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MIMO links can significantly improve network throughput by supporting multiple concurrent data streams between a pair of
nodes and suppressing wireless interference. In this paper, we study joint rate control, routing, and scheduling in MIMO-based
multihop wireless networks, which are traditionally known as transport layer, network layer, and MAC layer issues, respectively.
Our aim is to find a rate allocation along with a flow allocation and a transmission schedule for a set of end-to-end communication
sessions so as to maximize the network throughput and also to achieve the proportional or weighted fairness among these sessions.
To this end, we develop Transmission Mode Generating Algorithms (TMGAs), and Linear Programming- (LP-) and Convex
Programming- (CP-) based optimization schemes for the MIMO networks. The performances of the proposed schemes are verified
by simulation experiments, and the results show that the different schemes have different performance benefits when achieving a
tradeoff between throughput and fairness.

1. Introduction

Recent advances in wireless communications and computing
technologies enable a broad range of network applica-
tions. To facilitate these applications for the fast-growing
number of mobile users and services, the communication
society intensifies the interest in the development of novel
approaches that can increase the overall network capacity.
With the enlarged requirement, future multihop wireless
networks such as wireless backhaul networks (WBNs) and
wireless mesh networks (WMNs) are conducted to support
various data and multimedia transmissions that are usually
bandwidth-consumed. In such networks, the Multiple-Input
Multiple-Output (MIMO) antenna system, which can offer
multiple Degree of Freedom (DOFs) for communications in
a node while reducing interference and improving network
throughput, is one of the technologies to this end, and
attracts much attention of recent research on communica-
tion [1–3]. However, when considered with networking, it is
still in its early stage. For example, in [4], the authors devise a

MIMO-based MAC protocol and develop analytical methods
to characterize the corresponding saturation throughput and
study the impact of MIMO MAC on routing. As another
example, the authors in [5] give their key optimization
considerations such as spatial multiplexing for MAC layer
design in ad hoc wireless networks.

On the other hand, cross-layer schemes have been
proposed to improve throughput and fairness for multihop
wireless networks. For example, in [6, 7], the joint rate
control and scheduling problems have been studied for
wireless ad hoc networks with either a scheduling-based
MAC [6] or an Aloha-based MAC [7], in which routes are
assumed to be given a prior, however. In [8], the authors
propose Integer Linear Programming formulations and a
heuristic algorithm to solve the joint scheduling and power
control problems in WMNs. Nevertheless, they consider only
the wireless networks without MIMO links. In addition,
the authors in [9] also present a centralized algorithm
to solve the corresponding joint routing, scheduling, and
stream control problem for WMNs. With MIMO links,
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the authors provide a three-step approach to this end, but
they do not explicitly consider the problem of providing
different object functions of fairness for each session in the
network. Similarly, a cross-layer optimization for solving the
joint stream control and scheduling problem for MIMO-
based wireless networks is proposed in [10]. In this work,
the authors aim to seek a stream control solution and
a transmission schedule with minimum frame length to
satisfy traffic demands of links, and pay no attention to the
issue of supporting service differentiation for different traffic
sessions.

In this paper, we aim to develop cross-layer optimization
schemes for multihop wireless networks with MIMO to pro-
vide end-to-end throughput optimization among different
sessions and support service differentiation for these sessions
with proportional or weighted fair share. To this end, we first
divide communication flows into components containing
only weak contentions. Then, we use Transmission Mode
Generating Algorithms (TMGAs, including TMGA1 and
TMGA2) to generate a TDMA-based scheduling matrix for
these components to be scheduled without interference. As
expected, generating all transmission modes for a network
(with, e.g., TMGA1) would be time consuming. Thus, we
design a polynomial time heuristic (TMGA2) to compute a
subset of transmission modes with time efficiency. Given the
scheduling matrix, we conduct the cross-layer optimization
schemes to address joint network routing, link scheduling,
and rate control in such networks with a scheduling-
based MAC, which are traditionally known as transport
layer, network layer, and MAC layer issues, respectively.
In particular, with Linear Programming (LP) and Convex
Programming (CP), we seek a rate allocation along with
a flow allocation and a transmission schedule such that
the network throughput can be maximized and the desired
fairness can be achieved. The performances of the proposed
schemes are verified by simulation experiments, and their
impacts on throughput and fairness for the networks are
evaluated. The numerical results show that the proposed
schemes can satisfy our design aims and can provide their
unique performance benefits when achieving a tradeoff
between throughput and fairness. The results also show that
TMGA2 can achieve nearly the same performance gains
with only a few numbers of iterations and can be very time
efficient, when compared with TMGA1 that generates all
transmission modes.

The rest of this paper is organized as follows. In Section 2,
we summarize the system model for MIMO links. Following
that, in Section 3, we introduce our flow scheduling algo-
rithms for the system. In Section 4, we present the cross-
layer optimization schemes for the throughput maximization
and fairness problem. Finally, these schemes are examined
with experiments in Section 5, and conclusions are drawn in
Section 6.

2. SystemModel

2.1. Node Topology Graph. In this work, we consider a
multihop wireless network that consists of a finite set V of
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Figure 1: Multiantenna wireless channel.

nodes where each node m ∈ V is stationary and has a MIMO
antenna array with Km elements or DOFs for each node to
transmit and receive signals. All nodes transmit at the same
fixed power level in a signal common channel, and each
node has a uniform transmission range RT and a uniform
interference range RI ≥ RT . Let E denote the set of all pairs
(m,n) of distinct nodes in V such that m and n are within
each other’s transmission range. An ordered pair of nodes

(m,n) in E is said to form a flow f = −−−−→(m,n) if node m needs
to transmit to node n. f is said to be active if m is currently
transmitting to n; otherwise, f is said to be inactive. Let F
denote the set of all flows. Hereafter, the graph G = (V ,E,F)
defined above is referred to as node topology graph.

2.2. Overview of MIMO Antenna Array Processing. Figure 1
illustrates the transmitter and receiver antenna array and the
MIMO channel for the case when N = 2 antennas are used
at the both ends. To transmit a signal x(t) through a transmit
beamformer over the 2-antenna array, the transmitter sends
two weighted copies of the signal, one on each antenna. That
is, u1x(t) is sent over antenna 1, and u2x(t) is sent over
antenna 2, with u = [u1,u2]T called the transmitting weight
vector. Then, the two signals are weighted by the receiver
with a receiving weight vector v = [v1, v2]T and summed to
produce y(t). Let H denote the matrix of channel coefficients
between the transmitter and the receiver. The above can
thus be written as y(t) = (uTHv)x(t), and the complex
gain experienced by x(t) is then a consequence of transmit
beamforming, the channel, and receive beamforming of
uTHv. Now with appropriate weight vectors u and v, the
received signal y(t) can achieve a unit gain (uTHv = 1) if
it is received at the desired receiver or a zero gain (uTHv = 0)
if it is received at a nondesired receiver. In other words, we
can ensure that the signal is received with a certain gain or is
perfectly nulled by appropriately choosing the weight vectors
if no power limit on a node’s receiving capacity. In general,
we could design u if v is given, and vice versa. Thus, by
considering whether the transmitter and the receiver are a
desired communication pair or potentially interference with
one another, we have the following beamforming conditions.

