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Joint carrier frequency offset (CFO) and channel estimation is considered for two-way relay networks (TWRNs). Existing
estimators provide only the convolved channel parameters and the mixed CFO values. In contrast, estimators using a superimposed
training strategy are developed for the individual frequency and channel parameters. Depending on the number of pilots, three
different estimators are developed. An iterative estimator with low complexity is also developed to further improve the estimation
accuracy. The Cramér-Rao Bounds (CRBs) are derived. The simulations show that the iterative estimator converges rapidly, and
the resultant estimation mean square error (MSE) approaches the CRB. For the special case of small CFO between the two source
terminals, the MSE achieves the CRB at high SNRs, and the iterative algorithm is not necessary. However, for the general case, the
gap between the MSE and the CRB indicates that there is room for further improvement of the estimation accuracy.

1. Introduction

Two-way relay networks (TWRNSs) [1] have received much
attention due to their improved spectral efficiency over a
one-way relay network (OWRN) [2]. Unlike the OWRN
where the data flow is unidirectional from the source to
the relay and then to the destination, in a TWRN, two
source terminals exchange information via the relay similar
to network coding [3]. The overall communication rate
of this setup is approximately twice as that achieved in a
OWRN [4], making the TWRN concept particularly attrac-
tive to bidirectional systems. The achievable rate regions for
amplify-and-forward- (AF-) and decode-and-forward- (DF-)
based TWRNs were derived in [5, 6]. In [7], the optimal
mapping function at the relay that minimizes the bit-error
rate (BER) was proposed, and in [8], distributed space-
time codes (STCs) that achieve full diversity were developed
for both AF and DF TWRN. The optimal beamforming at
the multiantenna relay that maximizes the capacity of AF-
based TWRN was designed in [9], and suboptimal resource
allocation for orthogonal frequency division multiplexing-
(OFDM-) based TWRN was derived in [10].

Most TWRN works [4-10] assume perfect synchroniza-
tion and channel state information (CSI) at the relay node
and/or the source terminals. However, since these assump-
tions are not realistic, for the first time, [11, 12] designed the
joint carrier frequency offset (CFO) and channel estimation
algorithms for an OFDM-based TWRN. As the first effort
to tackle this problem, [11, 12] only proposed to estimate
the cascaded channels and cascaded CFO of the uplink
and the downlink phases, but not the individual frequency
and channel parameters. However, individual parameters
are also important for TWRN systems. For example, they
are required for the optimal beamforming and the carrier
permutations [9, 10]. Moreover, if detailed information
about CFOs is available at both source nodes, the two nodes
can cooperate to eliminate CFOs, which may yield a better
detection performance (this fact will be seen from the special
case in Section 3 and from the corresponding simulation
results Figures 4 and 5).

In this paper, we introduce the superimposed pilots at the
relay to enable the estimation of all the individual channel
and CFO parameters. The idea of superimposed pilots was
first proposed in [13] for analog communication systems
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and was later extended to digital communication systems
for both synchronization and channel estimation [14-16].
Different from the traditional concept that the pilots are
superimposed on the data symbols, we propose that the relay
node superimposes its own pilots over the pilots received
from the two terminals. Depending on the number of
pilots, three different estimators are then developed for the
initial parameter estimation. An iterative estimator is also
proposed to improve the estimation accuracy. Moreover, the
Cramér-Rao Bound (CRB) is derived and compared with the
estimation mean square error (MSE). We find that, when
the CFO between the two source terminals is small, the
MSE approaches CRB in the high SNR region, indicating
the optimality of the third proposed estimator. However, for
more general cases, the MSE deviates from the CRB, which
indicates the room for improving the estimation accuracy.
This forms an open problem for the future research.

The remainder of this paper is organized as follows.
In Section 2, the two-way communication systems and our
joint CFO and channel estimation model are introduced. In
Section 3, three estimators are proposed for initial CFO and
channel estimation. The estimators vary depending on the
number of pilots. An iterative estimator is also designed to
improve the estimation accuracy. The CRBs of all parameters
are derived in Section 4. Simulation results are presented in
Section 5, and conclusions are made in Section 6.

