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One of the great mysteries of the brain is cognitive control. How can the interactions between millions of neurons result in
behavior that is coordinated and appears willful and voluntary? There is consensus that it depends on the prefrontal cortex (PFC).
Many PFC areas receive converging inputs from at least two sensory modalities. Inspired by human’s innate ability to process
and integrate information from disparate, network-based sources, we apply human-inspired information integration mechanisms
to target detection in cognitive radar sensor network. Humans’ information integration mechanisms have been modelled using
maximume-likelihood estimation (MLE) or soft-max approaches. In this paper, we apply these two algorithms to cognitive radar
sensor networks target detection. Discrete-cosine-transform (DCT) is used to process the integrated data from MLE or soft-max.
We apply fuzzy logic system (FLS) to automatic target detection based on the AC power values from DCT. Simulation results
show that our MLE-DCT-FLS and soft-max-DCT-FLS approaches perform very well in the radar sensor network target detection,

whereas the existing 2D construction algorithm does not work in this study.

1. Introduction and Motivation

Humans display a remarkable capability to perform visual
and auditory information integration despite noisy sensory
signals and conflicting inputs. Humans are adept at net-
work visualization, and at understanding subtle implications
among the network connections. To date, however, human’s
innate ability to process and integrate information from
disparate, network-based sources has not translated well
to automated systems. Motivated by the above challenges,
we apply human information integration mechnisms to
cognitive radar sensor networks. A cognitive network is
one that is aware of changes in user needs and its envi-
ronment, adapts its behavior to those changes, learns from
its adaptations, and exploits knowledge to improve its
future behavior. A cognitive radar sensor network consists
of multiple networked radar sensors and radar sensors
sense and communicates with each other collaboratively to
complete a mission. In real world, cognitive radar sensor
network information integration is necessary in different
applications. For example, in an emergency natural disaster
scenario, such as China Wenchuan earthquake in May 2008,

Utah Mine Collapse in August 2007, or West Virginia
Sago mine disaster in January 2006, cognitive radar sensor
network-based information integration for first responders is
critical for search and rescue. Danger may appear anywhere
at any time; therefore, first responders must monitor a large
area continuously in order to identify potential danger and
take actions. Due to the dynamic and complex nature of
natural disaster, some buried/foleage victims may not be
found with image/video sensors, and UWB radar sensors
are needed for penetrating the ground or sense-through-
wall. Unfortunately, the radar data acquired are often limited
and noisy. Unlike medical imaging or synthetic aperture
radar imaging where abundance of data is generally available
through multiple looks and where processing time may not
be crucial, practical cognitive radar sensor networks are typ-
ically the opposite: availability of data is limited and required
processing time is short. This need is also motivated by the
fact that humans display a remarkable capability to quickly
perform target recognition despite noisy sensory signals
and conflicting inputs. Humans are adept at network visu-
alization and at understanding subtle implications among
the network connections. To date, however, human’s innate
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FIGURE 1: Schematic diagram of some of the extrinsic and intrinsic connections of the PFC. Most connections are reciprocal; the exceptions
are indicated by arrows. The frontal eye field (FEF) has variously been considered either adjacent to or part of the PFC.

ability to process and integrate information from disparate,
network-based sources for situational understanding has not
translated well to automated systems. In this paper, we apply
human information integration mechanisms to information
fusion in cognitive radar sensor network.

The rest of this paper is organized as follows. In
Section 2, we introduce the human information integration
mechanisms and their mathematical modeling. In Section 3,
we introduce the radar sensor network data collection.
In Section 4, we apply the human information integration
mechanisms to cognitive radar sensor network. In Section 5,
we apply fuzzy logic system for target detection as a
postprocessing for Section 4. In Section 6, we conclude this

paper.

2. Human Information Integration Mechanisms

One of the great mysteries of the brain is cognitive control.
How can the interactions between millions of neurons
result in behavior that is coordinated and appears willful
and voluntary? There is consensus that it depends on the
prefrontal cortex (PFCs) [1, 2]. A schematic diagram of
some of the extrinsic and intrinsic connections of the PFC is
depicted in Figure 1 [1]. Many PFC areas receive converging
inputs from at least two sensory modalities [3, 4]. For
example, the dorsolateral (DL) (areas 8, 9, and 46) and
ventrolateral (12 and 45) PFCs both receive projections from
visual, auditory, and somatosensory cortex. Furthermore,
the PFC is connected with other cortical regions that are
themselves sites of multimodal convergence. Many PFC
areas (9, 12, 46, and 45) receive inputs from the rostral
superior temporal sulcus, which has neurons with bimodal
or trimodal (visual, auditory, and somatosensory) responses

[5, 6]. The arcuate sulcus region (areas 8 and 45) and area
12 seem to be particularly multimodal. They contain zones
that receive overlapping inputs from three sensory modalities
[6]. Observe, for example, that mid-dorsal area 9 directly
processes and integrates visual, auditory, and multimodal
information. Regarding the functional model/mechanisms
of different PFC areas (in Figure 1): mid-dorsal area 9,
dorsolateral area 46, and ventrolateral areas 12, 45, and
orbital and medial areas 10, 11, 13, 14, different models and
rules have been reported in the literature [7-10].