(1) If the receiver corresponding to v is the desired
receiver of x(t) and v is fixed, then we could require u
to satisfy uTHv = 1 so that x(t) can be received with
unit gain.
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Figure 2: Node topology graph.

(2) If the receiver corresponding to v is already involved
in another link, then v is fixed and we could require
u to satisfy uTHv = 0 so that the transmitter does not
create interference at this receiver.

(3) If the transmitter is communicating with a dif-
ferent user by using a fixed u, and the receiver
corresponding to v wants to receive signals from
different transmitter without interference, then we
could require v to satisfy uTHv = 0 so as to null the
contribution of u at the receiver.

2.3. Transmission Constraints on MIMO Links. Consider the
multihop wireless network G = (V ,E,F) shown in Figure 2,
where V = {1, 2, 3, 4}, E = {(2, 1), (3, 2), (4, 3)}, and F =
{ f1 =

−−−→
(2, 1), f2 =

−−−→
(4, 3)}. Assume that (1) every link has

the same RT and RI = 1.5 RT , (2) the numbers of antennas
are K1 = K2 = 1 and K3 = K4 = 2, and (3) f1 and f2
are the only two flows in the network. With the above, we
consider the example that node 4 wants to transmit to node
3 while node 2 is currently transmitting to node 1 (i.e., f1
is active). Let u2 be the (1 × 1) transmitting weight vector
that node 2 is currently using to weight its transmitted signal
and let v1 be the (1 × 1) receiving weight vector that node
1 is currently using to weight the signal received from node
2. In this case that f1 is currently active, if node 3 wants to
receive an interference-free signal from node 4, it must design
its receiving weight vector v3 to suppress the interference
caused by node 2’s transmission while assuring an acceptable
gain of its intended signal coming form node 4. In terms of
equations, the above can be written as (uT4H4,3v3) = 1 and
(uT2H2,3v3) = 0, where u4 = [u4,1,u4,2]T is the transmitting
weight vector of node 4, and v3 = [v3,1, v3,2]T is the receiving
weight vector of node 3. Now, given u4, u2, H4,3 and H2,3, the
system of these two equations would have a unique solution
v∗3 because the elements of each of H4,3, and H2,3 are i.i.d
in general. That is, if there is no power limit on node 3’s
receiving capacity, it is always possible for node 3 to receive
one interference-free flow from node 4 concurrently with the
signals from node 2. In other words, f1 and f2 are always
possible to be active simultaneously in this example.

By reserving the admission order of these flows, we now
consider another example in which node 2 wants to transmit
to node 1 while node 4 is currently transmitting to node
3 (i.e., f2 is active). With similar considerations for the
above, this example can be represented by the equations of
(uT2H2,1v1) = 1 and (uT2H2,3v3) = 0, but now the objective
to be solved becomes u2, which is (1 × 1) weight vector.
That is, the single variable u2 involves the system of the
two equations associated with H2,1 and H2,3 that are i.i.d
in general. Obviously, the over-determined system has no
solution.

By summarizing these examples, we can find that the
admission of ( f1, f2) is order dependent. That is, if f1 is
admitted first, then f2 is possibly admitted. On the contrary,
if f2 is admitted first, then f1 could not be admitted
without inference. Clearly, these could be verified with the
beamforming conditions given previously. However, to be
specific, we define the transmission constraints as follows.
Let node m be the transmitter and node n the receiver,
and suppose that there are β streams currently received
by nodes located within m’s interference range, and γ
streams currently transmitted by nodes located within n’s
interference range, where a steam denotes a copy of data
signal transmitted by the MIMO system. Suppose further
that m wants to transmit an α-stream flow f to n. Then, for
interference-free communications in the system, we have the
following constraints.

Theorem 1 (transmit DOF constraint). m can transmit an
α-stream flow f to n without interfering with the β streams
concurrently received bym’s neighbors if

α + β ≤ Km. (1)

Proof. Let {m1,m2, . . . ,mp} denote the set of m’s
neighbors that are receiving the β streams and βi
denote the number of streams that node mi is currently
receiving, for all i ∈ {1, 2, . . . , p} (i.e.,

∑p
i=1 βi = β).

Suppose that for each i, m knows the receiving weight
vector of mi, and the channel matrix between it and
mi, for all i. Then, m can transmit its α-stream flow
f to n with the weight vectors um, j , j ∈ {1, 2, . . . ,α}
subject to the conditions of Amum, j = a j ,∀ j, where
a j is the column vector of length α + β defined as

[0 0 · · · 0 1 0 0 · · · 0]T with 1 at the jth position, and Am is
the (α+β)×Km matrix defined as [Âm,n Âm,1 Âm,2 · · · Âm,p]T

with Âm,n = [Hm,nvn,1Hm,nvn,2 · · ·Hm,nvn,α] and
Âm,i = [Hm,mivmi,1Hm,mivmi,2 · · ·Hm,mivmi,βi], for all
i ∈ {1, 2, . . . , p}. Because the elements of each H
involved would be i.i.d in general, the system of equations
Amum, j = a j , for all j, with Am of the size of (α + β) × Km,
would have no solution if (α + β) > Km.

Theorem 2 (receive DOF constraint). n can receive an α-
stream flow f from m without interfering with the γ streams
concurrently transmitted by n’s neighbors if

α + γ ≤ Kn. (2)

Proof. Let {n1,n2, . . . ,nq} denote the set of n’s neighbors
that are transmitting the γ streams and γi denote the
number of streams that node ni is currently transmitting,
for all i ∈ {1, 2, . . . , q} (i.e.,

∑q
i=1 γi = γ). Suppose

that for each i ∈ {1, 2, . . . , q}, n knows the transmitting
weight vector of ni, and the channel matrix between it
and ni, for all i. Then, n can receive its α-stream flow
f from m with the weight vectors vn,j, j ∈ {1, 2, . . . ,α}
subject to the conditions of Bnvn, j = b j ,∀ j, where
b j is the column vector of length α + γ defined as

[0 0 · · · 0 1 0 0 · · · 0]T with 1 at the jth position, and Bn is



4 EURASIP Journal on Wireless Communications and Networking

1

2

3

4

5

6

8

7

f1

f2

f3 f5

f4 f6

f7

f8

RT
RI

(a)

f1

f2

f3 f5

f7

f8

f6f4

(b)

f1

f2

f3

f4 f6

f8

f5

f7

(c)

Figure 3: An example of weak and strong contentions: (a) the node topology graph G, (b) the corresponding strong contention graph Gstrong,
and (c) the corresponding weak contention graph Gweak.

the (α + γ) × Kn matrix defined as [B̂m,nB̂1,nB̂2,n · · · B̂q,n]T

with B̂m,n = [HT
m,num,1HT

m,num,2 · · ·HT
m,num,α] and B̂i,n =

[HT
ni,nuni,1H

T
ni ,nuni ,2 · · ·HT

ni ,nuni ,γi], for all i ∈ {1, 2, . . . , q}.
Because the elements of each H involved would be i.i.d in
general, the system of equations Bnvn, j = b j , for all j, with
Bn of the size of (α + γ) × Kn would have no solution if
(α + γ) > Kn.