1.1. Notations. Vectors and matrices are boldface small and
capital letters; the transpose, complex conjugate, Hermitian,
inverse, and pseudoinverse of the matrix A are denoted by
AT, A%, A, A7, and AT, respectively; tr(A) and ||Al/r are
the trace and the Frobenius norm of A; [A];; is the (i, j)th
entry of A, and diag{a} denotes a diagonal matrix with the
diagonal element constructed from a; ® represents the linear
convolution between two vectors. MATLAB notations for
rows and columns of a matrix are adopted; A[. ;;;) denotes the
ith column to the jth columns of A, and A[H j) denotes the ith

column to the jth columns of Af; the entry index of vector
and matrix starts from 0; Ip is the P X P identity matrix for
any positive integer P; 0, represents the n X m matrix with
all zero entries; E{-} is the average; j is the imaginary unit
/=1 and e; is the basis vector of all-zeros except for the ith
element of 1.

2. Problem Formulation

2.1. System Model. Consider a classical two-way relay net-
work (TWRN) with two terminal nodes T}, j = 1,2 and one
relay node R (Figure 1). Each node has only one half-duplex
antenna. The baseband channel from T to R is denoted as

h; = [hjo,...,h j,L]T, whose elements are independent with
zero means and variances ajz’ ;- The channel from R to T; is
also h;. (This is true for reciprocal channels. There may be
a phase difference but is nevertheless ignored in this paper.)
The training block length is set as N, which may or may not
be the same as the data block length. The average powers of
T; and R are denoted as P; and P;, respectively. Furthermore,
we denote the carrier frequency of T; as f; and that of R as f,.

LTI

Superimposed pilots p
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FIGURE 1: System configuration for two-way relay network.

In real applications, Doppler shifts and oscillator instabilities
may result in CFOs such as f, — fi and f, — f;.

The target of this work is to separately estimate CFOs
and channels h; and h,. It is important to achieve this goal
within two transmission phases such that the training is
compatible with the two-phase data transmission and can be
embedded in the data frame. To do so, we modify the OFDM
transmission scheme and introduce superimposed training
at the relay node. In the following discussion, perfect time
synchronization is assumed.

2.2. CP-Based OFDM Modulation at Terminals. Denote one
OFDM block from T; as §; = [?i,o,...,?i,N_l]T. The cor-
responding time-domain signal block is obtained from the
normalized inverse discrete Fourier transformation (IDFT)
as

~ T
si = FI1S; = [si0,Si1,-- > Sin-1] > (1)

where F is the N X N normalized DFT matrix with the
(p, q)th entry given by (1/+/N)e /27P=Da=U/N Ty maintain
the subcarrier orthogonality during the overall transmission,
we propose to add the cyclic prefix of length 2L as did in
[11]. This implicitly requires N > 2L which is nevertheless
satisfied by most OFDM systems.

Define the matrix

Opxv-p) Ip
TE{;) = -—— |, (2)
Iy

for any P < N. The baseband signal from T; including the

CP can now be mathematically expressed as TgL)si of length
N +2L. The signal is up-converted to the passband signal by
the carrier e/>"/i*, Note that the oscillator may have an initial
phase but it is omitted for brevity since the constant phase
can be absorbed into the channel effects.

2.3. Relay Processing. With the assumption of the perfect
time synchronization, the signals from T, and T, arrive at R
simultaneously. Relay then down-converts the received signal
by the carrier e /27/*, It is important to mention that R
removes only the first L symbols in each block.

Denote T as the symbol duration and define

r[f] = diag{l,eﬂﬂfﬂ,. . ,eJ'an(K—wTs},

xP...xo...O (3)

H®[x] = K rows,
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for x = [xg,x1,...,xp] . The resultant baseband signal block
at R is of length N + L and can be expressed as

2
r= DTN f — fIHG Y TG si +n,

i=1

i @
= SRRV fITOH s+
i=1

where H &) [h ] is the N x N circulant matrix with the first
column [h 0IX N-L-1) 1", and we use the property that

HY [ TG = THHE [hy]. (5)

Moreover, each element in the noise vector n, is assumed to
be independent and identically distributed (i.i.d) zero-mean
complex white Gaussian with variance o2. The estimation of
the CFO and channels h; and h; at R can be easily done as in
the 2 X 1 multi-input single-output (MISO) system [17, 18].

