly monitors a user’s service performance,
(b) analyzes its current status with respect to QoS
requirements, and (c) reacts to QoS triggering events
via the dynamic alteration of the user’s utility. It
is demonstrated via modeling and simulation that
our proposed scheme achieves to the fulfillment
of real-time users’ short-term prerequisites without
any considerable loss in the system’s total achieved
throughput. The obtained results allow to reveal
and quantify the inherent tradeoff between efficiently
fulfilling real-time services’ demanding short-term
QoS prerequisites and maximizing overall system
performance, under an opportunistic wireless envi-
ronment.

The rest of the paper is organized as follows. In Section 2,
the system model and definitions are presented. In Section 3,
the proposed dynamic users’ utility adaptation framework
is first analyzed, and its application on real-time services
is presented. Then, the corresponding utility-based opti-
mization problem is formulated, and its solution is derived.
In Section 4, real-time users’ self-adaptation mechanism in
QoS-triggered events is described, and an enhanced power
and rate allocation scheme is proposed. Numerical results
and relevant discussions are provided in Section 5, while
Section 6 concludes the paper.

2. SystemModel and Definitions

In this paper, we consider the downlink of a single cell
time-slotted CDMA wireless system with N continuously
backlogged users at time slot t. A time slot is a fixed interval
of time and could consist of one or several packets. User-
channel conditions, which are affected by shadow fading and
long-time scale variations, are assumed to be fixed within
the duration of a time slot. The scheduler is assumed to
resign at the base station, and hence it can make decisions
on users’ power and rate allocation at the beginning of each
time slot. Let us denote by Ri(t) the downlink transmission
rate at which the base station transmits to user i in the slot
under consideration and by Rmax

i the maximum rate at which
they can receive data (due to physical hardware limitations).
Let us also denote by γi(t) = Eb(t)/Io(t) the bit energy-to-
interference density ratio for user i at their mobile device
receiver, by Gi(t) the path gain from the base station to
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mobile user i, and by Pi(t) the transmission power allocated
at a given slot to user i, which, however, is limited by the base
station’s maximum downlink power Pmax. The received γi(t)
for each user i is given [16–18] by

γi
(
Ri(t),P(t)

)

= W

Ri(t)
Gi(t)Pi(t)

θGi(t)
∑N

j=1 Pj(t)− θGi(t)Pi(t) + Ii(t)

= W

Ri(t)
Pi(t)

θ
∑N

j=1 Pj(t)− θPi(t) + Ai(t)
,

(1)

where θ denotes the orthogonality factor, W is the sys-
tem’s spreading bandwidth, P(t) denotes the users’ power
allocation vector, Ii(t) includes the background noise and
intercell interference at user i, Gi(t)

∑N
j=1 Pj(t) − Gi(t)Pi(t)

determines the intracell interference at user i and Ai(t) =
Ii(t)/Gi(t) denotes the transmission environment between
user i and the base station.

In our system, we consider two basic types of users,
namely, non-real-time users (NRT) requesting delay-tolerant
high-throughput services and real-time (RT) users with
strict short-term QoS constraints. Throughout the rest of
the paper we denote by NNRT (NRT) the number of non-
real-time users (real-time users) and by SNRT (SRT) the
corresponding set. Due to the variety of the supported
services’ QoS prerequisites, each mobile user is associated
with a proper utility function U∗

i which represents his degree
of satisfaction in accordance to his actual expected downlink
throughput and can be expressed as

U∗
i

(
Ri(t),P(t), ai, bi

)
= Ri(t) fi

(
γi(t), ai, bi

)
,

i = 1, 2, ..., N,
(2)

where fi represents a function for the probability of a
successful packet transmission for user i and is an increasing
function of their bit energy to interference ratio γi(t) at
any time slot. A user’s function for the probability of a
successful packet transmission at fixed data rates depends
on the transmission scheme (modulation and coding) being
used and can be represented by a sigmoidal-like function of
their power allocation for various modulation schemes [18].
Therefore, a user i efficiency function fi has the following
properties.

(1) fi is an increasing function of γi(t).

(2) fi is a continuous, twice differentiable sigmoidal
function with respect to γi(t).

(3) fi(0) = 0 to ensure that Ui = 0 when Pi(t)= 0.

(4) fi(∞) = 1.

Moreover, we define as ai, bi the two tunable
parameters of the sigmoidal function fi that determine
function’s fi steepness and unique inflection point,
respectively [24] (generic definition: f (γ, a, b) = c{1/(1 +
e−a(γ−b)) − d}, where c = (1 + eab)/eab and d = 1/(1 + eab).
Intuitively, since parameter a controls the slope of the

sigmoidal function, it determines a user’s tolerance in power
deviations (in the region of functions f inflection point),
while parameter b, controls the relative place of the inflection
point of function f (at the access of P), and thus the power
level upon which a user’s successful packet receive probability
increases rapidly (for small deviations of the allocated
power), following a concave form [18, 23]). Without loss
of generality, we assume that all users have the same value
for their parameter ai,(i.e., ai = a for i = 1, . . . ,N). The
validity of the above properties has been demonstrated in
several practical scenarios with reasonably large packet sizes
M (i.e., M ≥ 100 bits) [25, 26].

Observing a user’s utility as defined in (2), we can
point out that the main factors that affect its values are
a user’s transmission environment (Ai), transmission rate
(Ri) and transmission scheme (parameter bi of function fi).
For delay-tolerant non-real-time users, the maximization of
their utility corresponds to their desired goodput maximiza-
tion, and as a result, the corresponding utility is suitable
for reflecting their desired throughput maximization at the
system’s resource allocation optimization problem. On the
other hand, real-time users’ degree of satisfaction does
not increase in a linear or concave way along with their
throughput maximization (as in the case of NRT users), but
according to their fixed data rate expectation fulfillment, as
well as their short-term QoS requirements satisfaction due
to their delay sensitive nature (e.g., sigmoidal form).

2.1. Real-Time Services’ QoS Requirements. A real-time user’s
requirements consist mainly of a constant downlink rate
and short-term delay and throughput guaranties [21, 22].
Therefore, we consider as a real-time user’s performance
indicator, the achieved probability of receiving an amount
of service, in terms of data units, smaller than a predefined
threshold within successive short observation time intervals,
which is expressed as follows:

Pr
[
β̂RT,i(t) ≤ BRT,i

]
Wi

∀t(slot) ∀i ∈ SRT, (3)

where Wi denotes a RT user i observation time interval in
terms of slots, BRT,i his predefined data units threshold, and

β̂RT,i(t) the amount of data they received within a specific
time interval from slot (t − Wi + 1) to slot t. The smaller
the achieved value of an RT user’s short-term throughput
probability (3), the greater is their degree of satisfaction.
Given a real-time user i requiring downlink rate, RRT,i, we
can estimate their data units threshold as

BRT,i = RRT,i ·Wi · ts, (4)

where ts denotes the duration of a time slot. It has been
shown in [22] that short-term throughput constraints can
more efficiently and comprehensively reflect the essential
requirements of RT users (i.e., both delay and throughput
expectations) compared to myopic probabilistic delay con-
straints. This is due to the fact that the adoption of the latter
over a time-varying wireless environment may often cause
RT users’ throughput rates dissatisfaction, within either
small or long time intervals, due to their potentially bad
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channel conditions and variations, leading to their service
QoS-aware performance degradation.

The previous RT users’ QoS quarantines, as defined
in (3) and (4), are suitable for Constant Bit Rate (CBR)
real-time traffic (e.g., video conferencing, telephony (voice
services), etc.). To incorporate the QoS prerequisites of other
types of real-time services such as real-time Variable Bit
Rate (VBR) traffic (e.g., compressed video streams) in the
proposed probabilistic short-term throughput framework,
the ability to dynamically adjust the requested downlink data
rate, RRT,i(t), and thus their data units threshold BRT,i(t), at
the corresponding RT user i should be provided. Therefore,
in this case, we define BRT,i(t) = RRT,i(t)·Wi·ts. The adopted
short-term throughout prerequisites inherent attribute of
fulfilling the requested data rate of an RT user within short-
term time intervals, instead of converging to it within long-
term intervals (as in [16–18]), allows the efficient support of
both CBR and VBR traffic.

In order to guarantee short-term throughput require-
ments satisfaction for all RT users (i.e., achieve small
values for their probabilities defined in (3)), we aim at
providing them with the flexibility of dynamically affecting
the priorities of being selected for receiving service according
to their corresponding short-term throughput performance,
through the introduction of an appropriate user-centric
dynamic behavior which drives their ability to dynamically
adapt their utility functions, as detailed in the following
section.

3. Dynamic Utility Adaptation (DUA) Frame
Work—Problem Formulation and Solution

In this section, we first detail and analyze a novel framework
for reflecting users’ short-term QoS requirements at their
utility functions under a NUM problem formulation. This
is achieved via the dynamic alteration of the utilities’
properties in accordance to generic short-term time-varying
QoS performance metrics—we refer to this framework as
Dynamic Utility Adaptation (DUA). Emphasizing on mul-
timedia services and their corresponding QoS prerequisites,
a methodology for dynamically adapting RT users’ utility
parameters in accordance to their short-term throughput
requirements is examined. Then, the overall utility-based
optimization problem is formulated, considering both NRT
and RT users’ performance expectations, and its solution
is derived. Finally, following a pure optimization theoretic
analysis, the design properties of the proposed DUA frame-
work are examined by determining the way users’ utilities
parameters deviations affect their priority of accessing system
resources.

3.1. Dynamic Utility Adaptation Framework. Towards opti-
mizing system’s performance, a scheduling policy should
allocate wireless network resources, in terms of transmission
powers and corresponding rates, in a way that not only max-
imizes users’ utilities and hence their degree of satisfaction
in each time slot, but also satisfies their QoS prerequisites.
The use of fixed predefined utility functions enables the
reflection of users’ long-term performance expectations at

the scheduler and is in line with its opportunistic channel-
aware nature [24]. On the other hand, RT users’ short-term
QoS demands require the scheduler’s response within short-
time intervals in the light of short-term QoS violations;
therefore, the latter should also be reflected in their utilities.