Recently, a maximum-likelihood estimation (MLE)
approach was proposed for multisensory data fusion in
human [7]. In the MLE approach [7], sensory estimates
of an environmental property can be represented by § i =
fi(S) where S is the physical property being estimated, f
is the operation the nervous system performs to derive the
estimate, and $ is the perceptual estimate. Sensory estimates
are subject to two types of error: random measurement error
and bias. Thus, estimates of the same object property from
different cues usually differ. To reconcile the discrepancy, the
nervous system must either combine estimates or choose
one, thereby ignoring the other cues. Assuming that each
single-cue estimate is unbiased but corrupted by indepen-
dent Gaussian noise, the statistically optimal strategy for cue
combination is a weighted average [7]:

~ M ~

Sc=>wi, (1)
i=1

where w; = (1/067)/(3 i l/ajz) and is the weight given to the

ith single-cue estimate, o7 is that estimates variance, and M is

the total number of cues. Combining estimates by this MLE

rule yields the least variable estimate of S and thus more
precise estimates of object properties.
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Besides, some other summation rules have been pro-
posed in perception and cognition such as soft-max rule: y =
(M. xM"" [10] where x; denotes the input from an input
source i, and M is the total number of sources. In this paper,
we will apply MLE and soft-max human brain information
integration mechanisms to cognitive radar sensor network
information integration.

3. Radar Sensor Networks Data
Measurement and Collection

Our work is based on the sense-through-foliage UWB radar
sensor networks. The foliage experiment was constructed
on a seven-ton man lift, which had a total lifting capacity
of 450kg. The limit of the lifting capacity was reached
during the experiment as essentially the entire measuring
apparatus was placed on the lift (as shown in Figure 2). The
principle pieces of equipment secured on the lift are Barth
pulser, Tektronix model 7704 B oscilloscope, dual antenna
mounting stand, two antennas, rack system, IBM laptop,
HP signal Generator, Custom RF switch and power supply,
and Weather shield (small hut). The target is a trihedral
reflector (as shown in Figure 3). Throughout this work, a
Barth pulse source (Barth Electronics, Inc. model 732 GL)
was used. The pulse generator uses a coaxial reed switch to
discharge a charge line for a very fast rise time pulse outputs.
The model 732 pulse generator provides pulses of less than
50 picoseconds (ps) rise time, with amplitude from 150V
to greater than 2KV into any load impedance through a
50 ohm coaxial line. The generator is capable of producing
pulses with a minimum width of 750 ps and a maximum
of 1 microsecond. This output pulse width is determined by
charge line length for rectangular pulses or by capacitors for
1/e decay pulses.

For the data we used in this paper, each sample is
spaced at 50 picosecond interval, and 16000 samples were
collected for each collection for a total time duration of
0.8 microsecond at a rate of approximately 20 Hz. We plot
the transmitted pulse (one realization) in Figure 4(a) and the
received echos in one collection in Figure 4(b) (averaged over
35 pulses). The data collections were extensive. 20 different
positions were used, and 35 collections were performed at
each position using UWB radar sensor networks.

4. Human-Inspired Sense-through-Foliage
Target Detection

In Figures 5(a) and 5(b), we plot two collections of UWB
radars. Figure 5(a) has no target on range, and Figure 5(b)
has target at samples around 13900. We plot the echo
differences between Figures 5(a) and 5(b) in Figure 5(c).
However, it is impossible to identify whether there is any
target and where there is target based on Figure 5(c). Since
significant pulse-to-pulse variability exists in the echos, this
motivates us to explore the spatial and time diversity using
Radar Sensor Networks (RSNs).

Figure 2: This figure shows the lift with the experiment. The
antennas are at the far end of the lift from the viewer under the
roof that was built to shield the equipment from the elements. This
picture was taken in September with the foliage largely still present.
The cables coming from the lift are a ground cable to an earth
ground and one of 4 tethers used in windy conditions.

F1GURE 3: The target (a trihedral reflector) is shown on the stand at
300 feet from the lift.