3. Flow Scheduling Algorithms

In this section, we present our flow scheduling algorithms
for MIMO networks. As the first step to this end, we divide
the flow contentions in a MIMO system into two categories:
strong interference and weak interference, similar to that given
in [10]. The strong interference denotes that an incoming
flow into a node cannot be scheduled in the same time
slot with any outgoing flow from the same node and vice
versa. This is because a node in wireless networks is usually
half-duplexing and thus it cannot simultaneously transmit

and receive. In other words, any two flows fi =
−−−−→
(ui, vi)

and f j =
−−−−→
(uj , vj) are said to strongly contend with each

other if and only if uj = vi or ui = vj . Given that, we
define Gstrong(Vstrong,Estrong) as the strong contention graph,
where a vertex in Vstrong corresponds to a flow in F, and a
bidirectional edge in Estrong denotes the corresponding flows
in F strongly contend with each other in the node topology
graph G.

On the other hand, the weak interference denotes that
a pair of flows would contend for resources but they could
be scheduled in the same time slot if the related DOFs can
be properly arranged. Similarly, we define Gweak(Vweak,Eweak)
as the weak contention graph. In this graph, a directional

edge between a pair of vertices corresponding to fi =
−−−−→
(ui, vi)

and f j =
−−−−→
(uj , vj) in G arises if any one of the three weak-

interference conditions holds: (1) ui = uj , (2) vi = vj , and
(3) there exists a fk = (uk, vk) (possibely k = i or k = j)
such that ‖vk − ui‖ ≤ RI and/or ‖vk − uj‖ ≤ RI . To be
specific, we consider a MIMO network of 8 nodes and 8
flows as an example, showing its node topology graph G in

Figure 3(a) and the derived Gstrong and Gweak in Figures 3(b)
and 3(c), respectively. For example, we can see in Figure 3(a)
that when node 4 is transmitting to node 2 (with f3), node
2 cannot simultaneously transmit to node 1 (with f1), and
vice versa. This is a strong interference, and is denoted
by a bidirectional edge between f1 and f3 in Figure 3(b).
Similarly, we can also see in Figure 3(a) that when node 8
simultaneously transmits to node 4 and node 5, f7 and f8
will contend with each other. This corresponds to the first
weak-interference condition, and is shown by a bidirectional
edge between f7 and f8 in Figure 3(c). In addition, the second
weak-interference condition is exemplified by the scenario in
Figure 3(a) that nodes 2 and 3 simultaneously send to node
1, and thus f1 and f2 interfere with each other. Therefore,
there is a bidirectional edge between f1 and f2 in Figure 3(c).
Finally, the third weak-interference condition can be found
in Figure 3(a) that when node 4 transmits to node 2 (with
f3), this node can interfere with node 1’s receipt of f2 from
node 3. This interference is shown by a directional edge
from f3 to f2 in Figure 3(c). Besides, the other strong and
weak interferences not exemplified in the above can be also
observed easily.

Clearly, the flows strongly contending with each other
cannot be scheduled at the same time. Thus, the first step of
our algorithms is to divide the flows into a set of components,
say {Co}, that contain only weak contentions and can be
represented by {Coweak}. This step is done by finding a valid
coloring for Gstrong with, for example, the greedy algorithm
given in [11] that sorts vertices in Gstrong by decreasing vertex
degrees, and according to the order, colors them one by
one using a first-fit greedy approach. Then, the flows of
G with the same color in Gstrong compose a Co, and the
corresponding subset of Gweak composes a Coweak .

3.1. Transmission Modes. After obtaining {Co} and {Coweak},
we now proceed to find an interference-free scheduling for
each of the components with a scheduling-based MAC.
To this end, we define transmission mode as the flows in
G that can be active simultaneously. A tΓ × mΓ matrix Γ
is used to represent the set of transmission modes, and
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called scheduling matrix, in which tΓ denotes the number
of transmission modes, and mΓ denotes the number of
flows in G. In the matrix, a row represents a transmission
mode TM , and its element ΓTM , fi represents the number of
traffic streams utilized by flow fi in this mode. That is,
a TM is a vector denoting a possible set of transmissions
from all mΓ flows in a time slot. By definition, all flows
with traffic streams in a transmission mode can be activated
simultaneously. However, the concurrent flows may interfere
with each other in the MIMO network. Thus, the scheduling
algorithms should firstly generate interference-free TMs for
constructing a desired Γ. Next, with these modes representing
the time slots to be used, they are expected to determine
the time fraction ptm

for every transmission mode or
time slot to compose a TDMA frame that can satisfy the
scheduling target. Accordingly, the scheduling algorithms
should secondly find the frame length and the number of
active time slots of each transmission mode in one frame.
This can be done by considering that if the value of ptm

for every TM is given, the frame length is then the smallest
positive integer I such that ptm

· I is an integer for every
transmission mode, and the number of active times for a TM

is simply its ptm
·I . Now, given the two aims of the scheduling

algorithms, we proceed to develop the transmission mode
generating algorithms for TMs in the next subsection, and
leave the methods for determining ptm

s till Section 4.

3.2. Transmission Mode Generating Algorithm 1. To obtain
the transmission modes for MIMO networks, we design
Transmission Mode Generating Algorithm 1, or shortly
TMGA1. As shown in Algorithm 1, the inputs of TMGA1
include the set of source DOFs {Km}, the set of destination
DOFs {Kn}, and the set of weak contention graphs {Coweak},
for the flow components {Co} obtained previously. For each
Co, the algorithm generates all possible transmission modes
TMs, according to the component’s Km and Kn. Then, each
of the modes is examined for its validity conservatively
or nonconservatively. Two different versions of TMGA1,
namely, TMGA1-con and TMGA1-non, are conducted here
according to Section 2.3 revealing that the admission of flows
is order dependent. In TMGA1-con, a transmission mode is
considered to be valid if and only if all its admission orders,
AOs, can lead to the mode. On the contrary, in TMGA1-non,
the mode is said to be valid if there exists at least one AO to
confirm its validity. For either of the versions, the algorithm
requires Step 1 to update α, β, and γ with

α
(
fi
) = TM

(
fi
)
,

β
(
fi
) =

∑

∀ f j∈NI
S( fi)

α
(
f j
)

,

γ
(
fi
) =

∑

∀ f j∈NI
R( fi)

α
(
f j
)

,

(3)

where fi is the flow in Go now considered for the proceeding
AO and TM , and NI

S( fi) is the set of neighbors, in Go, located
within RI of fi’s source node, and NI

R( fi) is that for fi’s
destination node.

Following that, in Step 2, these updated values are used
to verify whether the α( fi)-stream traffic can be established
on fi without interfering with the other flows according to
the DOF constrains given in (1) and (2). If all fi’s in the AO

are verified successfully, the corresponding TM could then
be conservatively or nonconservatively considered to be an
element of Γo (Γ for Co). In addition, to reduce the size of
Γo, the TM ’s with their capabilities being subset of the others
will not be included. Then, all the reduced Γo’s are merged
to form a single scheduling matrix Γ so that its size (tΓ) can
be tractable for the cross-layer design. Finally, after added
with an empty TM as the default element for scheduling, the
complete Γ is given in Step 3.