With respect to the previous discussion and analysis,
we introduce the dynamic adaptation of RT users’ utilities
U∗

i (Ri(t),P(t), a, bi) for all i ∈ SRT by allowing them to
properly and dynamically adjust the values of their utility
parameter bi for all i ∈ SRT. Moreover, we redefine RT users’
utility function as follows:

U∗
i

(
Ri(t),P(t), a, b̂RT,i(t)

)
∀i ∈ SRT, (5)

where b̂RT,i(t) denotes a user’s utility tunable parameter bi at
time slot t and is defined as

b̂RT,i(t) = bRT,i + bRT,i(t) ∀i ∈ SRT

b̂RT,i(t) ∈
[
bmin,i(t), bmax,i(t)

]
,

where 0 ≤ bmin,i(t) ≤ bRT,i ≤ bmax,i(t) ≤ ∞,

(6)

where bRT,i is RT user i proper parameter in accordance
to his transmission scheme (i.e., function’s fi initial fixed
bi parameter) and bRT,i(t) is the factor that dynamically
adjusts parameter’s bi overall value in accordance to user’s
short-term performance. Thus, bRT,i(t) is fixed within the
duration of a time-slot. Let us underline that when RT
users adjust their b̂RT,i(t) parameter does not actually select a
different modulation scheme, defined only by the fixed part
of (6) (i.e., bRT,i), but aim at reflecting in the scheduling
policy (via their utility function) their expectations in system
resources with respect to their current short-term QoS
performance and thus, affecting their priority in accessing

system’s resources. In general, as b̂RT,i(t) decreases a user’s
lack of resources is mirrored to his utility and consequently
their need for having high priority in accessing system
resources is revealed, a desirable property that justifies its
selection, as it is shown via the solution of the corresponding
utility-based system optimization problem.

Parameters bmin,i(t) and bmax,i(t) are the upper and lower

bounds of a RT user’s parameter b̂RT,i(t) in each time
slot t, respectively. As it is analyzed later in this paper
(Appendix A), the existence of these bounding parameters
restricts a user’s ability to self-optimize their QoS perfor-
mance over a time-varying wireless environment, due to the
potentially bad channel conditions or lack of available system
radio resources.

3.2. Adjusting the Properties of Real-Time Users’ Utilities .
In order real-time users to efficiently adjust their utility

parameter b̂RT,i(t) for all i ∈ SRT at the beginning of
each time slot t, according to their short-term throughput
requirements, the introduction of their actual short-term
throughput performance information into the tuning proce-

dure of their utility b̂RT,i(t) parameter is essential. Therefore,
let us define the actual amount of data units that a real-time
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user i received within his observation time interval Wi, from
slot (t −Wi + 1) to slot (t − 1) as follows:

BWi−1
RT,i (t) =

Wi−1∑

k=1

βRT,i(t − k) ∀ i ∈ SRT, (7)

where βRT,i(t) = U∗
i (Ri(t),Pi(t), a, bRT,i) · ts denotes the

actual amount of data that a real-time users i received at time
slot t and Ri(t),Pi(t) denote his corresponding transmission
rate and power allocation at the under consideration time
slot, respectively. By using the above information and
comparing it with a portion of his predefined short-term
data units threshold BRT,i, an RT users can adjust their utility

b̂RT,i(t) parameter as

b̂RT,i(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

bRT,i − IRT,i(t)
[
bRT,i − bmin,i(t)

]

if BWi−1
RT,i (t) ≤ (Tr +1)BRT,i,

bRT,i + GRT,i(t)
[
bmax,i(t)− bRT,i

]

if BWi−1
RT,i (t) > (Tr +1)BRT,i,

(8)

where IRT,i(t) ∈ [0, 1] and GRT,i(t) ∈ [0, 1] for all i ∈ SRT

are two normalized indicators that reflect a real-time
user’s need for accessing the system resources at time
slot t, when they have shortage or excess of data units
received within their current short observation time
interval, respectively. Furthermore, parameter Tr (Tr ≥ 0),
referred as the system’s triggering parameter, determines the
system’s degree of preemption. Large values for the system’s
triggering parameter will make the scheduling policy react
in a more preemptive way to real-time users’ short-term
throughput performance deviations, and therefore the
achieved probabilities of not satisfying their short-term QoS
requirements values will decrease.

In accordance to (8), when a real-time user i has received
till time slot (t − 1) less amount of data units than his
predefined threshold, then in order to accomplish his short-
term throughput QoS requirements satisfaction, the value

of his utility b̂RT,i(t) parameter decreases and thus, his
probability of being selected at current slot t increases.
Furthermore, the reduction of a real-time user’s i utility

b̂RT,i(t) parameter from its corresponding value bRT,i is
determined by his normalized indicator IRT,i(t) at that time
slot. A RT user’s IRT,i(t) indicator reflects his need of
accessing the system resources, according to the weighted
distribution of his received data within his observation time
interval, and therefore is defined as

IRT,i(t) = 1−
Wi−1∑

k=1

ŵRT,i(k,Wi)βRT,i(t − k)
(Tr +1)BRT,i

if BWi−1
RT,i (t) ≤ (Tr +1)BRT,i,

where ŵRT,i(k,Wi) = Wi − k

Wi − 1

for k = 1, ...,Wi ∀i ∈ SRT.

(9)

It is noted that ŵRT,i (k,Wi) represents a weight related to
each time slot within the last (Wi − 1) successive slots of

an RT user i observation interval Wi that determines the
importance of the user i received amount of service at that
slot (i.e., time slot t−k) on his estimated indicator. Moreover,
the values of an RT user slots weights, as well as the impor-
tance of his information, are linearly inversely proportional
to his distance k from the current slot t, since we want
the information of the most distant slots to play a more
important role on the degree of his need in accessing the
system’s resources. For instance, even if two real-time users
i and j have received the same amount of data within the

same observation time intervals (i.e., BWi−1
RT,i (t) = B

Wj−1
RT, j (t)

when Wi =Wj, BRT,i = B RT, j , bRT,i = bRT, j and bmin,i (t) =
bmin, j (t)), but user i has received service in slots more recent
to the current than user j, then their indicator’s IRT,i(t)
value will be smaller than user j indicator value IRT, j(t)
according to his slots’ weights, since his tolerance for not
accessing the system’s resources is greater. Thus, user j utility

b̂RT, j(t) parameter will be smaller than user i corresponding
parameter, and therefore they will have higher priority on
accessing the system’s resources at the current slot.

On the other hand, when a real-time user has received
a larger amount of data units than the predefined threshold
within the last (Wi − 1) successive time slots of his
observation interval Wi, then their utility b̂RT,i(t) parameter
increases according to (8), and their priority in being served
decreases. The larger RT user i received amount of data
within their observation interval Wi is, the lower their
selection priority should be, and therefore their normalized
indicator can be defined as follows:

GRT,i(t) =
∑Wi−1

k=1 ŵRT,i(k,Wi)βRT,i(t − k)
∑Wi−1

k=1 ŵRT,i(k,Wi)Rmax
i ts

if BWi−1
RT,i (t) > (Tr +1)BRT,i,

(10)

where the denominant
∑Wi−1

k=1 ŵRT,i(k,Wi)Rmax
i ts denotes the

maximum weighted amount of data units an RT user i can
receive within any time interval of (Wi−1) time slots, due to
their downlink rate limitation Rmax

i . Such a design attribute
allows the reallocation of excess system resources to NRT
users towards the desirable optimization of their throughput
performance [21, 22].

Concluding this section’s analysis, let us underline that
the methodology expressed via (8), (9), and (10) applies
in the most demanding case where the objective is to
minimize RT users’ probabilistic throughput constraints

(i.e., minPr[β̂RT,i(t) ≤ BRT,i]Wi
for all i ∈ SRT). Moreover, in

the special case where an upper bound is set for RT users

probabilistic prerequisites, that is, Pr[β̂RT,i(t) ≤ BRT,i]Wi
≤

qRT,i for all i ∈ SRT, then the two normalized parameters
IRT,i, and BRT,i, are defined as

IRT,i(t) = 1−
Pr
[
β̂RT,i(t) ≤ BRT,i

]
Wi

qRT,i

if Pr
[
β̂RT,i(t) ≤ BRT,i

]
Wi
≤qRT,i,

(11)
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GRT,i(t) = 1− qRT,i

Pr
[
β̂RT,i(t) ≤ BRT,i

]
Wi

if Pr
[
β̂RT,i(t) ≤ BRT,i

]
Wi

> qRT,i,

(12)

towards reflecting RT user’s need for accessing the system
resources at time slot t, when they are accomplishing or not
the requested bound qRT,i, respectively, under the assumption
of the system’s feasibility (i.e., there always exists at least one
power and rate vector that leads to the satisfaction of all RT
users’ probabilistic throughput constraints).

3.3. Problem’s Formulation, Transformation, and Solution. In
order to optimize the overall system performance as well
as users’ degree of satisfaction, the following utility-based
power and rate allocation optimization problem must be
solved at the scheduler at every time slot

max
R(t),P(t)

N∑

i=1

U∗
i

(
Ri(t),P(t), a, bi(t)

)

s.t.
N∑

i=1

Pi(t) ≤ Pmax

0 ≤ Pi(t) ≤ Pmax i = 1, 2, ...,N

0 ≤ Ri(t) ≤ Rmax
i i = 1, 2, ...,N

bi(t) = b̂RT,i(t) ∀i ∈ SRT,

bi(t) = bNRT,i ∀i ∈ SNRT,

(13)

where bNRT,i denotes NRT users’ fixed parameter of
their fi function in accordance to the used modulation and

coding scheme and b̂RT,i(t) is obtained via (8). Intuitively,
(13) aims at jointly fulfilling and optimizing both NRT and
RT users’ QoS-aware degree of satisfaction, via maximizing
the actual achieved throughput of the first (i.e., expressed
via utility (2)) and via fulfilling the probabilistic short-term
throughput prerequisites of the second (i.e., expressed via
utility (5) and (6)). In the rest of the paper, for simplicity in
the presentation, we omit the notation of the specific slot t in
the notations of the system’s and users’ variables that remain
fixed within the duration of a time slot.

Following the approach in [24], the optimal solution
of the above problem is achieved when the base station
transmits with its maximum power level Pmax (i.e.,

∑N
i=1 Pi =

Pmax), and hence a user i utility defined in (2) or (5) is
adjusted according to the following expression:

U
R∗i
i

(
R∗i (Pi),Pi, a, bi

)

=U
R∗i
i (Pi, a, bi)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

WPi
γ∗i (θPmax−θPi+Ai)

fi
(
γ∗i
)
, if Pi≤R

max
i γ∗i (θPmax +Ai)
W+θRmax

i γ∗i
=PLIM

i

(
γ∗i ,Ai

)

Rmax
i fi

(
γi
(
Rmax
i ,Pi

))
, otherwise,

(14)

where γ∗i = argmaxγ≥1{(1/γ) fi(γ)}, PLIM
i (γ∗i ,Ai) is the break

point of function U
R∗i
i (Pi, a, bi) and R∗i = WPi/γ

∗
i (θPmax −

θPi + Ai) when Pi ≤ PLIM
i (γ∗i ,Ai), or R∗i = Rmax

i

otherwise. For Pi ≤ PLIM
i (γ∗i ,Ai), U

R∗i
i is a convex function

of Pi and for PLIM
i (γ∗i ,Ai) < Pi ≤ Pmax is a sigmoidal

function. Therefore, U
R∗i
i is a sigmoidal function of Pi at

his maximum transmission rate Rmax
i , with inflection point

denoted as P0
i (specifically, ∂2U

R∗i
i (Pi, ai, bi)/∂P2

i |Pi=P0
i
= 0,

U
R∗i
i (Pi, ai, bi)/∂P2

i |Pi<P0
i
> 0 and ∂2U

R∗i
i (Pi, ai, bi)/∂P2

i |Pi>P0
i
<

0). Furthermore, the optimization problem (13) can be
transformed to the following:

max
P

N∑

i=1

U
R∗i
i (Pi, a, bi),

s.t.
N∑

i=1

Pi ≤ Pmax,

0 ≤ Pi ≤ Pmax i = 1, 2, ...,N.