The relay then superimposes a time-domain training
signal p over r and obtain

t=oar+p, (6)

where the scaling factor o and the superimposed training
should satisfy the following power constraint:

E{lIrllI*} + [Ipll?

2 L
:MW+LZZ,@+MW+m¢ﬂmP(n

<(N+L)P,.

Note that (7) is a constraint on the average power because the
instant channel values are unknown before the estimation.

It can be easily shown that the range of a is
(0, \/Pr/(Z§=1 St aszPj +0?2)) that balances the power
between the training from T; and the superimposed training
from R. Note that the training signal p is generated from N
training signals po and a cyclic prefix of length L. By using
our definition (2), the training signal can be expressed as
p= Tng)po. The pilots po, s1, and s, are predesigned at both
source terminals for channel estimation.

Finally, R up-converts the resultant signal t to passband
by the carrier e/27/,

2.4. Signal Reformulation at Terminals. Due to symmetry, we
only illustrate the process at T,. After down-converting the
passband signal by e /27/i*, T, obtains the baseband block of

length N + L. It then removes the first L elements and the
remaining signal is written as

y = 7ML f — fiTHE) (] (ar +p) +m

TN f, = ATHY [ TN f = £ TEHY [hyls)

[ff_fl] cv [h N+L)[f f]

X TEHW [hys, + e 27 MLEPN [ f]

+ el - LT (N)

X Hg;]) [hl]po

+ae/ S LLTMN 6 — A THN [hy |0, + 1y,

ne

(8)
where the property

HY [hy]TE) = HY)[hy] 9)

is used and, without loss of generality, the noise vector n,
is assumed to have the same statistics as n,. The equivalent
Gaussian noise n, has the covariance

R, = o3 ('TV[f, - fi]HQ)
H H (10)
x(HO)[hy)) wmm—ﬁn-n)

Define QX[ f] = diag{e/2"/(K-DT:
following properties hold

.,el27fTs 1}, The

HY [T D[ £] = TV [FTHY [ QD[ f]h],
(11)
HY [x JHY [x] = HY [x; ® x,],

where ® denotes the N-point circular convolution but
reduces to linear convolution if N is greater than or equal
to the length of x; ® x,.

Assuming N > 2L and using the above properties, we can
further simplify y as

y = aHY[ (@[ - fi]hy) @ hy s,

+ oMLY [ — fTHE)

< [(QUV[ - filhi) @hys, "
+ o2 LEEM[ £ £ THY [y ]y + 1.
Define
= = fi a=(Q""[-wlh) ®hy,
v=rfi-fi, b=(Q"v-wlh)eh,  (13)

FEK) [f] _ ejZﬂfLTSr(K) [f]
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Then (12) can be expressed as
y = aHN[als, + oI [v]HY [b]s,

+ I [wlHSY [hy po + ne (14)

=aS;a+ ocI‘(LN) [v]S;b + F(LN) [w]Ph; + n,,

where S; is the N x (2L + 1) circulant matrix with the first
column s;, and P is the N X (L + 1) circulant matrix with the
first column py.

3. Joint Estimation Algorithms

Based on the new signal model (14), the task is to estimate
the individual channels h;, and h, and the CFOs v and w. We
omit all redundant superscripts and subscripts for notation
simplicity and rewrite (14) as

y = aS1a+ al'[v]S;b + T'[w]Ph; + n,. (15)

Note that the number of parameters to be estimated is 2L +4.
Furthermore, a is a function of w and h;, and b is a function
of v, w, h; and h;,. Depending on the number of pilots, we
can thus develop three different estimation methods.