To be clear, let us review the example in Figure 2.
Obviously, this example presents no strong contention and
thus TMGA1 only needs to consider a single flow component
Co = { f1, f2}. As already shown, this example has K1 =
K2 = 1 and K3 = K4 = 2. However, they are represented
here by {Km} = {1, 2} and {Kn} = {1, 2} to be the inputs
of TMGA1 in addition to Coweak = (Vweak,Eweak), where

Vweak = { f1, f2} and Eweak = {
−−→
f1 f2}. With these inputs, the

algorithm generates a set of all possible transmission modes
{TM} = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}. Among
these, we consider the mode of (1, 1) with its two possible
admission orders, {AO} = {( f1, f2), ( f2, f1)}, as before. For
the first order, TMGA1 initializes {α} = ∅, {β} = ∅, and
{γ} = ∅. Then it updates for f1 with α( f1) = TM( f1) =
1, β( f1) = ∑

∀ f j∈NI
S ( f1) α( f j) = α( f2) = 0, and γ( f1) =

∑
∀ f j∈NI

R( f1) α( f j) = 0 (since � f j ∈ NI
R( f1)), and the updated

values satisfy the DOF constrains by α( f1) + β( f1) (= 1) ≤
Km( f1) (= 1), and α( f1) + γ( f1) (= 1) ≤ Kn( f1) (= 1).
After that, it updates for f2 with α( f2) = TM( f2) = 1,
β( f2) = ∑

∀ f j∈NI
S ( f2) α( f j) = 0 (since � f j ∈ NI

S( f2)), and
γ( f2) = ∑∀ f j∈NI

R( f2) α( f j) = α( f1) = 1, and these also satisfy
the DOF constrains by α( f2) + β( f2) (= 1) ≤ Km( f2) (= 2)
and α( f2) + γ( f2) (= 2) ≤ Kn( f2) (= 2). Thus, the first order
( f1, f2) is valid.

Similarly, after the initialization, the update for the
second order will start with f2, resulting in α( f2) = TM( f2) =
1 and β( f2) = 0, as before; but now α( f1) = 0 and thus
γ( f2) = α( f1) = 0. Nevertheless, the above still satisfies
the DOF constrains. When then updating for f1, it results
in α( f1) = TM( f1) = 1 in addition to α( f2) = 1 updated
previously. Thus β( f1) = α( f2) = 1 instead of 0, while
γ( f1) = 0 without change. Consequently, it can only satisfy
the receive DOF constrain by α( f1)+γ( f1) (= 1) ≤ Kn( f1) (=
1), but fails on the transmit DOF constraint since α( f1) +
β( f1) (= 2) /≤Km( f1) (= 1). Finally, with the two AOs’ results,
if the nonconservative version (TMGA1-non) is adopted, the
transmission mode TM = (1, 1) is accepted; otherwise, if the
conservative version (TMGA1-con) is adopted, the mode is
rejected.

For the time complexity of TMGA1, we recall f = −−−→(u, v)
and denote by ξ( f ) = δin(u) + δout(v) the number of flows
that f has a strong contention with, where δin(v) and δout(v)
refer to in and out degrees of the node v, respectively.
With that, we can let ξ = max f ξ( f ) and denote it by ξ =
Δ(Gstrong). Then, the number of Co in the network would
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(1) INPUT: {Co}, {Km}, {Kn}, {Coweak};
(2) for all Co do
(3) Generate all transmission modes, TMs, for Co

(4) for all TM do
(5) Generate all admission orders, AOs, for TM ;
(6) for all AO do
(7) Initialize {α} = ∅, {β} =∅, {γ} = ∅;
(8) for each fi sorted with the increasing order of AO do
(9) {Step 1: update α, β and γ}
(10) α( fi) = TM( fi); {Update α}
(11) β( fi) =

∑
∀ f j∈NI

S ( fi) α( f j); {Update β}
(12) γ( fi) =

∑
∀ f j∈NI

R( fi) α( f j); {Update γ}
(13) {Step 2: verify for the Trasmit/Receive DOF constraints}
(14) Success( fi) = 1;
(15) if α( fi) + β( fi) > Km( fi) or α( fi) + γ( fi) > Kn( fi) then
(16) Success( fi) = 0;
(17) end if
(18) end for
(19) if Success ( fi) = 1,∀i then
(20) Success(AO) = 1;
(21) end if
(22) end for
(23) if ((Conservative == 1 and Success (AO) = 1,∀ AO) or

(Conservative == 0 and Success (AO) = 1, ∃ AO)) then
(24) Γo = Γo

⋃
TM ;

(25) end if
(26) end for
(27) Reduce Γo to be that in which �T̂M ,TM s.t. T̂M(i) ≤ TM(i),∀i
(28) end for;
(29) {Step 3: merge and output the scheduling matrix}
(30) Merge Γos to form a single Γ = {Γ1, . . . ,Γp}, where p = |{Co}|;
(31) OUTPUT: Γ = Γ

⋃
TM of ∅;

Algorithm 1: Transmission mode generating Algorithm 1 (TMGA1).

be p ≤ Δ(Gstrong) + 1 = ξ + 1 if the coloring algorithm in
[11] is adopted. Now consider that the jth Co = { fi} has

the number of transmission modes nj ∈ O(Π
i=s j
i=1 | fi|), where

s j ∈ O(m/ξ) (with m denoting the total number of flows in
G) is the size of this Co, and | fi| is the DOF of its element
flow fi. In the Co, each transmission mode has oj admission
orders, which is the total number of permutations for the
s j elements (flows). With the above, we can show the time

complexity of TMGA1 as O(
∑ j=p

j=1 nj · oj).

Although the time complexity could be high as shown in
what mentioned above, TMGA1 is the only way to explore
all possible transmission modes that are feasible according
to the transmit DOF constraint and receive DOF constraint
for the MIMO networks. In fact, designing interference-free
scheduler for multihop wireless networks is considered to
be a hard problem in the literature, and recent works have
shown that it is in fact NP complete [12, 13]. Thus, as a
rule of thumb, if one has no time to find all the modes with
an algorithm such as TMGA1, a possible solution is using a
polynomial time heuristic such as the algorithm (TMGA2)
shown in what follows to generate a subset of these modes
satisfactory enough, within a reasonable time limit.

3.3. Transmission Mode Generating Algorithm 2. In what
mentioned before, TMGA1 can find all TM ’s for each Co.
However, the number of TMs will grow exponentially with
the increase of the size of Co, which would be intractable
when it is relatively large. Therefore, we propose here a
polynomial time heuristic algorithm, namely, Transmission
Mode Generating Algorithm 2, or shortly, TMGA2, that can
generate a good subset of TM ’s for each Co. The central idea
of TMGA2 is to consider a fi ∈ Co as the first flow to be
admitted for a S-stream flow, and then randomly choose
other f j ’s ∈ Co to see if they could cooperatively construct
a valid TM . Note that the starting fi is chosen with an
increasing order and the following f js could be the same of
fi, implying that multiple S-streams could be established in a
single fi. Furthermore, the seeking process could be repeated
several times according to the iteration limit L. With that,
we can control its time complexity to be satisfactory enough
while obtaining a good Γo that can cover all flows in Co and
can evenly distribute the number of times that each flow is
included in certain TMs.