In RSN, the radar sensors are networked together in
an ad hoc fashion. They do not rely on a preexisting fixed
infrastructure, such as a wireline backbone network or a base
station. They are self-organizing entities that are deployed on
demand in support of various events surveillance, battlefield,
disaster relief, search and rescue, and so forth. Scalability
concern suggests a hierarchical organization of radar sensor
networks with the lowest level in the hierarchy being a cluster.
As argued in [11-14], in addition to helping with scalability
and robustness, aggregating sensor nodes into clusters has
additional benefits:
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FIGURE 4: Transmitted pulse and received echos in one experiment. (a) Transmitted pulse. (b) Received echos.

(1) conserving radio resources such as bandwidth;
(2) promoting spatial code reuse and frequency reuse;

(3) simplifying the topology, for example, when a mobile
radar changes its location, it is sufficient for only the
nodes in attended clusters to update their topology
information;

(4) reducing the generation and propagation of routing
information;

(5) concealing the details of global network topology
from individual nodes.

In RSN, each radar can provide their pulse parameters
such as timing to their clusterhead radar, and the clusterhead
radar can combine the echos (RF returns) from the target
and clutter. In this paper, we propose an RAKE structure for
combining echos, as illustrated by Figure 6. The integration
means time-average for a sample duration T and it is for
general case when the echos are not in discrete values. It
is quite often assumed that the radar sensor platform will
have access to Global Positioning Service (GPS) and Inertial
Navigation Unit (INU) timing and navigation data [15]. In
this paper, we assume that the radar sensors are synchronized
in RSN. In Figure 6, the echo, that is, RF response by the
pulse of each cluster-member sensor, will be combined by
the clusterhead using a weighted average, and the weight w;
is determined by the two human-inspired mechanisms.

We applied the human-inspired MLE algorithm to
combine the sensed echo collection from M = 30UWB
radars, and then the combined data are processed using
discrete-cosine transform (DCT) to obtain the AC values.
Based on our experiences, echo with a target generally has
high and nonfluctuating AC values and the AC values can
be obtained using DCT. We plot the power of AC values in
Figures 7(a) and 7(b) using MLE and DCT algorithms for
the two cases (with target and without target), respectively.

Observe that in Figure 7(b) the power of AC values (around
sample 13900) where the target is located is nonfluctuating
(somehow monotonically increase then decrease). Although
some other samples also have very high AC power values, it
is very clear that they are quite fluctuating and the power of
AC values behaves like random noise because generally the
clutter has Gaussian distribution in the frequency domain.

Similarly, we applied the soft-max algorithm (n = 2)
to combine the sensed echo collection from M = 30 UWB
radars, and then used DCT to obtain the AC values. We
plot the power of AC values in Figures 7(a) and 7(b) using
soft-max and DCT algorithms for the two cases (with target
and without target) respectively. Observe that in Figure 8(b),
the power of AC values (around sample 13,900) where the
target is located is nonfluctuating (somehow monotonically
increase then decrease).

‘We made the above observations. However, in real world
application, automatic target detection is necessary to ensure
that our algorithms could be performed in real time. In
Section 5, we apply fuzzy logic systems to automatic target
detection based on the power of AC values (obtained via
MLE-DCT or soft-max-DCT).

We compared our approaches to the scheme proposed in
[16]. In [16], 2D image was created via adding voltages with
the appropriate time offset. In Figures 9(a) and 9(b), we plot
the 2D image created based on the above two data sets (from
samples 13800 to 14200). The sensed data from 30 radars are
averaged first and then plotted in 2D [16]. However, it is not
clear which image shows there is target on range.

5. Fuzzy Logic System for
Automatic Target Detection

5.1. Overview of Fuzzy Logic Systems. Figure 10 shows the
structure of a fuzzy logic system (FLS) [17]. When an input is
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FIGURE 5: Measurement with 35 pulses average. (a) Expanded view of traces (no target) from sample 13001 to 15000. (b) Expanded view of
traces (with target) from samples 13001 to 15000. (c) The differences between (a) and (b).
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F1GURE 6: Echo combining by clusterhead in RSN.

applied to an FLS, the inference engine computes the output
set corresponding to each rule. The defuzzifer then computes
a crisp output from these rule output sets. Consider a p-
input 1-output FLS, using singleton fuzzification, center-of-
sets defuzzification [17], and “IF-THEN” rules of the form

R':1F x isF{ and x, isFé and - - - and x, is F!,
THEN y is G'.