3.1. Estimation for Sufficiently Large N. When N > 5L + 5,
there are sufficient degrees of freedom in the training signals,
and v, w, a, b and h; can be simply treated as individual
variables. That is, the above-mentioned relationships among
the variables are ignored. Rewrite y as

al'[v]S, T[w]P] ]lla) + n,,

v=1as 1 (16)

C

where C and d are defined in (16). From the least-squares
(LS) method, the two CFO estimates are

-1
(v, w} = argrrvl?vxyHC<CHC) ctly, (17)

where v and W can be obtained either from a two-
dimensional search or from the alternating projection that
converts the 2-dimensional maximization into a series of 1D
maximization problems. Details on the implementation of
the alternating projection method can be found from [19].
Then values of d are estimated as

d = (cic) 'cty, (18)

where the value of C is obtained by using the estimates ¥ and
w.
We next explore the relationships among a, b, and h; to

improve the quality of the estimates. From (13), we note that
a =HE [ QD [—wih [y, (19)

where Hg) [x] is a tall Toeplitz matrix with the first column
[XT,OITX(K,U]. The estimate of H;me [QYD[—w]h;] can be
expressed as H%ﬂ) [QE D[~ ].

By subtracting the estimate of the second item in (15)
from y and by using (19), an improved estimate of h; is
obtained as

h = (a8 HED [QED (@R, | + Tw]p)'

(20)
X <y - aI‘[v]Szl;).
Similarly, from (13) we find that
b =HE [ [y — wih, |hy. (21)
Thus h, can be estimated as
By = (HE D[ 5 — w1k ]) B, (22)

In summary, (17), (20) and (22) provide estimates of
all the parameters. These initial estimates can be further
improved by the iterative estimator developed in Section 3.4.

3.2. Estimation with Not-So-Large N. In order to reduce the
overhead, we will use fewer pilots than before. Define X,
K>, and K, as the frequency domain pilot index sets from
Ty, Ta, and R, with cardinality K;, K3, and K, respectively.
Werequire K; > L+1,K; = L+ 1,K, = L+ 1,and X; U
Ky U K, = {1,...,N}. Here, we do not assume the disjoint
sets, and so K; + K> + K, = N. From (15), we know that the
frequency domain pilots are's; = Fs;, and po = Fpo.

Remark 1. As will be seen later that pilots in X, are used to
estimate h;, and those in X, are used to estimate h, at T;.
Due to symmetry, pilots in K are used to estimate h; at T,.
This gives the above requirements on cardinality.

Let us collect nonzero pilots from T} into a K; X 1 vector
§; and nonzero pilots from R into a K, X 1 vector py. Since
S; and P are column-wise circulant matrices, they can be
represented as

Sj —FH diag{gj}F[:,huH] = FI[{:,KJ»] diag{éj}F[eKj,I:ZLH]
P =F" diag{Po} Fp.1.41) = Ffl i) diag{Po} Frx, 1.L+1).
(23)

Define K as the complement set of K. Multiplying both
sides of (15) with Fx, ; yields

Fix, ¥ = |oFz,  TVIE o diagl&}  Fze T(w]P]
c
X ﬁ’l +F[Wl’:]ne,
—
d,
(24)

where b = Fx,,1:20+11b is the DFT response of b on the
subcarrier set K5, and C; isan (N —K;) X (K, + L+ 1) matrix.
Aslongas N — K; — K; — (L+1) > 2, namely, when there
is sufficient degree of freedom to estimate the two unknown
CFOs, they can be estimated as
-1
{v,w} = arg IE%XYHFI[—IRI,;]CI (C{{Q) Cl'Fix, .-
(25)
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Considering the range of K; and K, the minimum number
of N is 3L + 5, when sets are disjoint, and K; = K; = L+ 1,
K, = L+ 3. Then,

~ -1
d = (cflci) ClFg,,y. (26)

By definition

b = Fic, oy HG [ QD v —wihy |hy. (27)
Then, h, can be estimated as

N o

hy = (F, o HY [ Qv - wihy |) B (28)

Remark 2. Though the number of unknown parameters is
2L + 3, we should allow certain redundancy to provide low
complexity estimation, for example, linear estimation. In our
work, the minimum training length is set as N = 3L + 5.