To fulfill the design aim, we add {V} and {W} in this
algorithm in addition to {α}, {β}, and {γ} given previously.
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(1) INPUT: {Co}, {Km}, {Kn}, {Coweak}, L, S;
(2) for all Co do
(3) Initialize {V} = ∅;
(4) for l = 1 to l = L do
(5) Initialize {W} =min{{Km}, {Kn}}, {α} = ∅, {β} = ∅, {γ} = ∅;
(6) for i = 1 to i = |Co| do
(7) Initialize {α} = ∅, {β} = ∅, {γ} = ∅, {TM} = ∅, k = TRUE;
(8) α( fi) + = S, V( fi) = random; W( fi) − = S;
(9) while k == TRUE do
(10) if W( fi) ≥ 0 then
(11) {Primary update:}
(12) W( f j) − = S,∀ f j ∈ NI

S( fi)
⋃
NI

R( fi); {Update W}
(13) β( fi) =

∑
∀ f j∈NI

S ( fi) α( f j); {Update β #1}
(14) γ( fi) =

∑
∀ f j∈NI

R( fi) α( f j); {Update γ #1}
(15) {Optional update:}
(16) β( f j) + = α( fi),∀ f j ∈ NI

R( fi) with α( f j) > 0; {Update β #2}
(17) γ( f j) + = α( fi),∀ f j ∈ NI

S( fi) with α( f j) > 0; {Update γ #2}
(18) end if
(19) Success( fi) = 1;
(20) {Primary verification:}
(21) ifα( fi) + β( fi) > Km( fi) or α( fi) + γ( fi) > Kn( fi) then
(22) Success ( fi) = 0;
(23) end if
(24) {Optional verification:}
(25) for all f j ∈ NI

S( fi)
⋃
NI

R( fi) with α( f j) > 0 do
(26) if α( f j) + β( f j) > Km( f j) or α( f j) + γ( f j) > Kn( f j) then
(27) Success( fi) = 0;
(28) end if
(29) end for
(30) if Success ( fi) = 0 then
(31) Roll back V , W , α, β, γ, and stamp fi as failed; {Roll back if fi is not valid}
(32) end if
(33) Find the next fi with V( fi) = min{V} and W( fi) ≥ S, among∀ fi not yet examined and not yet failed;
(34) if no fi can be found then
(35) k = FALSE;
(36) else
(37) α( fi) + = S, V( fi) = random, W( fi) − = S;
(38) end if
(39) end while
(40) TM( fi) = α( fi),∀i;
(41) if �T̂M ∈ Γo == TM then
(42) Γo

⋃
= TM ;

(43) end if
(44) end for
(45) end for
(46) Reduce Γo to be that in which �T̂M ,TM s.t. T̂M(i) ≤ TM(i),∀i;
(47) end for
(48) Merge Γos to form a single Γ = {Γ1, . . . ,Γp}, where p is the number of Γo found;
(49) OUTPUT: Γ = Γ

⋃
TM of ∅;

Algorithm 2: Transmission mode generating Algorithm 2 (TMGA2).

More precisely, {V} is the set of values associated with fis’
chosen probabilities. In the current version, the values are
given with uniform random numbers, and TMGA2 chooses
the next fi with the lowest value; that is, it will choose
uniformly and randomly among the fi’s. On the other hand,
{W} denotes the set of link capabilities for the flows and is

obtained by {W} = min{{Km}, {Kn}}. In addition, two new
update rules are considered for β and γ, respectively, as

β
(
f j
)

+ = α
(
fi
)
, ∀ f j ∈ NI

R

(
fi
)

with α
(
f j
)
> 0,

γ
(
f j
)

+ = α
(
fi
)
, ∀ f j ∈ NI

S

(
fi
)

with α
(
f j
)
> 0.

(4)
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In what mentioned previously, fi is the flow now considered
in Co. Clearly, each neighbor of fi’s destination node would
consume α( fi) DOFs to null its interference at the receiver if
it has data to transmit right after fi. Thus, conservatively it
should take fi’s α into account as a part of its own β and then
check the transmit DOF constraint to avoid the interference.
Symmetrically, each neighbor of fi’s source node will be
interfered with fi’s transmission if it wants to concurrently
receive its own traffic right after fi. Hence, by taking fi’s
α into account as a part of its own γ for the receive DOF
constraint, it could be interference-free in the situation.

In TMGA2, if the optional update and the optional
verification (as shown in lines 16 to 17, and lines 25 to 29 in
Algorithm 2, resp.) are considered, the algorithm is operated
conservatively, and called TMGA2-con. On the other hand, if
these optional parts are not involved, then it is TMGA2-non.
Obviously, the two versions correspond to those of TMGA1,
and their performances will be compared in the experiments.

Let us use Figure 2, again, as our example and set S = 1
so that the algorithm will consider 1-stream flow for each
admission. With the initial {α} = {0, 0} and {W} = {1, 2},
TMGA2 starts by assuming f1 to be admitted and accordingly
updating the related parameters to be {α} = {1, 0} and
{W} = {0, 2}. In the same time, the neighbor of f1, that
is, f2, should also consume its link capability (DOF) to
be interference-free from f1’s transmission. Thus, {W} is
further changed to be {0, 1}. In what follows, it updates f1’s α
and β with the equations in (3) as TMGA1 does. If TMGA2-
non is considered, the algorithm will proceed to examine the
next fi that has the lowest random value V and has its link
capability W equal to or larger than S (= 1). Now f2 is the
only candidate, and the following process for updating α and
β and verifying the DOF constraints is the same as that for
TMGA1. Finally, {α} = {1, 1} found is used to update TM

as (1,1), which is the result of this case. Then, with f2 as the
new start, the process continues to search other valid TM , and
will end after the searching. In fact, the algorithm is designed
to repeat the whole process L times, and with the random
nature of V , each of the iterations may lead to a different TM

complying with our design aim.
Now, let us turn out to focus on the conservative version

of TMGA2. As shown in the TMGA1 example, TM = (1, 1)
is accepted by TMGA1-non but is rejected by TMGA1-con,
because the latter considers both AOs of ( f1, f2) and ( f2, f1),
and finds the second order to be unacceptable. In TMGA2-
con, this is done implicitly. To see why, let us reconsider
the above process started with f1. After checking α and β
for f1, TMGA2-con must also make the optional checks for
f1’s neighbors. In this case, no fi is the neighbor of f1’s
destination node, and thus no update for its β is needed.
On the other hand, f2 is the neighbor of f1’s source node.
However, f2 currently has no established traffic and thus has
no need to change its γ. With the unchanged values, the
optional verification for f2 is easily passed, in addition to the
primary verification for f1. Consequently, TMGA2-con may
go to check the next, that is, f2, as TMGA2-non would do.