(15)

Towards solving the non-convex optimization (15), a
pricing-based algorithm was developed in [18], and its
asymptotic optimality, when the number of users is large, has
been proven. Initially, the scheduler selects users to which
nonzero power will be allocated by using the information
of their parameters’ λmax

i values. Parameter λmax
i represents

user i maximum willingness to pay per unit power

λmax
i = min

{
λ ≥ 0 | max

0≤P≤Pmax

{
U

R∗i
i (Pi , a, bi)− λPi

}
= 0

}
.

(16)

In other words, λmax
i is the price λ that maximizes user i net

utility P(λ) = argmax0≤P≤Pmax
{UR∗i

i (P, a, bi) − λP} (i.e., the

utility minus the cost) and can be calculated as follows:

λmax
i

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂U
R∗i
i (Pi , a, bi)

∂Pi

∣∣∣∣∣∣
P=P∗

U
R∗i
i (Pmax , a, bi)

Pmax

if U
R∗i
i is a sigmoidal− like

function and P∗exists
otherwise,

(17)

where P∗i is the unique solution of

U
R∗i
i (Pi, a, bi)− Pi

∂U
R∗i
i (Pi, a, bi)

∂Pi
= 0 for P0

i ≤ Pi ≤ Pmax.

(18)

Moreover, if for any two users i and j U
R∗i
i ≥ U

R∗j
j for 0 ≤

P ≤ Pmax, then λmax
i ≥ λmax

j , and therefore user i is more
likely to be selected than user j. Hence, the scheduler selects
users in a decreasing order of their maximum willingness to
pay from 1 to T satisfying

T = max

⎧⎨
⎩1 ≤ j ≤ N |

j∑

i=1

Pi
(
λmax
j

)
≤ PT

⎫⎬
⎭ (19)
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Finally, for the selected users the base station updates and
broadcasts λmax

T till finding a unique equilibrium price λ∗

that satisfies
∑T

i=1 Pi(λ
∗) = Pmax [18]. Knowing λ∗, selected

users’ transmission powers and rates can be easily derived.
In accordance to the previous analysis, the price of a

users’ willingness to pay λmax
i plays a key role in their

selection priority and, moreover, in the portion of total
system’s resources a user will finally occupy in the subsequent
time slot. The following proposition shows that by allowing
RT user to adapt their utility properties via adjusting his bi
parameter, they gain the enhanced flexibility of controlling
the priority of being selected in accessing system resources
among the others, towards optimizing their service perfor-
mance.

Proposition 1. If Ai = Aj and Rmax
i = Rmax

j , then if bi <
bj λ

max
i > λmax

j .

Proof. see Appendix B.

Proposition 1 asserts that if all other conditions are
equivalent, a user i with smaller parameter bi has a higher
priority in being selected than a user j with larger value for
his parameter bj . Moreover, if smaller values of an RT user’s
expected throughput within their observation time interval
are observed, then lower values of his bi parameter will result
to higher probability in being selected, and vise versa. Essen-
tially, the above proposition can be generalized for more than
two users, revealing not only a relational dependency among
users’ utilities properties and his allocated resources, when
the latter are derived through the solution of the system’s
utility-based optimization problem, defined in (13), but also
the validity of the proposed DUA methodology expressed via
(8), (9), and (10).

4. Proposed Scheduling Policy—Towards
Node’s QoS-Aware Self-Optimization

Nodes’ QoS-aware self-optimization refers to the ability of
sensing his service performance variations as well as his
environment changes, and then reacting to QoS triggering
events towards optimizing his service performance. Such
a behavior is revealed through the solution of the corre-
sponding power and rate allocation optimization problem in
CDMA networks when both NRT and RT services require
access at system resources. Users requesting real-time services
can monitor his services’ performance, analyze and compute
their resource expectations in a normalized way according
to their short-term QoS prerequisites, and then adapt their
utility functions’ properties in order to affect their selection
priority in the scheduling policy as well as the amount
of anticipated resources. Moreover, at the base station, the
system scheduler interacts with the mobile nodes towards
solving the corresponding optimization problem, as defined
in (13).

In the rest of this section, we present a Dynamic
Utility Adaptation-based Users’ Power and Rate Allocation
(DUA UPRA) scheme, which is realized by the efficient
collaboration of two low complexity algorithms residing at

the mobile nodes and base station, respectively. From mobile
nodes perspective, DUA UPRA introduces a control loop
towards enabling their QoS-aware self-optimization, while
at the base station, DUA UPRA realizes a flexible algorithm,
executed at the end of each time slot, to obtain optimal
users’ power and rate vectors for the subsequent time slot via
obtaining the solution of (13).

DUA UPRA Scheme

At Mobile Nodes [A Control Loop]

Step 1 (Information Monitoring). A user computes the
actual amount of data units that has received within his
current observation timeinterval according to (7).

Step 2 (Information Analysis). Determines his need for
accessing system resources with respect to his QoS prereq-
uisites (3), in accordance to (9) or (10).

Step 3 (Decision Making Towards Self-Optimization).
Reflects his QoS requirements and resources expectation at
the scheduler by adjusting his utility function following (8)
and then, disseminates this information at the base station.

At Base Station (A Resource Scheduler)

Step 1. The scheduler requests users’ utility functions.

Step 2. The non-convex power and rate optimization
problem (13) is redefined with respect to the current

users’ utilities (i.e., U∗
RT,i(P, a, b̂RT,i) for all i,∈, SRT, and

U∗
NRT, j(P, a, bNRT, j) for all j ∈ SNRT.

Step 3. Users’ selection is performed for the current opti-
mization problem, according to the mobile selection proce-
dure in (17)–(19).

Step 4. Users’ downlink allocated paower and through-

put are estimated for non-real-time users from R̂
R∗i
NRT,i =

Û
R∗i
NRT,i(Pi, a, bNRT,i) for all i ∈ SNRT and for real-time users

from R̂
R∗i
RT,i = Û

R∗i
RT,i(Pi, a, bRT,i) for all i ∈ SRT, according to

the power and rate allocation algorithm (PAA) in [18]. Let
us underline, that a real-time user i actual downlink power
and rate estimation is a function only of bRT,i parameter in
Step 4 and hence of his corresponding transmission scheme.

In the following, the complexity of DUA UPRA scheme
is discussed. We initially place emphasis on DUA UPRA
scheme at the mobile node, due to the low computational
power of mobile devices. Specifically, the proposed control
loop needs to perform the following computations to
obtain: (a) a finite summation (7), (b) one normalized real
number via (9) or (10) (a summation and a deviation), and
then (c) an additional sum in (8). The latter requires the

computation of the upper and lower bounds of b̂RT,i via the
algorithms provided in Appendix A. The maximum upper-
bounded number v̂ of iterations required to obtain the above
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bounds is also justified in Appendix A. Apart from the time
complexity, due to mobile devise hardware limitations, space
considerations are also important. For the implementation
of our proposed approach, the mobile device needs to store
2∗Wi + 1 (i.e., maintained on its memory) real numbers in
order DUA UPRA scheme at the mobile node to operate (i.e.,
Wi real numbers for computing its short-term throughput
performance (7), Wi real numbers for the corresponding

slots weights and 1 for maintaining the value of b̂RT,i).
Finally, concerning DUA UPRA scheme at the base station,
we adopt the low complexity algorithms provided in [18]
towards obtaining the solution of non-convex optimization
problem (14) (a simple shorting and a simple bisection
algorithms with overall upper-bounded number of iterations
to convergence).

5. Numerical Results and Discussions

In this section, the operation and performance of the
proposed dynamic utility adaptation-based users’ power
and rate allocation scheme DUA UPRA is evaluated via
modeling and simulation. In order to better illustrate the
performance and the efficacy of the proposed scheme, in
terms of average achieved actual downlink throughput and
RT users’ short-term throughput constraints satisfaction,
we compare it against the performance of a fundamental
utility-based power and rate allocation scheme [24] (in the
following, we refer to it as UPRA algorithm) which only aims
at optimizing users’ actual throughput performance, without
considering RT users’ QoS prerequisites; therefore serving
the purpose of system’s performance benchmark.

Throughout our study, we considered a single cell time-
slotted CDMA system. The duration of a slot is assumed to
be 1.67 msec and the simulation lasts for 10,000 slots. We
assume that the base station is located at the cell’s center and
that its maximum transmission power is Pmax = 10 (Watts).
We model the path gain from the base station to user i, Gi

as Gi = Ki/d
a′
i (Rayleigh channels), where di is the distance of

user i from the base station, a′ is the distance loss exponent
(a′ = 4), and Ki is the log-normal distributed random
variable with mean 0 and variance σ2 = 8 (dB), which
represents the shadowing [27].

We assumed that the system’s spreading bandwidth is
W = 108 and that the maximum downlink rate for all users
is Rmax

i = 2 · 103 Kbps. The total number of continuously
backlogged users in the system is N = 30, and we considered
two types of users, namely, non-real-time users (NNRT) and
real-time users (NRT). Unless otherwise explicitly indicated,
in the following, we consider that real-time users require
constant downlink rates of RRT,i = 512 kbps for all i ∈
SRT (i.e., CBR real-time traffic) while their corresponding
observation time intervals were set to Wi = 20 slots for all
i ∈ SRT, and therefore an RT user’s short-term data units
threshold is set equal to BRT,i = 17002 bits. We consider
saturated NRT users requesting best effort NRT services,
aiming at maximizing the achieved actual downlink through-
put. The system’s triggering parameter is Tr = 0.3. Both
types of users are assumed to have the same transmission
scheme. Therefore, we considered that their fi(γ) functions’

parameters are a = 2 [18] and bNRT, j = bRT,i = 3 for all i ∈
SRT, for all j ∈ SNRT. In order to compute real-time users’

minimum and maximum values for their parameter b̂RT,i(t)
in each time slot t, according to the algorithms proposed in
Appendix A, we considered that ε = 10−5 and Lmax = 105.