3.3. Joint Estimation with Minimum Training Length: A
Special Case. In practical applications, the relay terminal
is often a simple device while the two source terminals
may employ high-precision synchronization circuits. Thus,
it is reasonable to expect the CFO between the two source
terminals to be negligible. In this case, v = 0 or v <«
1/N, that is, one subcarrier spacing. This is also true at the
CFO tracking stage when the frequency difference between
two terminals is quite small. By taking advantage of the
negligible CFO between the two source terminals, parameter
estimation is achieved with the minimum training length
N = 2L + 3, that is, the same number of the unknowns
variables.

Let us choose the same frequency pilot sets for T; and
T,, that is, K| = K. Left multiplying the received signal y
by Fix, . gives

Fix, v = aFx, TIVIF 5 | diag{8;} Fix, 12041b
—

~0
(29)
+ G[Wl)]r[W]Phl + F[fl):]ne,
[

C;

where C; is an (N — K;) X (L + 1) matrix, and the first term
is negligible because v = 0. Aslongas (N - K; —L—-1) = 1,
the CFO between the relay and the first source terminal can
be obtained as

R -1

# = argmaxy'Fi,  C:(C/Co)  CFiac,ay, 0
30
hi = ClFiz .

Since a can be estimated from w and h;, then h, can be
estimated as

h, = Cl(y - a$1a - I[#]Ph,), (31)

where C; = ocSzH%ﬂ) [QEV[5 — why].

The estimates given by (30) and (31) need not be
improved by iterations because they already achieve CRB
under high SNR conditions.

3.4. Iterative Algorithm to Improve the Performance. With
the initial estimates of all the parameters, an iterative
approach can be applied to improve the estimation accuracy.
Re-denote the initial estimate as v!0, w0} al0l pHio}
h{O}, hg)}, respectively, with the superscript representing
the number of the iterations. We will estimate vi!}, w!l}
simultaneously from the ML estimation process as

[v{”,w‘“}]

n

H
= argmin(y - a$1a® — aTv]$:b® - T[w]Ph{") "R’

X (y —a8;a'% — al'[v]S;b!¥ — I‘[W]Phim),
(32)

where R;;! is always obtained by using the newest estimates
of wand h; in (10) expressed as

R, =0, (oczI‘(N) [wio [HO [n]"]
(33)
x (HY) [h{O}])H(r(M [W{O}])H + 1).

The complexity here is not significant even if the 2-
dimensional search is applied, since the search region for
fine estimation is around the initial estimation and is thus
very small.

Then we can obtain h;l} and h}l} from

hi” = argmin(y —aS;al% — I‘[w{l}]PhiO}
h,

—ocr[v{”]szHﬁ}hz)HR;1
X (y — ocSla{O} ,
—I[w!" |Ph{” — ar[ v |S,H]}'h,)

hi' = arg1r111iln<y - [ocSlHﬁ)} + cxl"[ﬂ”]&H%*”[hé”]

e +I‘[W{1}]P]hl>H
xR (y — [asiHIY +ar[v! |s,HED [0 ]

QL1 [v“} _ W{l}] + F[w“}]P] h]),
(34)

where HS} = (ZIL3+1)[Q(L+1)[V{1} - W{”]h%O}], and Hi(l)} =
L+l
(e S LI
The interactive processing could gain the improvement
from the fact that the initial estimation does not fully exploit
the correlation between a, b, and h;.

Remark 3. The superimposed training used in our paper
is different from the traditional ones in two aspects. First,
traditional superimposed pilots [14] are added on the data
symbols while our superimposed pilots are added on the
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pilots from the source by the relay. On the other hand,
traditional superimposed pilots [15] select the first order
statistics for channel estimation while we use the nulling-
based LS method for joint CFO and channel estimation.