As expected, TMGA2-con first makes the primary update
for f2, which keeps β( f2) = 0 and changes γ( f2) to be 1, then
it makes the optional update and finds that f1 is the neighbor

of f2’s destination node and has 1-stream traffic established
before. Thus, it changes β( f1) to be 1. Meanwhile, it finds no
neighbor of f2’s source node, and thus it changes nothing.
However, since the optional update changes at least one value
(β( f1)), its optional verification may produce nontrivial
results. In fact, it has α( f1) + β( f1) (= 2) /≤Km( f1) (= 2),
indicating that TM = (1, 1) is not valid. Clearly, this example
shows that while AO = ( f1, f2) is examined by the primary
update and verification, AO = ( f2, f1) is also verified by the
optional counterpart in TMGA2-con.

For the time complexity of TMGA2, we note that the
time complexity for a single Co is O(L2 · e + L · e3), where
e denotes the number of edges (flows) in the Co, that is,
e = |ECo|. Then, considering p ≤ ξ + 1 graph components
(Cos), and denoting by ẽ the maximal e in the network, that
is, ẽ = maxe{e = |ECo|}, we can have the polynomial time
complexity for TMGA2 as O(p ·L2 · ẽ + p ·L · ẽ3).

4. Cross-Layer Schemes

Now, given a network G with MIMO links, the source and
destination nodes of K end-to-end communication sessions,
and the scheduling matrix Γ obtained previously, in this
section we aim to find a rate allocation r specifying the
rate rk for each session k, along with a flow allocation
vector fk specifying the amount of traffic f ke of session k
routed through link e, and a transmission schedule vector p
specifying time fraction ptm

for each transmission mode TM .
More precisely, we want to solve the following optimization
problems.

Definition 1. The Maximum throughput Rate Allocation
(MRA) problem seeks a feasible rate allocation vector r =
[r1, r2, . . . , rK ], along with a feasible flow allocation vector
and a feasible transmission schedule vector such that the
throughput

∑K
k=1 rk is maximized.

Definition 2. The Proportional fair Rate Allocation (PRA)
problem seeks a feasible rate allocation vector r, along with
a feasible flow allocation vector and a feasible transmission
schedule vector such that the utility function

∑K
k=1 log(rk) is

maximized.

Definition 3. The Weighted fair Rate Allocation (WRA)
problem seeks a feasible rate allocation vector r, along with
a feasible flow allocation vector and a feasible transmission
schedule vector suchthat ri/ψi = r j /ψj , 1 ≤ i /= j ≤
K , where ψi denotes the positive weight of session i, with
the assumption of 1 = ψ1 > ψ2, . . . ,> ψK > 0, and the
throughput

∑K
k=1 rk is maximized.

For these problems, we propose our cross-layer schemes
with the same basic steps. First, we identify all possible
transmission modes or a subset of transmission modes by
means of TMGA1 or TMGA2 given previously. Second, we
formulate the problems as Linear Programming problems
(LP)s and Convex Programming problems (CPs) based on
the transmission modes found in above. More precisely, we
have the following.
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Linear Programming 1 (LP1): MRA

Given.

(i) G, node topology graph of the MIMO network.

(ii) SS, set of session source nodes, where sk is the source
node of session k.

(iii) SD, set of session destination nodes, where dk is the
destination node of session k.

(iv) Γ, scheduling matrix.

Variables. (i) r, rate allocation vector, where rk is the rate
allocated for session k,∀k.

(ii) fk , flow allocation vector for session k, where f ke is the
session k’s traffic routed through link e.

(iii) p, transmission schedule vector, where ptm is the time
fraction for the transmission mode TM .

Optimize. (i) Maximize the total throughput of sessions

max

⎛

⎝
K∑

k=1

rk

⎞

⎠. (5)

Constraint. (i) Flow conservation for source nodes
∑

e∈Eout
sk

f ke −
∑

e∈Ein
sk

f ke = rk, 1 ≤ k ≤ K , (6)

where Eout
sk (Ein

sk ) denotes the set of outgoing (incoming) edges
of source node sk.

(ii) Flow conservation for intermediate nodes
∑

e∈Eout
v

f ke −
∑

e∈Ein
v

f ke = 0, 1 ≤ k ≤ K , ∀v ∈ V \ {sk,dk},

(7)

where Eout
v (Ein

v ) denotes the set of outgoing (incoming) edges
of node v ∈ V \ {sk,dk}.

(iii) Bandwidth conservation

K∑

k=1

f ke ≤
∑

TM :ΓTM , fi /= 0

ptm
· c fi

, ∀e ∈ E, (8)

where c fi is the link capacity or rate of ΓTM , fi .
(iv) Scheduling constraint

tΓ∑

t=1

ptm
= 1. (9)

(v) Flow rate validity:

f ke ≥ 0, 1 ≤ k ≤ K , ∀e ∈ E. (10)

(vi) Scheduling validity

ptm ≥ 0, 1 ≤ tm ≤ tΓ. (11)

(vii) Session rate validity

rk ≥ 0, 1 ≤ k ≤ K. (12)

Remark 1. (i) Constraint (6) ensures that the net amount of
traffic going out of the source node of a session is equal to
that of the end-to-end session rate.

(ii) Constraint (7) ensures that the amount of traffic of
a session entering any intermediate node is equal to that
existing the intermediate node.

(iii) Constraint (8) ensures that the total traffic on a link
is no more than the average link transmission rate.

(iv) Constraint (9) ensures that the summation of all
elements in a transmission schedule vector is equal to 1.

(v) Constraints involving f ke imply that a session k can
be routed through different links, es. That is, a session can
go through several different routes towards its destination,
which is called traffic splittable.

Linear Programming 2 (LP2): WRA

We have

max

⎛

⎝
K∑

k=1

rk

⎞

⎠ (13)

subject to the constraints (6)–(12), and

ri
ψi
− r j

ψj
= 0, 1 ≤ i /= j ≤ K (14)

When compared with the objective of LP1 that only maxi-
mizes the network throughput and involves no consideration
for fairness, LP2 has the extra constraint (14) for the
weighted fairness among the session traffics. That is, LP2
aims to maximize the throughput while preserving the
weighted fair shares in the sessions.

On the other hand, the PRA problem can be formulated
as a convex program because it has the same linear con-
straints as the MRA problem and the objective is to maximize
a concave utility function. That is,

Convex Programming 1 (CP1): PRA

We have

max

⎛

⎝
K∑

k=1

log(rk)

⎞

⎠ (15)

subject to the constraints (6) to (12).
There are efficient algorithms for solving LPs and CPs

[14, 15]. In our experiments, we use MATLAB to solve the
LPs, and its CVX package [16] to solve the CPs. Their results
are given in the following section.

5. Experiment Results

In this section, we report on simulation experiments made in
order to verify the cross-layer schemes designed previously.
To this end, different sets of experiments are conducted
to exhibit their distinct performances on different network
topologies frequently used. In addition, we take into account
that throughput is in fact affected by link capability or rate.
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Thus, to focus on the schemes’ correctness and compare
their performance, we assume that each antenna (DOF) in
the MIMO system has the same capability (of 1). The rate
allocated to each session, rk, and the system throughput,
∑K

k=1 rk, are normalized by the capability to provide their
values independent of a certain system.