With the objective of better evaluating the performance
of the proposed DUA UPRA scheme, we considered four
basic scheduling scenarios. In the first scenario, referred to
as SC1, in order to explore our scheme’s behavior in terms
of satisfying RT and NRT service QoS requirements and to
gratify that the proposed dynamic users’ utilities adaptation
framework DUA reflects correctly their corresponding
degree of satisfaction, we assumed that all users have the
same average channel conditions. In the second and the
third scenarios (SC2 and SC3), we evaluate the performance
of our proposed scheduler when users with different average
channel conditions are served, considering, respectively, only
RT users (SC2) and both NRT and RT users (SC3) at the
system in order to demonstrate our schemes’ flexibility in
adapting the resource allocation process according not only
to users’ various QoS requirements but also to their average
channel conditions, aiming at reducing the drawbacks
emerging from the users’ “near-far” effect. Finally, the
fourth scheduling scenario (SC4) aims at demonstrating
and revealing DUA UPRA algorithms efficacy in supporting
variable rate real-time traffic users.

5.1. Scheduling Scenario 1 (SC1). Figure 1 illustrates the total
system’s actual average throughput as a function of the num-
ber of RT users in the system (i.e., NRT = 5, 10, . . . , 30, and
therefore RT users’ percentage in the system ranges from
16.67% to 100%, resp.), while Figure 2 presents RT users’
probabilities of not satisfying their short-term throughput

requirements (i.e., Pr[β̂RT,i(t) ≤ BRT,i]Wi
) as a function of

their number in the system under UPRA algorithm (black
columns) and DUA UPRA scheme (blue columns). All users
average channel conditions are similar (i.e., are placed at
same distances from the cell’s center), therefore, only their
fast fading attribute affects their instantaneous values.

We can clearly observe from Figure 2 that RT users’
probabilities of not satisfying their short-term throughput
requirements are significantly reduced under DUA UPRA
scheme, compared to the UPRA algorithm, even for large
numbers of RT users in the system. Furthermore, our
scheduling scheme’s efficacy in satisfying RT users’ QoS
requirements is obtained without any considerable loss in
the system’s average (per user) achieved throughput, since
as shown in Figure 1 system’s average achieved throughput
under DUA UPRA scheme remains very close to the optimal
one achieved by a pure opportunistic utility-based algorithm
(UPRA). The observed loss in overall system’s average
throughput under DUA UPRA is due to RT users slight
overprovisioning of available resources towards maintaining
their strict short-term throughout prerequisites (i.e., fixed
amount of data per short-term windows). On the other
hand, the latter resources are allocated to NRT users
under UPRA, which are purely opportunistically served
and, therefore, obtain increased average actual throughout
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Figure 1: System’s average throughput in SC1.
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Figure 2: RT users’ short-term throughput failure probabilities in
SC1.

(leading to better overall system throughput), at the expense
of high RT user’s short-term throughput failure probabilities
(i.e., high RT users’ performance degradation). The latter
tradeoff is revealed in more detail in the following scenarios
as well.

Moreover, by closely observing the allocation of system
resources, in terms of actual average throughput for each one
of the considered types of users individually, we can further
see our scheme’s property of exploiting the opportunistic
nature individually for each type of users in order to
optimize their diverse QoS requirements. Therefore, Figure 3
illustrates RT (NRT) users’ actual average throughput as a
function of their number in the system under DUA UPRA.
Specifically, it can be observed that an RT user’s average
received throughput remains almost constant, independent
of their number in the system, due to DUA UPRA scheme’s
property of allocating system resources to RT users up
to the point where their required streaming throughput
is satisfied. It is noted that, as observed in Figure 3, RT
users’ average achieved throughput is slightly larger than
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Figure 3: RT and NRT user’s actual average received throughput
under DUA UPRA scheme in SC1.

their predefined fixed downlink transmission rate, due to
the system’s preemptive nature when supporting RT services
(determined by the values of triggering parameter Tr). On
the other hand, an NRT user’s average received throughput
increases as the number of NRT users in the system decreases
because the degree of competition among them for the excess
system resources decreases as well, which is an inherent
characteristic of any opportunistic scheduler.

With the presentation of the following two figures
(Figures 4 and 5), we focus on DUA UPRA scheme’s
performance under the most demanding case in SC1, in
terms of RT users’ short-term throughput QoS requirements
satisfaction, where all the users in the system are RT users
(i.e., NRT = N = 30). We aim at demonstrating that
DUA UPRA scheme’s enhanced performance, with respect
to RT services QoS properties, asserts and affects all RT
users and not only a portion of them, despite the large
fluctuations on their channel conditions (due to fast fading).
Specifically in Figure 4, we present each RT user’s average
actual achieved throughput, for all thirty users in the system,
while in Figure 5 their corresponding short-term throughput
failure probabilities under DUA UPRA scheme (black dots)
and UPRA algorithm (gray square) are depicted.

We observe that all users’ probabilities of not satisfying
their short-term throughput constraints are very small (max-
imum value: 0.7% average: 0.19%) under DUA UPRA, while
under UPRA they are high and diverse (maximum value:
20.7% average: 9.8%). Furthermore, under DUA UPRA real-
time users’ average achieved throughput remains very high
compared to the one achieved under UPRA that exploits
optimally system’s throughput abilities without, however,
providing short-term throughput constraints. Thus, all real-
time users’ average actual received throughput is almost the
same under DUA UPRA.

5.2. Scheduling Scenario 2 (SC2). In the second scheduling
scenario SC2, we also considered a system with 30 RT
users (i.e., N = NRT = 30), however, separated into
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Figure 4: RT users’ average throughput under UPRA and
DUA UPRA algorithms in SC1 (when N = NRT = 30).
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Figure 5: RT users’ short-term throughput constraints failure
probabilities under UPRA and DUA UPRA algorithms in SC1
(when N = NRT = 30).

two classes: good users and bad users with good and bad
average channel conditions, respectively. Good users’ average
channel conditions are assumed to be 7 dB larger than bad
users. For each type of users in the system, we evaluate
their average probabilities of not satisfying their short-term
throughput constraints (illustrated in Figure 6), as well as
their throughput performance (presented in Figure 7), as a
function of the number of RT bad users in the system, under
DUA UPRA (blue columns, solid for bad users and stripes
for good users) and UPRA (black columns, solid for bad
users and stripes for good users) algorithms.

The corresponding results demonstrate that under UPRA
algorithm (black solid columns) bad users are strongly
unfavored, not only in terms of their short-term throughput
constraints dissatisfaction (Figure 6) but also due to their low
throughput performance (Figure 7), especially when their
number in the system is low. This mainly occurs due to
UPRA goal of maximizing the system’s total utility. Bad users’
contribution to the maximization of the system’s total utility
is very low (i.e., they practically contribute only when their
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Figure 7: Users’ average achieved throughput in SC2.

channels are very good compared to good users’ average
channel conditions), and therefore they are rarely selected
by UPRA algorithm, which leads to their throughput perfor-
mance degradation. On the other hand, under DUA UPRA
scheme bad users’ short-term throughput performance is
highly improved (Figure 7, solid blue columns). Especially,
when their number in the system is small, the percentage
of their short-term throughput dissatisfaction decreases even
75% compared with the corresponding one achieved under
UPRA (solid black columns). Moreover, we observe that
bad users’ average downlink throughput takes the same
values independently of their number in the system under
DUA UPRA scheme (Figure 7, solid blue columns).

Observing good users’ performance metrics, we notice
that their probabilities of not satisfying their short-
term throughput constraints are highly improved under
DUA UPRA scheme (Figure 6 striped blue columns (last))
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Figure 8: Network varying topology (per Case #) under Scenario 3
(SC3).

(i.e., always smaller than 0.18%), especially when their
number in the system is high (number of bad users is small).
On the other hand, under UPRA algorithm, due to the high
competition, their short-term throughput constraints are
still not satisfied (Figure 6 striped black columns). Finally,
the downlink throughput performance reduction of good
RT users under DUA UPRA scheme, when compared to the
one achieved under UPRA algorithm, is not only harmless
(Figure 7 striped blue and black columns) since good RT
users’ required downlink rate is still achieved and satisfied,
but rather desired since the excess system resources can be
efficiently allocated to bad RT users in order to improve their
short-term throughput requirements, as well as to other
NRT users.

5.3. Scheduling Scenario 3 (SC3). With this scenario (SC3),
we aim at studying DUA UPRA scheme’s ability to efficiently
treat “near-far” effect in a more pragmatic wireless setting,
as well as quantifying the tradeoff between RT users short-
term throughput satisfaction fulfillment and system’s overall
achieved throughout. To that end, we consider N = 30 active
users in the system, where five (NRT = 5) request real-time
traffic (RRT,i =512 Kbps, Wi = 20 slots, BRT,i = 17002 bits)
for all i ∈ SRT, while the rest are considered as NRT users
(NNRT = 25). NRT users constantly maintain their position
with respect to cell’s center, placed in groups of five NRT
users in the following distances d0 = 150 (m) dp+1 = dp +
50 (m) for p = 0, . . . , 3 (Figure 8). On the other hand, the
set of RT users in the system is gradually moving away from
cell’s center (per case), as shown in Figure 8, in order to
better simulate the fact that RT users experience Rayleigh fast
fading channels with various average quality conditions, due
to their corresponding distance to cell’s base station. Thus,
RT users’ distances from cell’s centre per case are provided in
Table 1.

Figure 9, illustrates overall system downlink average
throughput (black columns), as well RT and NRT users’
average throughput (gray and dotted columns, resp.) for each
one of the simulated cases (horizontal axis). Furthermore,
the corresponding RT users’ average short-term throughput
failure probabilities are presented in Figure 10. The results
show that the proposed DUA UPRA scheme efficiently over-
comes the problem of “near-far” effect, since RT users QoS

Table 1: RT users’ distances in (m) for cell’ center per Case # under
Scenario 3 (SC3).

Case #
RT User ID

1 2 3 4 5

0 150 200 250 300 350

1 200 250 300 350 400

2 250 300 350 400 450

3 300 350 400 450 500

4 350 400 450 500 550

5 400 450 500 550 600
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Figure 9: Total systems, RT and NRT users’ average achieved actual
throughput in SC3.

prerequisites are fulfilled, in terms of achieved average actual
throughout larger than 512 kbps and short-term throughput
failure probabilities less than 0.8%, even under the most
demanding scenario that is, Case = 5. On the other hand,
a significant tradeoff is revealed. As the average channel
quality of RT users decreases (i.e., RT users are moving away
from cell’s center) then, the system increases the number of
slots allocated to them, in order to balance between their
short-term throughput requirements fulfillment and their
inevitable actual throughput degradation (due to their bad
channel quality). Therefore, RT users’ average throughput
deceases (Figure 9, grey columns) but their short-term
throughput failure probabilities remain very low (Figure 10).
At the end, RT users QoS prerequisites are preserved, but,
at the cost of low NRT users’ throughput as well as overall
system throughout. That is due to the small number of
system slots allocated to NRT users. The latter, leads only
to a small increment of NRT users’ average throughput (as
RT users are moving away from cell’s center), even if their
instantaneous achieved rates are increased, due to their good
channel conditions (Figure 9, dotted columns).