4. Cramér-Rao Bound

In this section, we derive the CRB that defines the theoretical

bound of the estimation accuracy. The CRB is an important

tool to study the performance of the estimation algorithms.
Define

u £ 4S;a+ al'[v]S;b + I'[w]Ph;,
T T T T (35)
72 [vow Rih} T, 3}, R}, 3o}

According to [20], the (i, j)th entry of the Fisher Infor-
mation Matrix (FIM) can be calculated as

B op | ou _10R, _,dR,
[F]i,j_zm[ T }+tr[Rn o R 5 } (36)

After some tedious simplifications, we derive

%’ = jaD,T[v]S;b + jT[v]S,H{ LH

x [hy DoV [y — why,

d )
ﬁ = S H ' [hy] (= jDo) QY [-wlh,
+aT [v]S;HE [hy] (- jD) @V [y — wlhy
+jD1F[w]Ph1,
ou L+ [ o@+1)
bt~ oSHE [0 wih |
+ a8 HE [hy ]V [—w]
+ al'[v]S;H L” [y ]Q" [y — w] + T[w]P,
89;{971“:}T = ol [v]S;H{™ [Q(L“)[v - w]hl],
2
aal:: =0} (joc2DNl"(N)[W]Hg,\U [hl](H(y) [h1]>H
x TV [—w] — ja>T™ [w]HY [h,]
% (H hy]) DTN [-w1)
ama{% = 62a2T™ [1]HY [ey;) (HO) [hy]) ' T [—]
1i
& - & =0
a%{hZi}T = aV — UNXN>

(37)

where

Dy =2nT;diag{L, (L — 1),...,1,0},

D, =2nT,diag{L,...,(L+N — 1)}, (38)

Dy =2nT;diag{0,1,...,(N — 1)},

and e; isan (L + 1) X 1 vector whose ith element equals 1 and
others 0.

The CRB of # is then obtained by inverting the FIM F.
Since

% 1, 0, oF, o7, o7, o’
wl| |0, 1, 0T, o7, o7, o’ o
hl h 0) 07 IL+1) jIL-H) 0- IL+1) 0- IL+1 >
hZ 0) 0) 0- IL+1) 0- IL+1) IL+1) jIL+l
i (39)
the CRB of v, w, hy, and h; can be expressed as
CRB=E-F!.&8H (40)
5. Simulation Results

The performance of the proposed three estimation algo-
rithms along with the iterative estimator is investigated. A
four-tap model for both h; and h, is assumed, and each
tap is assumed complex Gaussian with unit variance as did
n [21]. The variance of the noise is taken as 62 = 1. The
normalized frequencies fi, f;, and f, are set as 0.94, 1, and
1.06, respectively. The MSE is chosen as the figure of merit,
defined by

1 10000 5
MSE() = 15000 2. i = v)7,
10000
MSE 41
SE(w) = 10000 Z (w; — (41)
1 100001 R 5
MSE(x) = 10000 2 Z(Xi x)°,

where x represents h; or hy, and 10000 is the number of
the Monte-Carlo trials used for average. In all the following
simulations, « is set as half the maximum value, that is,

a= 0.5\/P,/(Z§:1 Z,LZO af,le +02).

5.1. Sufficiently Large N. In this case, we chose N = 24,
which is greater than 5L + 5 = 20. The received signal y at
T, is generated according to (9). Initial CFO and channel
estimates are obtained from y through (17) and (18). The

estimate ﬁl of h; is updated as (20). Finally, the iterative
estimator in Section 3.4 is applied and is found to converge
in three iterations.

The MSEs and CRBs of CFO estimation as a function
of SNR are shown in Figure2. The iterative algorithm
improves the estimation accuracy significantly. Specifically,
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Figure 2: CFO estimation MSE versus SNR: N = 24.

the improvement of w, which is the CFO between R and T,
is much more significant than that of v, the CFO between T,
and T,. The reason is due to the fact that the received signals
contain more information about w than that about v. In (14),
all components of y contain information about w while only
the second term of y does so of v.

The channel estimation MSEs and CRBs versus SNR
are shown in Figure 3. It is observed that the gaps between
the MSE and the CRB are smaller compared to those in
the CFO estimation. The reason is that phase errors have
less effect on the channel estimation than on the CFO
estimation. Similarly to CFO estimation, iteration improves
the estimation accuracy, and h; improves more than h; since
most components of y contain the information of h;.