5.1. Wireless Backhaul Network. A wireless backhaul network
(WBN) is considered as a collection of access points (APs),
along with the uplink (to the Internet) and downlink (from
the Internet) demands for each AP. The MAC layer adopted is
usually assumed to schedule data to multiple receivers across
timeslots using a TDMA-based scheme, which complies with
our scenarios. For the network, we consider only uplink
traffics conveyed with a common wireless channel shared by
the MIMO links. In addition, we consider also that access
traffic from the users to their respective APs is transmitted
in a separate frequency band, and does not interfere with
the wireless backhaul traffic considered here. For WBNs,
the cross-layer schemes can be used to schedule the MIMO
links without interference, and to maximize the system
throughput according to the traffic demands form APs.

5.1.1. Topology 1. Let’s re-examine the topology in Figure 2,
and regard it as a backhaul network as follows. That is,
N = {1, 2, 3, 4} now represents the set of APs, each with
DOF of 2, and node 1 denotes the AP connecting to the
Internet, which is usually referred to as Transit Access Point

(TAP). With these APs, f1 =
−−−→
(2, 1), f2 =

−−−→
(3, 2), and f3 =−−−→

(4, 3) are so conducted to compose the flow set F, reasonably
representing that all uplink traffics are destined to the wired
Internet. Clearly, every AP has its own traffic toward TAP,
and thus the three sessions involved would be (s1 = 2, d1 = 1),
(s2 = 3, d2 = 1), and (s3 = 4, d3 = 1) (where (sk,dk) denotes
the source-destination pair of session k). Given the above,
it is easy to derive Gstrong showing that f1 and f2 strongly
contend with each other, and so do f2 and f3. Accordingly,
with the coloring algorithm, they are divided into two flow
components, C1 = { f1, f3} and C2 = { f2}, containing
only weak contentions. For these components, TMGA1 and
TMGA2 both can easily produce Γ1 = {{0, 2}, {1, 1}, {2, 0}}
and Γ2 = {{2}}. After padding its TM ’s with zeros for
the flows not in the component, respectively, the two
Γo’s are merged to be the complete scheduling matrix
Γ = {{0, 0, 0}, {0, 0, 2}, {1, 0, 1}, {2, 0, 0}, {0, 2, 0}}, wherein
an empty TM = {0, 0, 0} is added as the default element for
scheduling.

Now, with a DOF to represent a unit of transmission
capability, LP1 produces { f ke } = { f 1

1 = 2, f 1
2 = 0, f 1

3 =
0, f 2

1 = 0, f 2
2 = 0, f 2

3 = 0, f 3
1 = 0, f 3

2 = 0, f 3
3 =

0}. That is, only by routing session 1 through { f1} and
sacrificing all other sessions (with r2 = 0 and r3 =
0), the system can have the maximum system throughput
2. In addition, it produces {ptm} = {0, 0, 0, 1, 0}, saying
that only TM = {2, 0, 0} should be scheduled in the
MIMO network. In other words, the system throughput is
dominated by the APs closet to TAP. The unfairness problem
has also been reported in [17, 18]. However, unlike the

previous works, we address here joint rate control, routing,
and scheduling for the MIMO-based wireless backhaul
networks with a scheduling-based (TDMA-based) MAC. To
be specific, with LP2 we can achieve the weighted fairness
among the sessions while maximizing the aggregated system
throughput. More precisely, LP2 produces, for example,
{r} = {r1 = 0.7692, r2 = 0.3846, r3 = 0.1538}, exactly
complying with the given weights {ψ} = {ψ1 = 1,ψ2 =
0.5,ψ3 = 0.2}. The corresponding routes are constituted
by { f ke } = { f 1

1 = 0.7692, f 1
2 = 0, f 1

3 = 0, f 2
1 =

0.3846, f 2
2 = 0.3846, f 2

3 = 0, f 3
1 = 0.1538, f 3

2 = 0.1538, f 3
3 =

0.1538}. For the requirements on link capability, a TDMA-
based MAC over the MIMO PHY is scheduled with Γ and
{ptm

} = {0, 0.01, 0.1338, 0.5869, 0.2692}. Accordingly, the
link capabilities {ptm

}1×5 · Γ5×3 = {1.3076, 0.5384, 0.1538}
can fulfill the requirement of f1 (0.7692 + 0.3846 + 0.1538
= 1.3076), that of f2 (0 + 0.3846 + 0.1538 = 0.5384), and
that of f3 (0 + 0 + 0.1538 = 0.1538). Finally, for solving
the PRA problem, CP1 produces {r} = {r1 = 0.6, r2 =
0.3, r3 = 0.2} and improves the fairness problem when
compared with LP1. However, it lacks the capability of
achieving weighted fairness, and it would inevitably sacrifice
the system throughput as LP2 may do.

5.1.2. Topology 2. Let us now consider the example in
Figure 3. In principle, it can be also regarded as a wireless
backhaul network with node 1 as TAP and other nodes as
APs. With the more complex topology, our aim is to show
how the cross-layer schemes can find multiple routes for a
session to fulfill their specific maximization goals. To this
end, three sessions (s1 = 6, d1 = 1), (s2 = 7, d2 = 1), and
(s3 = 8, d3 = 1) are conducted for the leaf nodes (6, 7,
and 8). Given that, LP1 produces {r} = {r1 = 0.3781, r2 =
0.3781, r3 = 0.5771}. To support these session rates, a single
route to TAP (node 1) is allocated to the first two sessions,
respectively. That is, the route for the first session is f5 →
f3 → f1 and that for the second is f6 → f4 → f2, in
which every single flow contributes the data rate of 0.3781
to its session. On the other hand, LP1 finds two routes for
the third session: f7 → f3 → f1 and f8 → f4 → f2. In what
mentioned above, each flow provides its rate of 0.2885. Then,
by combining the two routes, it can support r3 = 0.5771.
Similarly, by setting ψi = 1,∀i, LP2 can give each session
i the same rate allocation ri = 0.4, with the same routes
obtained in what mentioned above. Finally, CP1 also finds
the same equal rate allocation as LP2, and thus, it has the
same implication on the fairness in this case.

5.2. Wireless Mesh Network. In this set of experiments,
we randomly generate wireless mesh networks (WMNs)
with n nodes located in a 1000 × 1000 m2 region. The
transmission range (RT) and the corresponding interference
range (RI) are set to 400 m and 600 m, respectively. In
addition, these networks are so conducted to ensure their
connectivity of the resulting topologies. Then, the cross-layer
schemes are examined on these networks to provide their
performances on rate allocated to each session, throughput,
and weighted fairness. In particular, the sessions are sorted in
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Figure 4: Random topology for the experiment.

the increasing order of their rate values to clearly show their
performance differences.

As the first part of this experiment set, we examine our
cross-layer schemes on a network with 15 nodes, as shown in
Figure 4. In the network, we equip each node with 2 antennas
and generate 10 communication sessions with their source
and destination nodes to be randomly generated so that no
two sessions have the same sources and destinations. Note
that, in this example, the maximum number of flows s j in a
Co is 18, and clearly, the number of permutations for the s j =
18 elements (flows), that is, its oj , is generally an intractable
value for computation.