5.4. Scheduling Scenario 4 (SC4). In this final set of sim-
ulations (SC4), we explore the service performance of a
RT user requesting variable rate traffic under the proposed



12 EURASIP Journal on Wireless Communications and Networking

0

0.5

1

R
T

u
se

rs
’s

h
or

t-
te

rm
th

ro
u

gh
pu

t
fa

ilu
re

pr
ob

ab
ili

ti
es

(%
)

1.5

2

2.5

3

3.5

4

0 1 2

Case #

3 4 5

Figure 10: RT users’ average short-term throughput failure proba-
bilities in SC3.
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Figure 11: Actual achieved throughput as the system evolves in SC4
for a user with variable rate real-time traffic.

DUA UPRA scheme, as the system evolves. To that end,
we consider a scenario with N = NRT = 30 real-time
users, with the same average channel conditions (with
fast-fading Rayleigh channels). All users except one user
(user j) are assumed to have the same QoS prerequisites (i.e.,
CBR traffic of RRT,i = 512 Kbps, Wi = 20 slots, BRT,i =
17002 bits for all i ∈ SRT, i /= j). User j traffic is considered
to be of variable rate as follows: from t = 0 to t =
400 timeslot, RRT, j(t) = 512 (Kbps), from t = 401 to t =
1600 timeslot, RRT, j(t) = 768 (Kbps) and from t = 1600 to
t = 2000 timeslot, RRT, j(t) = 512 (Kbps).

Figure 11 illustrates the variable rate RT user’s instan-
taneous actual throughput as a function of time, while
Figure 12 their corresponding short-term throughput prob-

ability (i.e., Pr[β̂RT,i(t) ≤ BRT,i]Wi
, at timeslot t) as a function

of time, under DUA UPRA scheme. In both figures, the
timeslots at which user j required throughput alters are
marked with vertical red lines, while the corresponding
requested rates are presented with gray horizontal lines in
Figure 11. The results show that the dynamic adaptation of
the under consideration user’s requested actual throughput is
fulfilled under DUA UPRA, and thus the timeframe required
to complete a new request is less than 50 timeslots (i.e.,
less than 8.3 msec). Moreover, during the latter transition
period (i.e., after a change of the requested throughput),
the RT user’s short-term throughput failure probabilities
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Figure 12: Short-term throughput failure probability (%) as the
system evolves in SC4 for a user with variable rate real-time traffic.

slightly increases (maximum value 0.04 = 4%) and then
starts dropping again, due to algorithms adaptation to the
new request (Figure 12). Finally, we can observe that the
user’s actual throughput always remains slightly higher that
the required (Figure 11), since in order to always fulfill their
short-term throughput requirements (per time slot), the
system slightly overprovides them with resources.

6. Concluding Remarks

In this paper, we studied the combined problem of allocating
system resources, in terms of power assignment and trans-
mission rate, in the downlink of a CDMA wireless system,
where multiple services with various QoS requirements are
simultaneously requested. We expressed users’ degree of sat-
isfaction with respect to their QoS demands fulfillment (non-
real-time and real-time services) through a common utility-
based framework which provides us with the enhanced flex-
ibility of effectively influencing the opportunistic scheduler
to meet their various QoS prerequisites.

Emphasis was placed on RT users’ probabilistic short-
term throughput requirements satisfaction. Specifically, in
order to dynamically and accurately affect their selection
priority with respect to their QoS prerequisites satisfaction,
we introduced the information of their short-term received
data distribution into the proposed methodology of tun-
ing their utility functions’ properties. Through modeling
and simulation under various scheduling scenarios, we
demonstrated that significant performance improvements
are achieved in terms of real-time user’s short-term through-
put requirement satisfaction and non-real-time users actual
throughput maximization, without any considerable loss in
the total system throughput.

It should be noted that in this work, we considered linear
relationship between users’ assigned data rates and their
corresponding degree of satisfaction. However, the degree
of a user’s satisfaction with respect to their service quality
can be more efficiently expressed by applying other than
linear utility functions of their actual throughput rates [11].
The mathematical formulation and the analytical solution
of the above utility optimization problem provide a first
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step towards the realization of autonomic wireless network
where hybrid data flows are simultaneously supported, and
therefore is an issue of a great importance and part of our
current research work.

Appendices

A. Limitations on Controlling Users’
Selection Priorities

In the following, we rigorously define the lower and upper

bounds of real-time users’ b̂RT,i for all i ∈ SRT parameter
(i.e., bi,min and bi,max, resp.) and justify their role in the pro-
posed scheduling policy as well as the way they restrict users’
ability to self-optimize their services’ QoS performance. It
is shown that even if RT users’ introduced self-optimization
behavior enhances their ability to self-optimize their QoS-
aware performance, mobile nodes’ potential bad channel
conditions, the system’s lack of available resources, as well as
their physical limitations may prevent the fulfillment of their
short-term QoS requirements. Moreover, we provide low
complexity algorithms for computing the above boundary
values.

As analyzed in the previous sections, a real-time user’s

utility function parameter b̂RT,i plays a key role in the
selection priority of accessing system’s resources at each
time slot, since it affects the corresponding value of their
willingness to pay λmax

i . On the other hand, the appro-
priate values for bmin,i and bmax,i should be such that for

any further decrement or increment in the value of b̂RT,i

(with respect to these bounds) the corresponding value of

parameter λmax
i is not affected. Consequently, parameter b̂RT,i

should be bounded among them. Therefore, we use the
following condition for identifying an RT user i bounds of

their b̂RT,i parameter

∂λmax
i (b̂RT,i)

∂b̂RT,i

∣∣∣∣∣ b̂RT,i<bmin,i

b̂RT,i>bmax,i

= 0, (A.1)

where λmax
i ≡ λmax

i (b̂RT,i) represents RT users’ maximum

willingness as a function of his parameter b̂RT,i.

Definitions of bmin,i and bmax,i for all i ∈ SRT. Following a
pure functions theoretic analysis, the lower bound of an RT

user’s utility function parameter b̂RT,i can be formally defined
as follows.

Proposition 2 (Definition of bmin,i for all i ∈ SRT). We
defines as bmin,i for all i ∈ SRT the maximum value of a RT

user i utility function parameter b̂RT,i at slot t, such that

bmin,i =max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
b̂RT,i :PLIM

i

(
γ∗i ,Ai

)∣∣∣
b̂RT,i

> P0
i

∣∣∣
b̂RT,i

where
∂2U

R∗i
i (Pi)

∂Pi
2

∣∣∣∣∣∣
P=P0

i |b̂RT,i

= 0,

⎡
⎢⎣UR∗i

i

(
P, b̂RT,i

)

−P
∂U

R∗i
i

(
P, b̂RT,i

)

∂P

⎤
⎥⎦
P=PLIM

i (γ∗i ,Ai)|b̂RT,i

> 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A.2)

where bmin,i ∈ [0, bRT,i) .Thus, when b̂RT,i < bmin,i then
∂λmax

i (b̂RT,i)/∂b̂RT,i|b̂RT,i<bmin,i
= 0.

Proof. See Appendix C.

The existence of such a lower bound reveals an inherent
users’ limitation on controlling their services’ short-term
QoS requirements when operating over a time-varying
wireless environment; the reason is twofold. On the one
hand, due to its opportunistic nature, the scheduler in the
sight of low available resources may potentially unfavor
some user’s towards optimizing overall system’s welfare. On
the other hand, even when plethora of system resources
is available, RT users’ potential bad instantaneous channel
condition and their physical limitations may make the goal of
their short-term QoS prerequisites fulfillment unreachable.

The following proposition defines an RT user’s utility

function parameter b̂RT,i upper bound.

Proposition 3 (Definition of bmax,i for all i ∈ SRT). One
defines as bmax,i for all i ∈ SRT the maximum value of a real-

time user i utility function parameter b̂RT,i at time slot t such
that

bmax,i

=
⎧⎨
⎩b̂RT,i : min

⎛
⎝ ∂b̂RT,i

∂λmax
i

∣∣∣∣∣
b̂RT,i=bmax,i

≤ −Lmax,BMAX,i(Ai)

⎞
⎠
⎫⎬
⎭,

(A.3)

where Lmax is a large positive number and b̂RT,i 
 bRT,i. Thus,

BMAX,i(Ai)

= 1
a

{
ln
(

ci
1 + (Ai/aW(Pmax + Ai)) + cidi

− 1
)

+
aWPmax

Rmax
i Ai

}.

(A.4)

Proof. See Appendix D.

From the definition of BMAX,i(Ai) we can observe that
the worse RT user’s channel conditions are (i.e., parameter
Ai increases), the smaller is our ability of influencing their
selection priority, since the range of their utility function

parameter b̂RT,i decreases as well.

Algorithms for Computing bmin,i and bmax,i. We conclude this
section by introducing two low complexity algorithms for

computing RT users’ parameters b̂RT,i lower and upper
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bounds at each time slot. Initially, by using Proposition 2,
we provide a “divide and conquer”-based algorithm for

computing a real-time user’s parameter b̂RT,i lower bound
bmin,i.

Algorithm for Computing (bmin,i for all i ∈ SRT). Let us
refer to PLIM

i (γ∗i ,Ai)|b̂RT,i(t)=bmin,i(t)
(ν) > P0

i |b̂RT,i(t)=bmin,i(t)
(ν) and

[U
R∗i
i (P, b̂RT,i)− P(∂U

R∗i
i (P, b̂RT,i)/∂P)]P=PLIM

i (γ∗i ,Ai)|b̂RT,i=bmin,i
(ν)

>

0 as conditions A and B, respectively.

(i) Set ν = 1, l(ν) = 0, r(ν) = bRT,i and bmin,i(ν) = bRT,i.

(ii) If A AND B are true then l(ν+1) = (l(ν) + r(ν))/2,
r(ν+1) = r(ν) and bmin,i(ν+1) = l(ν+1) else l(ν+1) = l(ν),
r(ν+1) = ( l(ν) + r(ν))/2 and bmin,i(ν+1) = r(ν+1).

(iii) If |l(ν+1)− l(ν)| > εOR |r(ν+1)−r(ν)| > ε then v = v+1,
go to (ii).

(iv) If NOT (AANDB) is true then bmin,i (ν+1) = bmin,i(ν+1) −
ε.

The maximum number of algorithm’s iterations ν∗ is v∗ ≤
log2(bRT,i/ε) + 1, where ε is a small positive constant. Finally,
with respect to Proposition 3, we propose the adoption of a
“Steepest Descent”-based algorithm for computing at every

time slot t, a real-time user i parameter b̂RT,i upper bound,
bmax,i.