5.2. Not-So-Large N. Next we choose N = 3L +5 = 14,
and X, = 4, X, = 4,K, = 6. The initial CFO and
channel estimates are obtained from (25), (26), and (28). The
estimates are iteratively updated. We find that ten iterations
reach convergence. The MSEs and CRBs versus SNRs for
both CFO and channel estimation are displayed in Figures
4 and 5, respectively.

Since smaller training length is applied and the average
symbol power is kept the same, the performance here is a
little worse than that in Figures 2 and 3. It is observed that
in the high SNR region, the MSEs approach CRBs after ten
iterations. The iterative estimator improves the estimation
of h; for all SNRs while, for hy, it only works at the high
SNR region. Conversely, the iterative estimator degrades
the estimation of h, at low SNRs. A possible reason is as
follows. Since only the second item of y in (14) contains h,,
and iterations require reconstruction of a from the initial
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w
=
SNR (dB)
~-A-- hy CRB —— h; CRB
<+ hy MSE esti. —+—  h1 MSE esti.
~0-- hy MSE iter 1 —%— h; MSE updated
~d-- hy MSE iter 2 —— h; MSE iter 1
-y hy MSE iter 3 —=— hy MSE iter 2
Q- hy MSE iter 10 —— h; MSE iter 3
—O0— h; MSE iter 10
FiGure 3: Channel estimation MSE versus SNR: N = 24,
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F1GURE 4: CFO estimation MSE versus SNR: N = 14.

estimate w and ﬁl, the ambiguity of ﬁz increased at the
low SNR region from errors of all factors. However, in the
case of large training length, for example, N = 24, a is
directly estimated, which avoids the error propagation from

erroneous w and h;. Therefore similar phenomenon is not
observed in Figure 3.
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MSE and CRB

—— h; CRB A hy CRB

—+—  h; MSE esti. ~++-- hy MSE esti.
—— h; MSE iter 1 X+ hy MSE iter 1
—o— h; MSE iter 2 -0 hy MSE iter 2
—— hy MSE iter 3 -O- hy MSE iter 3
8- h; MSE iter 10 B hy; MSE iter 10

F1GURE 5: Channel estimation MSE versus SNR: N = 14.

From Figure 2 to Figure 5, one key conclusion is that
there is room for new algorithms to improve the perfor-
mance, due to the gap between MSEs and CRBs. This open
question is an interesting topic for the future research.

5.3. Minimum N: A Special Case. In the last example, we set
f> as 0.95 and 0.9401, such that the CFOs between the two
terminals are v = 0.01 and v = 0.0001, respectively. The
minimum training length is chosen as N = 2L +3 = 9.
The CFO and channel estimation results can be obtained
from (30) and (31). As mentioned before, these cases do not
require iterations because v is nearly zero. The estimation
MSEs of w and channels, as well as their corresponding CRBs
are shown in Figures 6 and 7, respectively.

These figures show that the estimation accuracy is quite
close to CRB. The reason is that the interference due to the
pilots is negligible in this case as the CFO between the two
source terminals is negligible. For v = 0.01, a relatively larger
value, there exists an error floor for both CFO and channel
estimation at the high SNR region. When v is as small as
0.0001, the best estimation performance can be achieved
since the MSE attaches the CRB.

6. Conclusions

In this paper, superimposed pilot-based CFO and chan-
nel estimation was investigated for CP-OFDM modulated
TWRN. Three direct estimation algorithms as well as the
iteration algorithm to improve the performance were devel-
oped. We also derived the analytical CRBs as the benchmark
for the designed algorithms. With superimposed training, all
the individual parameters can be estimated at all three nodes.
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MSE and CRB
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Figure 6: CFO estimation MSE versus SNR: N = 9.
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FiGURE 7: Channel estimation MSE versus SNR: N = 9.

From the simulations, it is found that although the iterative
estimator improves the performance, gaps remain between
the MSE and CRB, indicating room for further improving
the performance.
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