A similar situation also happens to the problem of finding
Maximal Independent Sets (MISs). Although the algorithm
in [19] can be used to find all MISs, it is still intractable
that the number of MISs will grow exponentially with the
increase of the graph size, and this is the reason why we need
to develop TMGA2. In the experiment, TMGA2 is used to
generate transmission modes with L = 1 and L = 10,
respectively. The corresponding rate allocation results are
shown in Figure 5. As expected, the MRA scheme can give
certain sessions the highest ri’s, but it also results in a severe
unfairness on the rate allocation. This can be seen in the
figure that the first several sessions sorted have their rates
equal to zero but the latter ones obtain very high values.
On the contrary, the WRA scheme performs best in terms
of fairness. In fact, with ψi = 1,∀i, the rate allocated
to each session i is the same. Note that the WRA scheme
has the capability to achieve arbitrary weighted fairness
among the sessions. However, in the experiments, we simply
show the equal weight results. Between the two extremes,
the PRA scheme is much better than the MRA scheme
on the fairness, but it cannot achieve an absolutely even
distribution, and certainly it cannot achieve the weighted
fairness. Finally, it could be seen that with the conservative
generating approach, labeled with “(con),” the three schemes
tend to have their rate allocations lower than those with
the nonconservative counterparts, labeled with “(non).” This
trend is further verified in the following experiments.

In the second part of the experiments, we aim to compare
the conservative and the nonconservative transmission mode

generating approaches in TMGA1 and TMGA2 and to
evaluate the efficiency of TMGA2. In fact, TMGA1 is
used here as a benchmark because it can generate all
possible transmission modes (TMs) and can give the cross-
layer schemes the most complete scheduling matrix (Γ).
However, to be numerically tractable for TMGA1, we run
the experiments on a smaller network that has 6 nodes
and 6 sessions with the same setting given previously. In
this network, each node is randomly equipped with 1 or
2 antennas, and three numbers of iteration limit, L = 1,
L = 2, and L = 10, are examined for TMGA2. In addition,
to quantitatively analyze the fairness performances for these
schemes, we let Si denote the throughput of session i, and let
ψi denote the associated weight, and we use these parameters
to obtain the fairness index in [20] as follow:

Fs =
μ
(
Si/ψi

)

μ
(
Si/ψi

)
+ α
(
Si/ψi

) . (16)

The results are shown in Figure 6, wherein “All” denotes
that for TMGA1. With this figure, we summarize our
observations from the following two aspects. First, from the
throughput aspect in Figure 6(a), we can see that the MRA
scheme achieves the highest values in spite of L. That is
to say, although a larger L may lead to a larger number of
TM ’s in Γ, it does not affect MRA’s throughput performance
here. This is because MPA could always maximize a single
session while sacrificing all other sessions with Γs obtained,
as indicated in Section 5.1. Similarly, L does not affect
much PRA and WRA with conservative Γ’s. However, if
given nonconservative Γ’s, it has stronger impacts on the
two schemes. This is because a larger Γ resulted may open
more opportunities for these schemes to optimize their target
functions, and the nonconservative Γ’s found would have
their sizes larger than the conservative counterparts. Apart
from these differences, we note also that the Γ’s resulted
from L = 1 or 2 would be enough for most of the
schemes. Even so, one may still expect a nonconservative
Γ for higher throughputs, despite L. However, the higher
throughputs are obtained with the costs of providing a
more strict admission control that can correctly admit its
sessions with the admission orders (AO’s) recorded to realize
the TM ’s in a given nonconservative Γ. On the other hand,
with a conservative Γ, every possible AO would be already
considered for a TM , and thus no such overheads would be
involved.

As the second aspect, we consider the fairness results
in Figure 6(b). Clearly, it is shown that the WRA scheme
perfectly achieves the weighted fairness of ψi = 1,∀i, and its
fairness index values are all of 1 in spite of L. On the other
hand, the PRA scheme has its values ranging from 0.7 to
0.9, and the MRA scheme does not exceed 0.52. In addition,
similar trends for the throughput results also hold here.
For example, the nonconservative Γ’s usually provide better
performances than the conservative counterparts. However,
we note that a higher L improves most the PRA scheme
on the throughput, but it improves most the MRA scheme
on the fairness. Thus, it is suggested that one may choose
L depending on the performance metric most concerned.
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Figure 5: Rate allocation results for the experimented sessions: (a) L = 1, and (b) L = 10.
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Figure 6: Throughput and fairness results for the experimented sessions: (a) throughput and (b) fairness.

Nevertheless, in general, L = 1 or 2 could satisfy these
schemes with low time complexity, as indicated previously.

As the final part of the experiments, we examine TMGA2
with more topologies to know its effectiveness. To be specific,
we let L = 10 and conduct two sets of experiments that are
numerically tractable for this aim. Specifically, by randomly
deploying 6 nodes and 6 sessions in the network, we
conduct 30 different topologies as the first set of experiments.
Note that although this set has the same numbers as the

above, with the variation it actually results in very different
topologies and traffic conditions to be considered. With the
same way, we conduct another 30 topologies as the second
set of experiments, but now there are 10 nodes and 8 sessions
randomly deployed to reasonably represent the different
numbers of nodes and sessions that may involve.

The throughput and fairness results for the first set
are given in Figures 7(a) and 7(b), respectively. From
these figures, we can easily see that the two performance
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Figure 7: Throughput and fairness results for the different network scenarios: (a) throughput for the 6-node topologies, (b) fairness for the
6-node topologies, (c) throughput for the 10-node topologies, and (d) fairness for the 10-node topologies.

metrics are significantly varied by the different topologies,
as expected. However, for each single topology, the relative
relationships among the results of these schemes have the
same trend as Figure 6 has shown. Clearly, this trend can
be also observed in Figures 7(c) and 7(d) for the results
of the second set. With the above, it could be said that
the proposed schemes in TMGA2 are able to generate the
transmission modes that can efficiently fulfill the design
aim of solving the MRA, PRA, and WRA problems in spite
of the topologies with the different numbers of nodes and
sessions.

6. Conclusion

In this work, we take into account the fact that for fully real-
izing the potential of MIMO technology, higher layer must
be designed to be cognizant of the MIMO link capability. To
this end, instead of simply translating the achievable gain for
individual MIMO links into end-to-end gain in the network,
we present a mathematical framework that can express the
cross-layer gain on throughput as a function of network
routing, link scheduling, and stream control in the presence
of interference. With that, we propose Transmission Mode
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Generating Algorithms (TMGAs) to generate TDMA-based
scheduling matrices and give our Linear Programming-
(LP-) based and Convex Programming- (CP-) based schemes
to maximize the network throughput, and to achieve certain
fairness (such as weighted fairness, in particular) at the same
time. The simulation experiments’ results show that the
proposed schemes are all capable on achieving our design
aims, and every scheme has its own unique performance
benefit and tradeoff between throughput and fairness.
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