Algorithm for Computing (bmax,i for all i ∈ SRT).

(i) Let Lmax be a large positive constant.

(ii) n = 0, bmax,i
(n=0) = bRT,i.

(iii) For n > 0 then bmax,i
(n+1) = bmax,i

(n) + 10�D(n)−1�

where: D(n) = ∂b̂RT,i/∂λ
max
i |b̂RT,i=b(n)

max,i
.

(iv) If ∂b̂RT,i/∂λ
max
i |b̂RT,i=b(n+1)

max,i
< −Lmax, go to (vii)

(iv) If bmax,i
(n+1) > BMAX,i(Ai), then go to (vii)

(vi) n = n + 1 and go to (iii).

(vii) Stop.

The previous algorithm is a modified “Steepest Descent”-
based algorithm, adapted to the needs of our problem
(Proposition 3). Specifically, in our case, we are not inter-

ested in finding the minimum of the function b̂RT,i(λmax
i ),

but in accordance to (A.1), in finding a large value of b at

which the absolute values of gradient |∂b̂RT,i/∂λ
max
i |b̂RT,i=bmax,i

|
are very large (for practical considerations, we approximate
infinite with a large number Lmax). Therefore, to improve
convergence time, we use as a step the corresponding
power of 10 (in step iii). It is easy to show, considering
the complexity of the “Steepest Descent” [28], that the
maximum number of iterations required for convergence
are ν∗∗, where v∗∗ ≤ 
(1/2) ln(Lmax)�.

Finally, the total maximum number of iterations required
to compute the minimum and the maximum values

of b̂RT,i is v̂ ≤ log2(bRT,i/ε)+1+
(1/2) ln(Lmax)�, where ε and
Lmax are a small and a large positive constants, respectively.

B. Proof of Proposition 1

From (14), we can observe that when for two users
i, j, Ai = Aj and Rmax

i = Rmax
j , then the only param-

eters that are affected by variations in the value of
parameters bi, bj , and hence determine the properties of

their utility functions U
R∗i
i (P, a, bi) and U

R∗j
j (P, a, bj) are γ∗i ,

γ∗j and the corresponding values of their fi and f j functions,
respectively. Therefore, we first provide the following two
lemmas that determine the way that a user i, parameter bi
affects his fi function and his γ∗i parameter.

Lemma 4. If bi < bj then fi(γ, a, bi) > fj(γ, a, bj) for
all γ ∈ (0,∞).

Proof. If one sets as xi = eabi in the generic definition of a
sigmoidal function:

fi
(
γi
(
Ri,P

)
, a, bi

)
= ci

{
1

1 + e−a(γi−bi) − di

}
, (B.1)

where ci = (1 + eabi)/eabi and di = 1/(1 + eabi), one can
rewrite itas f i(γ, a, bi) = (1 − e−aγ)/(1 + xie−aγ). Thus,
if bi < bj then 1 + xie−aγ < 1 + xje−aγ and fi(γ, a, bi ) >
fj(γ, a, bj) for all γ ∈ (0,∞).

Lemma 5. If Ai = Aj and Rmax
i = Rmax

j , if bi < bj , then
γ∗i < γ∗j .

Proof. From (14), one can compute a user i, parameter
γ∗i value as follows: γ∗i = maxγ≥1{(1/γ) fi(γ, a, bi)} =
maxγ≥1{(1/γ)(eaγ − 1)/(eaγ + xi)}, where xi = eabi . Let one
defines as g(xi, γ) = (1/γ)(eaγ−1)/(eaγ +xi) and as h(xi, γ) =
∂g(xi, γ)/∂γ = eaγ(aγxi − eaγ − xi + 1 + aγ) + xi/(eaγ + x)2γ2.
When γi = γ∗i , then ∂g(xi, γ)/∂γ = 0 since γ∗i is maximum
and

h
(
xi, γ

)
> 0 ∀γ < γ∗i ,

h
(
xi, γ

)
< 0 ∀γ > γ∗i .

(B.2)

Thus, if xi > xj , then h(xi, γ) > h(xj , γ) since

∂h
(
xi, γ

)

∂xi
= eaγaγ(eaγ − 1)

(eaγ + xi)
3γ2

> 0 ∀a ≥ 0, γ ≥ 0, bi ≥ 0.

(B.3)

If there exists xi, γ∗i such that h(xi, γ∗i ) = 0, and xj , γ∗j such
that h(xj , γ∗j ) = 0, then if xj > xi , from (B.3), one has
h(xj , γ∗i ) > h(xi, γ∗i )b, and hence h(xj , γ∗i ) > 0. Thus, since
h(xj , γ∗j ) = 0 and h(xj , γ∗i ) > 0, from (B.2) one has γ∗i < γ∗j .

Finally, since if xj > xi then γ∗i < γ∗j , and when xj >
xi then bi < bj , one concludes that if bi < bj then γ∗i < γ∗j .
Finally, based on Lemmas 4 and 5 one proves Proposition 1.
From Remark 1 (Proposition 3, [24]) one has seen that if for

any two users i, j U
R∗i
i (P, a, bi) > U

R∗j
j (P, a, bj) for 0 ≤ P ≤

Pmax, then λmax
i > λmax

j . Therefore one has to prove that if

bi < bj , then U
R∗i
i (P, a, bi) > U

R∗j
j (P, a, bj) for 0 ≤ P ≤ Pmax.
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By the definition of a user i utility in (14), and Lemma 5, let
one defines:

Ki = Rmax
i γ∗i (θPmax + Ai)
W + θRmax

i γ∗i
≤

Rmax
j γ∗j

(
θPmax + Aj

)

W + θRmax
j γ∗j

= K2.

(B.4)

Furthermore, there are three possible cases for the value of
parameter P, when 0 ≤ P ≤ Pmax.

Case 1. If P ≤ K1 < K2, then from (14) if bi < b,,
then fi(γ∗i , a, bi)/γ∗i ≥ f j(γ∗j , a, bj)/γ∗j , and hence it easily

follows that U
R∗i
i (P, a, bi) ≥ U

R∗j
j (P, a, bj).

Case 2. If P ≥ K1 and P ≥ K2, then from Lemma 4 if
bi < bj we have fi(γ∗i , a, bi) ≥ f j(γ∗j , a, bj), and it follows

that U
R∗i
i (P, a, bi) ≥ U

R∗j
j (P, a, bj).

Case 3. If P ≥ K1 and P ≤ K2, then since Rmax
i fi(γi(Rmax

i ,
P), a, bi) ≥ WP/(γ∗i (θPmax − θP + Ai)) fi(γ∗i , a, bi) and (as
in Case 1) Rmax

i fi(γi(Rmax
i ,P), a, bi) ≥ WP/(γ∗j (θPmax −

θP + Aj)) f j(γ∗j , a, bj), we can conclude that U
R∗i
i (P, a, bi) ≥

U
R∗j
j (P, a, bj).

Finally, since when bi < bj ,U
R∗i
i (P, a, bi) > U

R∗j
j (P, a, bj)

for 0 ≤ P ≤ Pmax, the proof is completed.

C. Proof of Proposition 2

In order to determine a lower bound of an RT user’s
parameter b̂RT,i, we first identify some of the main properties

of his utility function with respect to b̂RT,i ∈ [0, bRT,i).
The following lemma defines the relationship between the
inflection point of a user’s sigmoidal-like utility function and

its parameter b̂RT,i.

Lemma 6. For any two values b′RT,i, b
′′
RT,i, of user i utility

parameter b̂RT,i such that b′RT,i < b′′RT,i, it holds that P
0
i
′
< P0

i
′′

where P0
i
′
, P0

i
′′
are the inflection points of their corresponding

utilities U
R∗i
i (Pi, b′RT,i) and U

R∗i
i (Pi, b′′RT,i), respectively.

Proof. See Appendix E.

Furthermore, we can also prove that when b̂RT,i = 0, then
a user’s utility function inflection point has always smaller
value than his utility separation point, PLIM

i (γ∗i ,Ai).

Lemma 7. When b̂RT,i = 0, P0
i |b̂RT,i=0 < PLIM

i (γ∗i ,Ai)|b̂RT,i=0.

Proof. See Appendix F.

Based on the two previous lemmas, we can see that

there always exists a value b̂∗RT,i for a user i utility function

parameter b̂RT,i when b̂RT,i ∈ [0, bRT,i), such that for smaller

than b̂∗RT,i values of b̂RT,i, the inflection point of function

U
R∗i
i (Pi, b̂RT,i) is always smaller that its separation point (i.e.,

P0
i < PLIM

i (γ∗i ,Ai)). Therefore, we can provide the following
proposition.

Proposition 8. There always exists a value of a real-time user i

utility function parameter b̂RT,i when b̂RT,i ∈ [0, bRT,i), denoted

as b̂∗RT,i, such that PLIM
i (γ∗i ,Ai)|b̂RT,i=b̂∗RT,i

= P0
i |b̂RT,i=b̂∗RT,i

, and

hence PLIM
i (γ∗i ,Ai)|b̂RT,i<b̂

∗
RT,i

> P0
i |b̂RT,i<b̂

∗
RT,i
when b̂RT,i ∈ [0,

b̂∗RT,i).

Proof. See Appendix H.

We can now proceed to prove that when b̂RT,i ∈ [0, b̂∗RT,i),
there always exists a value for a user i utility function

parameter b̂RT,i denoted as bmin,i such that when b̂RT,i <
bmin,i then their maximum willingness to pay is calculated
by the second part of (17), because P∗i in (18) does not exist
and hence, condition (A.1) is fulfilled. Towards that, we first
provide the following proposition.

Proposition 9. There always exists a value for a real-time

user i utility function parameter b̂RT,i when b̂RT,i ∈ [0, b̂∗RT,i),

indicated as b̂∗∗RT,i such that when b̂RT,i b̂
∗∗
RT,i then there is no

P∗i ∈ [P0
i ,Pmax] such that

U
R∗i
i

(
P, b̂RT,i

)
− P

∂U
R∗i
i

(
P, b̂RT,i

)

∂P
= 0 for P0

i ≤ P ≤ Pmax.

(C.1)

Proof. See Appendix I.