Assuming singleton fuzzification, when an input x’
{x1,...,x,} is applied, the degree of firing corresponding to
the Ith rule is computed as

(2)

g () % pp (35) % - g (%) = T (),

where * and 7 both indicate the chosen f-norm. There
are many kinds of defuzzifiers. In this paper, we focus, for
illustrative purposes, on the center-of-sets defuzzifier [17].
It computes a crisp output for the FLS by first computing
the centroid, cg, of every consequent set G!, and then
computing a weighted average of these centroids. The weight
corresponding to the Ith rule consequent centroid is the
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degree of firing associated with the Ith rule, 7,7, Wl (x7), so
that

Z?L CGITiEWF} (x7)
M ~ 7
201 JiﬁhuFf (x7)
where M is the number of rules in the FLS. In this paper, we

design an FLS for automatic target recognition based on the
AC values obtained using MLE-DCT or soft-max-DCT.

3)

}’cos(X’) =

5.2. FLS for Automatic Target Detection. Observe that, in
Figures 7 and 8, the power of AC values are quite fluctuating
and have lots of uncertainties. FLS is well known to handle
the uncertainties. For convenience in describing the FLS

design for Automatic Target Detection (ATD), we first give
the definition of footprint of uncertainty of AC power values
and region of interest in the footprint of uncertainty.

Definition 1 (Footprint of Uncertainty). Uncertainty in the
AC power values and time index consists of a bounded

region, that we call the footprint of uncertainty of AC power
values. It is the union of all AC power values.

Definition 2 (Region of Interest (Rol)). An Rol in the
footprint of uncertainty is a contour consisting of a large
number (greater than 50) of AC power values where AC
power values increase and then decrease.
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Definition 3 (Fluctuating Point in Rol). P(i) is called a
fluctuating point in the Rol if P(i — 1),P(i),P(i + 1) are
nonmonotonically increasing or decreasing.

Our FLS for automatic target detection will classify each
ROI (with target or no target) based on two antecedents:
the centroid of the ROI and the number of fluctuating points
in the ROI The linguistic variables used to represent these
two antecedents were divided into three levels: low, moderate,
and high. The consequent—the possibility that there is a
target at this Rol—was divided into 5 levels, Very Strong,
Strong, Medium, Weak, and Very Weak. We used trapezoidal
membership functions (MFs) to represent low, high, very
strong, and very weak and triangle MFs to represent moderate,
strong, medium, and weak. All inputs to the antecedents are
normalized to 0-10.

Based on the fact the AC power value of target is nonfluc-
tuating (somehow monotonically increase then decrease),
and the AC power value of clutter behaves like random noise
because generally the clutter has Gaussian distribution in the
frequency domain, we design a fuzzy logic system using rules
such as

TaBLE 1: The rules for target detection. Antecedent 1 is centroid of a
Rol, Antecedent 2 is the number of fluctuating points in the ROI, and
Consequent is the possibility that there is a target at this Rol.

Rule number  Antecedent 1 Antecedent 2 Consequent

1 low low medium

2 low moderate weak

3 low high very weak

4 moderate low strong

5 moderate moderate medium

6 moderate high weak

7 high low very strong

8 high moderate strong

9 high high medium

R': IF centroid of a Rol (x1) is Fll, and the number of

fluctuating points in the ROI (x,) is Ff, THEN the
possibility that there is a target at this Rol (y) is G,

where [ = 1,...,9. We summarize all the rules in Table 1. For

every input (x, x,), the output is computed using

219:1 UE} (x1 ).uFIZ (x2 )C:lavg

S () (x2)

(4)

y(x1,x) =

We ran simulations to 1000 collections in the real world
sense-through-foliage experiment and found that our FLS
performs very well in the automatic target detection based
on the AC power values obtained from MLE-DCT or soft-
max-DCT and achieve probability of detection pg = 100%
and false alarm rate ps, = 0.
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6. Conclusions

Inspired by human’s innate ability to process and integrate
information from disparate, network-based sources, we
applied human-inspired information integration mecha-
nisms to target detection in cognitive radar sensor network.
Humans’ information integration mechanisms have been
modelled using maximum-likelihood estimation (MLE) or
soft-max approaches. In this paper, we applied these two
algorithms to cognitive radar sensor networks target detec-
tion. Discrete-cosine-transform (DCT) was used to process
the integrated data from MLE or soft-max. We applied fuzzy
logic system (FLS) to automatic target detection based on
the AC power values from DCT. Simulation results showed
that our MLE-DCT-FLS and soft-max-DCT-FLS approaches
performed very well in the radar sensor network target
detection, whereas the existing 2-D construction algorithm
could not work in this study.
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