According to Proposition 8, there always exists a value for

a real-time user i utility function parameter b̂RT,i (i.e., b̂∗RT,i)

when b̂RT,i ∈ [0, bRT,i) such that for 0 ≤ b̂RT,i < b̂∗RT,i <
bRT,i then

PLIM
i

(
γ∗i ,Ai

)∣∣∣
b̂RT,i<b̂

∗
RT,i

> P0
i

∣∣∣
b̂RT,i<b̂

∗
RT,i

, (C.2)

and in accordance to Proposition 9, there always exists a

value for a real-time user i utility function parameter b̂RT,i

(i.e., b̂∗∗RT,i) when b̂RT,i ∈ [0, bRT,i) such that for 0 ≤ b̂RT,i <

b̂∗∗RT,i ≤ b̂∗RT,i < bRT,i then

⎡
⎣UR∗i

i (P)− P
∂U

R∗i
i (P)
∂P

⎤
⎦
P=PLIM

i (γ∗i ,Ai)|b̂RT,i(t)<b̂
∗∗
RT,i(t)

> 0, (C.3)

and hence (18) has no solution. Therefore, there always

exist a value for parameter b̂RT,i when b̂RT,i ∈ [0, bRT,i),
denoted as bmin,i, such that both (C.2) and (C.3) are satisfied.
Specifically, bmin,i = b̂∗∗RT,i. Moreover, since when b̂RT,i ∈
[0, b̂∗∗RT,i = bmin,i) then, (18) has no solution, and by (17),

we have λmax
i = U

R∗i
i (Pmax)/Pmax = (WPmax/Ai)((1 −

e−(aNiPmax/Ai))/(1 + ea(b̂RT,i−(NiPmax/Ai)))), where Ni = W/Rmax
i .

Furthermore, since b̂RT,i � NiPmax/Ai, we conclude that
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when b̂RT,i ∈ [0, bmin,i), then λmax
i = WPmax/Ai and hence

∂λmax
i (b̂RT,i)/∂b̂RT,i|b̂RT,i<bmin,i

= 0.
Moreover, the proof is completed.

D. Proof of Proposition 3

In the following, we determine the sufficient conditions that
will allow us to define an upper bound of an RT user’s utility

parameter b̂RT,i when b̂RT,i 
 bRT,i and to justify its purpose

with respect to condition (A.1). Moreover, since b̂RT,i 

bRT,i, then without loss of generality in the rest of this
subsection, we assume that a user i function fi parameters

ci(b̂RT,i) = (1 + eab̂RT,i)/eab̂RT,i ≡ ci and di(b̂RT,i) = 1/(1 +

eab̂RT,i) ≡ di have fixed values independent from the value of

parameter b̂RT,i.
Initially, we determine an upper bound of a real-time

user’s parameter b̂RT,i, denoted as BMAX,i(Ai) for all i ∈ SRT,
without considering the satisfaction of condition (A.1). The
existence of such an upper bound is based on the base
station’s total downlink power limitation, as explained in the
following lemma.

Lemma 10. There always exists an upper bound of a real-time

user’s i ∈ SRT utility function parameter b̂RT,i, when b̂RT,i 

bRT,i, denoted as BMAX,i(Ai), where

BMAX,i(Ai)

= 1
a

{
ln
(

ci
1 + (Ai/aW(Pmax + Ai)) + cidi

− 1
)

+
aWPmax

Rmax
i Ai

}
,

(D.1)

due to the power limitations of the base station (Pmax) and the
corresponding user’s channel conditions per time slot (i.e., Ai ).

Specifically, if b̂RT,i > BMAX,i(Ai) then P∗i > Pmax where P∗i is
the solution of (18).

Proof. See Appendix I

Moreover, we have already proven that λmax
i (b̂RT,i)

is a continuous and decreasing function of b̂RT,i (in
Proposition 1) and vice versa. Furthermore, the following

lemma states that when b̂RT,i 
 bRT,i,b̂RT,i is also a concave
up function of λmax

i .

Lemma 11. When b̂RT,i 
 bRT,i an RT user’s i ∈ SRT

utility function parameter b̂RT,i is a concave up function of his

parameter λmax
i , since ∂2b̂RT,i/∂(λmax

i )2 > 0.

Proof. See Appendix J.

Based on the previous lemmas, we can now formally
define an upper bound for a real-time user’s parameter

b̂RT,i, with respect to (A.1), as follows. Let Lmax be a

positive constant such as when ∂b̂RT,i/∂λ
max
i |λmax

i → 0 ≤ −Lmax,

∂λmax
i (b̂RT,i)/∂b̂RT,i|b̂RT,i→∞ � 0. Moreover, for a user’s param-

eter b̂RT,i, which is a function of their maximum willingness
to pay λmax

i , we have proven the following properties:

(1) b̂RT,i < BMAX,i(Ai) (in Lemma 10).

(2) For bRT,i < b̂RT,i ≤ BMAX,i(Ai):

(a) b̂RT,i is a continuously decreasing function of
parameter λmax

i (in Proposition 1).

(b) b̂RT,i is a concave up function of parameter λmax
i

(in Lemma 11).

Therefore, we can conclude that there always exists a

b̂RT,i for all i ∈ SRT, denoted as bmax,i, such that

bmax,i

=
⎧⎨
⎩b̂RT,i : min

⎛
⎝ ∂b̂RT,i

∂λmax
i

∣∣∣∣∣
b̂RT,i=bmax,i

≤ −Lmax,BMAX,i(Ai)

⎞
⎠
⎫⎬
⎭,

(D.2)

which completes the proof.

E. Proof of Lemma 6

If P0
i is the inflection point of the sigmoid like function

U
R∗i
i (Pi, b̂RT,i) ≡ U

R∗i
i (Pi, bi) ≡ U

R∗i
i (Pi) (for simplicity in

the presentation, in this proof, we denote b̂RT,i as bi) the
following equation must be satisfied

∂2U
R∗i
i (Pi)

∂Pi
2

∣∣∣∣∣∣
Pi=P0

i

= 0. (E.1)

Moreover, we can compute the second derivative of a
users’ utility function in accordance to the partial deriva-

tives chain rule as follows, ∂2U
R∗i
i (Pi)/∂Pi

2 = (∂2U
R∗i
i (γi)/

∂γi2)(dγi/dPi)
2 + (∂U

R∗i
i (γi)/∂γi)(d2γi/dPi

2) and after mathe-
matical manipulations, we can conclude that

∂2U
R∗i
i (Pi)

∂Pi
2 = Ni(PT + Ai)

(PT − Pi + Ai)
3

×
⎡
⎣∂

2U
R∗i
i

(
γi
)

∂γi2
(
γi + Ni

)
+ 2 · ∂U

R∗i
i

(
γi
)

∂γi

⎤
⎦,

(E.2)

where Ni = W/Rmax
i . Furthermore, with respect to (B.1) we

can easily derive that
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∂2U
R∗i
i (Pi)

∂Pi
2

= Ni(PT + Ai)

(PT − Pi + Ai)
3

×
⎡
⎣
(

1 + eabi
)

eabi
aiR

max
i ea(bi−γi)

×ea(bi−γi)[a(γi + Ni
)

+ 2
]− [a(γi + Ni

)− 2
]

(
1 + ea(bi−γi))3

]
.

(E.3)

Let us further define as

Fi
(
γi(Pi), bi

) = ea(bi−γi)[a(γi + Ni
)

+ 2
]− [a(γi + Ni

)− 2
]
,

(E.4)

where Fi(γi(Pi), bi)|Pi=P0
i
= 0 in order (E.1) to be satisfied

when Pi = P0
i . Function Fi(γi(Pi), bi) is an increasing

function of variable bi∈ (−∞,∞) since

∂Fi
(
γi(Pi), bi

)

∂bi
= aea(bi−γi)[a(γi + Ni

)
+ 2
]
> 0

∀bi ∈ (−∞,∞),

(E.5)

and a decreasing function of variable γi∈ (−∞,∞) since

∂Fi
(
γi(Pi), bi

)

∂γi
= (−a)

{
ea(bi−γi)[a(γi + Ni

)− 1
]

+ 1
}
< 0

∀γi ∈ (−∞,∞).
(E.6)

Now, let us consider the case where bi = b′i , γi(P
0′
i ) ≡ γ′i and

with respect to (E.1) and (E.4), Fi(γi(Pi), b′i )|Pi=P0′
i
= 0 since

P0′
i is the inflection point of user i utility function U

R∗i
i (Pi, bi)

when bi = b′i (i.e., U
R∗i
i (Pi, bi)). Then, if we increase the value

of user i parameter bi from b′i to b′′i , where b′i < b′′i , then

Fi
(
γi(Pi), b′′i

)∣∣∣
Pi=P0′

i

> 0, (E.7)

since Fi is an increasing function of parameter bi and
the value of parameter γi is fixed (i.e., γi(P0′

i ) ≡ γ′i ).
Furthermore, with respect to (E.1) and (E.4), there must also
exist a value of parameter P0

i regarding the inflection point of

function U
R∗i
i (Pi, b′′i ), where ∂2U

R∗i
i (Pi, b′′i )/2P2

i |Pi=P0′′
i
= 0,

and hence

Fi(γi(Pi), b′′i )
∣∣
Pi=P0′′

i
= 0. (E.8)

According to (E.7) and (E.8), and since Fi is a decreasing
function of parameter γi, we can easily conclude that,
γi(P0′′

i ) > γi(P0′
i ) when b′i < b′′i . Finally, since γi is an

increasing function of Pi we proved that if b′i < b′′i , P
0′
i <

P0′′
i .

F. Proof of Lemma 7

It can be easily shown that

when b̂RT,i = 0 then γ∗i = 1 (F.1)

Moreover, we can see from (14) that when b̂RT,i(t) = 0 then

PLIM
i

(
γ∗i ,Ai

)∣∣∣
b̂RT,i=0

= PT + Ai

Ni + 1
(F.2)

Thus, if ∂2U
R∗i
i (Pi)/∂Pi

2|P=PT+Ai/Ni+1 < 0, then PLIM
i (γ∗i ,

Ai)|b̂RT,i=0 belongs to the concave part of the sigmoid-like

function U
R∗i
i (γ(Pi),Pi), and hence P0

i |b̂RT,i=0 < PLIM
i (γ∗i ,

Ai)|b̂RT,i=0. Towards that and in accordance to (E.3) in

Lemma 6, when b̂RT,i(t) = 0 we have

∂2U
R∗i
i (Pi)

∂Pi
2

∣∣∣∣∣∣
b̂RT,i=0, P=PT+Ai/Ni+1

= 2aRmax
i e−γiae−2a(Ni + 1)3

N2
i (PT + Ai)

2(1 + e−γia)3

· {e−γia[a(γi + Ni
)

+ 2
]− [a(γi + Ni

)− 2
]}
.

(F.3)

In order (F.3) to have negative values for γ ≥ 1 and αi ≥ 1
the following inequality must be asserted, e−γia[a(γi + Ni) +
2]− [a(γi + Ni)− 2] ≤ 0, which is true.

G. Proof of Proposition 8

In accordance to Lemma 6 the inflection point P0
i of a user

i sigmoidal like utility function is an increasing function of

his utility parameter b̂RT,i when b̂RT,i ∈ [0, bRT,i]. Therefore,

since when b̂RT,i = 0, then PLIM
i (γ∗i ,Ai)|b̂RT,i=0 > P0

i |b̂RT,i=0

according to Lemma 7, and when b̂RT,i = bRT,i, then
PLIM
i (γ∗i ,Ai)|b̂RT,i=0 < P0

i |b̂RT,i=0 according to the definition
of a user’s utility function, we can conclude that there
always exists a value of a real-time user i utility function

parameter b̂RT,i where b̂RT,i ∈ (0, bRT,i), (i.e., b̂∗RT,i) such that

PLIM
i (γ∗i ,Ai)|b̂RT,i=b̂∗RT,i

= P0
i |b̂RT,i=b̂∗RT,i

, and hence when b̂RT,i ∈
[0, b̂∗RT,i), then PLIM

i (γ∗i ,Ai)|b̂RT,i<b̂
∗
RT,i

> P0
i |b̂RT,i<b̂

∗
RT,i

.

H. Proof of Proposition 9

Let us define

hi(P) = U
R∗i
i

(
P, b̂RT,i

)
− P

∂U
R∗i
i

(
P, b̂RT,i

)

∂P

≡ U
Rmax
i

i (P)− P
∂U

R∗i
i (P)
∂P

.

(H.1)

Moreover, as it has been proved in [24], Lemma 6, a user
i net utility Pi(λ) is maximized only when their power
allocation value is in the concave part of their utility function
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(i.e., P ∈ [P0
i ,Pmax]). Therefore, we search for the solution

of hi(P)|P=P∗i = 0 only within the range P∗i ∈ [P0
i ,Pmax],

as it further can be observe from (18). Furthermore,
since from Proposition 2 when b̂RT,i ∈ [0, b̂∗RT,i), then
PLIM
i (γ∗i ,Ai)|b̂RT,i<b̂

∗
RT,i

> P0
i |b̂RT,i<b̂

∗
RT,i

, the concave part of a

user’s utility function is for b̂RT,i < b̂∗RT,i within the range of

PLIM
i (γ∗i ,Ai)|b̂RT,i=b̂∗RT,i

to Pmax and if b̂RT,i < b̂∗RT,i , then

P∗i ∈
[
PLIM
i

(
γ∗i ,Ai

)∣∣∣
b̂RT,i<b̂

∗
RT,i

,Pmax

]
. (H.2)

When Pmax ≥ P ≥ PLIM
i (γ∗i ,Ai)

(+)|b̂RT,i≤b̂∗RT,i
, then ∂hi(P)/

∂P = −P(∂2U
R∗i
i (P)/∂P2) ≥ 0 because ∂2U

R∗i
i (P)/∂P2 <

0 for all P > P0
i therefore is an increasing function of

P and PLIM
i (γ∗i ,Ai)|b̂RT,i≤b̂∗RT,i

≥ P0
i |b̂RT,i≤b̂∗RT,i

. Furthermore, if

we prove that there exists b̂∗∗RT,i ∈ [0, b̂∗RT,i) such that

hi(P)|P=PLIM
i (γ∗i ,Ai)

(+)|b̂RT,i<b̂
∗∗
RT,i

> 0 when b̂RT,i ∈ [0, b̂∗∗RT,i), we will

have conclude the proof of the proposition, since P∗i will not
exist. After some algebra, we have from (H.1) that

hi(P)|P=PLIM
i (γ∗i ,Ai)

(+)|b̂RT,i<b̂
∗
RT,i

=Rmax
i · Ni +Niea(b−γ∗i )−Nie−aγ

∗
i −Niea(b−2γ∗i )−Niaγ

∗
i e
−aiγ∗i

Ni
(
1 + ea(b−γ∗i )

)2

−Niaγ
∗
i e

a(b−γ∗i ) − a
(
γ∗i
)2
e−aγ

∗
i − a

(
γ∗i
)2
ea(b−γ∗i )

Ni
(
1 + ea(b−γ∗i )

)2 ,

(H.3)

where we have denote b̂RT,i ≡ b for presentation purposes.
Since the denominator in (H.3) takes no negative values, we
must examine the properties of the numerator. Therefore, let
us define the following function

Hi(P, b)

= Ni+Nie
a(b−γ∗i ) −Nie

−aγ∗i −Nie
a(b−2γ∗i )−Niaγ

∗
i e
−aγ∗i

−Niaγ
∗
i e

a(b−γ∗i ) − ai
(
γ∗i
)2
e−aγ

∗
i − a

(
γ∗i
)2
ea(b−γ∗i )

(H.4)

Thus,

∂Hi(P, b)
∂b

= (1− aγ∗i
)
Niae

a(b−γ∗i ) −Niae
a(b−2γ∗i ) − (aγ∗i

)2
ea(b−γ∗i ) < 0,

Hi(P, b)| b̂RT,i=0
γ∗i =1

= Ni + Ni
(
e−2a − 2ae−a

)− 2ae−a > 0.

(H.5)

By (H.5), we can prove that since the numerator of
hi(P)|P=PLIM

i (γ∗i ,Ai)
(+)|b̂RT ,i<b̂

∗∗
RT,i

is an decreasing function of

b, hi(P)|P=PLIM
i (γ∗i ,Ai)

(+)|b̂RT,i=0
> 0 and the denominator

of hi(P)|P=PLIM
i (γ∗i ,Ai)

(+)|b̂RT,i<b̂
∗∗
RT,i

is always positive, then if

we decrease a real time user’s utility function param-

eter b̂RT,i from b̂∗RT,i to 0, then there always exists

a value for parameter b̂RT,i, namely, b̂∗∗RT,i, such that

hi(P)|P=PLIM
i (γ∗i ,Ai)

(+)|b̂RT,i=b̂∗∗RT,i

= 0 and when b̂RT,i < b̂∗∗RT,i then

hi(P)|P=PLIM
i (γ∗i ,Ai)

(+)|b̂RT,i<b̂
∗∗
RT,i

> 0, therefore, when b̂RT,i <

b̂∗∗RT,i there is no P∗i ∈ [PLIM
i (γ∗i ,Ai)|b̂RT,i<b̂

∗∗
RT,i

,Pmax] such

hi(P)|P=PLIM
i (γ∗i ,Ai)

(+)|b̂RT,i<b̂
∗∗
RT,i

> 0.

I. Proof of Lemma 10

In accordance to (17) and (18), a real-time user’s willingness

to pay can be estimated when b̂RT,i 
 bRT,i as

λmax
i = ∂U

R∗i
i (P)
∂P

∣∣∣∣∣∣
P=P∗i

. (I.1)

Moreover, we have thatU
R∗i
i (P∗i )−P∗i λmax

i = 0 and after some
mathematical manipulations, we conclude

e−a(γ(P∗i )−b̂RT,i(t)) = Rmax
i ci

P∗i λ
max
i + Rmax

i cidi
− 1, (I.2)

and finally that

b̂RT,i = 1
a

{
ln

(
Rmax
i ci

P∗i λ
max
i + Rmax

i cidi
− 1

)
+ aγ

(
P∗i
)}

. (I.3)

Moreover, we have that

λmax
i = U

R∗i
i (P)
P

∣∣∣∣∣∣
P=P∗i

= Wa(Pmax + Ai)
[
Rmax
i ci(1− di)− P∗i λ

max
i

]
(
Pmax − P∗i + Ai

)2(
Rmax
i

)2
ci

×
(
P∗i λ

max
i +Rmax

i cidi
)

(
Pmax − P∗i + Ai

)2(
Rmax
i

)2
ci

,

(I.4)

and hence after some algebra with respect to U
R∗i
i (P∗i ) −

P∗i λ
max
i = 0, we can see that

A′
(
P∗i
)2 + B′

(
P∗i
)

+ C′ = 0 (I.5)

A′ = ki(λmax
i )2 + λmax

i ci(Rmax
i )2,

B′ = Rmax
i ciλ

max
i [−ki(1− 2di)− 2Rmax

i (Pmax + Ai)],

C′ = (Rmax
i )2ci[λmax

i (Pmax + Ai)
2−cidi(1−di)], where

ki =Wai(Pmax + Ai).

In order (I.5) to have a real solution, P∗i , when b̂RT,i 

bRT,i, and thus P∗i ≤ Pmax, the following two conditions must
be satisfied (without loss of generality and for simplicity in

the presentation since b̂RT,i 
 bRT,i in the following, we
set ci = 1, di = 0) :
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(1) Δ = (B′)2 − 4A′C′ ≥ 0 and after some algebra we
can conclude that the following inequality has to be
satisfied

λmax
i ≤ aW + 4Rmax

i

Ai + 4Pmax
. (I.6)

(2) P∗i ≤ Pmax, and thus, in accordance to (I.5)

P∗i

= −B′ ± √Δ
2A′

= Rmax
i (Pmax + Ai)

×
[
aW+2Rmax

i

]±
√
aW

[
aW+4Rmax

i −4λmax
i (Pmax +Ai)

]

2
[
kiλ

max
i +

(
Rmax
i

)2
] .

(I.7)

Furthermore, since P∗i > 0 and aW 
 4Rmax
i − 4λmax

i (Pmax +
Ai), in order P∗i ≤ Pmax the following inequality must be
satisfied

Rmax
i (Pmax + Ai)

(
aW + Rmax

i

)

kiλ
max
i +

(
Rmax
i

)2 ≤ Pmax (I.8)

and after some algebra we conclude that

λmax
i ≥ Rmax

i

Pmax
+

AiR
max
i

aWPmax(Pmax + Ai)
. (I.9)

Finally, from (I.3) and (I.9), we can determine the upper

bound of a real-time b̂RT,i 
 bRT,i user’s i ∈ SRT utility

function parameter b̂RT,i as follows:

b̂RT,i

≤ 1
a

{
ln
(

ci
1 + Ai/aW(Pmax + Ai) + cidi

− 1
)

+
aWPmax

Rmax
i Ai

}

� BMAX,i(Ai).
(I.10)

J. Proof of Lemma 11

In accordance to (I.3) and (I.7) in Lemma 10, we have that
when b̂RT,i 
 bRT,i then

b̂RT,i = 1
a

{
ln

(
λmax
i aW(Pmax + Ai) +

(
Rmax
i

)2

λmax
i (Pmax + Ai)

[
aW + 2Rmax

i

] − 1

)

+
aW + Rmax

i

λmax
i (Pmax + Ai)− Rmax

i

}
.

(J.1)

Finally, we can also easily compute ∂2b̂RT,i/∂(λmax
i )2 = (Pmax+

Ai){(Pmax + Ai)[2aW + 2Rmax
i − Rmax

i λmax
i ] + (Rmax

i )2}/
[λmax

i (Pmax + Ai)− Rmax
i ]3 > 0, since W 
 Rmax

i and hence
λmax
i > Rmax

i /Pmax + Ai (since from (I.9) in Lemma 10, we

proved that when b̂RT,i 
 bRT,i then λmax
i ≥ Rmax

i /Pmax >
Rmax
i /(Pmax + Ai)) which concludes the proof.
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