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MarcoMartalò and Gianluigi Ferrari

WASN Laboratory, Department of Information Engineering, University of Parma, I-43124 Parma, Italy

Correspondence should be addressed to Marco Martalò, marco.martalo@unipr.it
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In various wireless sensor network applications, it is of interest to monitor the perimeter of an area of interest. For example, one
may need to check if there is a leakage of a dangerous substance. In this paper, we model this as a problem of one-dimensional edge
detection, that is, detection of a spatially nonconstant one-dimensional phenomenon, observed by sensors which communicate
to an access point (AP) through (possibly noisy) communication links. Two possible quantization strategies are considered at
the sensors: (i) binary quantization and (ii) absence of quantization. We first derive the minimum mean square error (MMSE)
detection algorithm at the AP. Then, we propose a simplified (suboptimum) detection algorithm, with reduced computational
complexity. Noisy communication links are modeled either as (i) binary symmetric channels (BSCs) or (ii) channels with additive
white Gaussian noise (AWGN).

1. Introduction and RelatedWork

Sensor networks have been an active research field in the
last years [1]. In particular, many civilian applications have
been developed on the basis of this technology, for example,
for environmental monitoring [2]. Several frameworks have
been proposed for the analysis of sensor networks with
a common binary phenomenon under observation [3–6].
While there are scenarios where the presence of a common
phenomenon is meaningful, in other scenarios one may be
interested in determining where the physical phenomenon
changes its status (e.g., from presence to absence, or vice
versa). As an illustrative example, consider the scenario
shown in Figure 1(a). Suppose that in a given area there is a
chemical facility where a dangerous gas is used. Obviously,
it is of interest to detect any gas leakage. To this purpose,
one may place a linear sensor network surrounding this
area: in the example in Figure 1(a) there are six sensors.
(In the remainder of this paper, by “sensor” we will denote
the wireless transceiver which includes the sensing element.
However, it has also (limited) processing capabilities and can
communicate with the AP.) At a given time, it may happen
that there is a leakage: some of the sensors (namely, sensors

s2, s3, s5, and s6 in Figure 1(b)) thus detect the presence
of the gas (namely, sensors s2, s3, s5, and s6) whereas the
remaining sensors (namely, s1 and s4) do not. This problem
reduces to a distributed detection problem of a spatially
nonconstant binary phenomenon, as shown in Figure 1(c)
and described in more detail later. We remark that this
is an illustrative example of a possible one-dimensional
edge detection application. Our goal is to show how low-
complexity distributed detection can be successfully applied
to solve a general one-dimensional edge detection problem.

In [7], the authors consider a scenario with a single
phenomenon status change (denoted, in the following,
as edge) and propose a framework, based on minimum
mean square error (MMSE) estimation, to determine the
position of this edge. In [8], under the assumption of
proper regularity of the observed edge, a reduced complexity
MMSE decoder is proposed. In [9], the authors show
that an MMSE decoder is unfeasible for large-scale sensor
networks, due to its computational complexity, and propose
a distributed detection strategy based on factor graphs
and the sum product algorithm. Moreover, MMSE-based
distributed detection schemes have also been investigated
in scenarios with (i) a common binary phenomenon under
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observation and (ii) bandwidth constraints [10]. In [11, 12],
the authors examine the problem of determining edges
of natural phenomena through proper processing of data
collected by sensor networks. In these papers, particular
attention is devoted to the estimation accuracy, given in
terms of the confidence interval of the results obtained with
the proposed framework.

The problem of edge detection is also well known in the
realm of image processing, where it may be of interest to
characterize the intensity changes in the processed image.
In [13], the authors characterize, from a theoretical point of
view, the types of possible intensity changes. In [14], using
numerical optimization, optimal operators are preliminary
derived for ridge and roof edges, and then specialized for
step edges. In [15], the edge detection problem is tackled as
a statistical inference problem. Other interesting approaches
to edge detection, especially for noisy information fusion
scenarios, are proposed in [16, 17].

In [18], we have proposed a preliminary analytical
approach to the design of decentralized detection schemes
for scenarios with spatially nonconstant binary phenomena,
that is, phenomena with status (either “0” or “1”) which
may vary from sensor to sensor. We have also derived MMSE
detection algorithms at the access point (AP), considering
different quantization strategies at the sensors. In order
to make our approach practical, a simplified detection
algorithm, with a computational complexity much lower
than that of the MMSE detection rule, has been proposed.

In this paper, we extend the approach presented in [18] to
network scenarios where the communication links between
the sensors and the AP may be noisy. These links are modeled
either as binary symmetric channels (BSCs) or as additive
white Gaussian noise (AWGN) channels. In particular, we
study the relative impacts of communication and observa-
tion noises on the system performance, evaluated in terms of
(i) distance between estimated and true phenomena and (ii)
probability of local status estimation error (LSEE). As will
be shown in the following, the proposed simplified detection
algorithm incurs a limited performance loss with respect
to the MMSE algorithm, yet guaranteeing a remarkable
complexity reduction. Finally, the robustness and complexity
of the proposed algorithms are investigated.

The structure of this paper is the following. In
Section 2, we give preliminaries on decentralized detection.
In Section 3, we derive the optimum MMSE detection rules
at the AP in a scenario with noisy communication links and
multiedge phenomena. In Section 4, we propose a simplified
detection algorithm in order to reduce the computational
complexity of the proposed decentralized detection scheme.
In Section 5, numerical results on the performance of
the proposed detection algorithms are presented. Finally,
concluding remarks are given in Section 6.

2. Preliminaries on Decentralized Detection

As anticipated in Section 1, we focus on a network scenario
where the status of the phenomenon under observation is
characterized by a number Nbs of “edges,” that is, sensor

positions where the phenomenon changes its status from
“0” (e.g., absence of a critical gas) to “1” (e.g., presence of
a critical gas) or vice versa. For the sake of simplicity, we
assume that the status of the phenomenon is independent
from sensor to sensor. The proposed approach, however, can
be extended to take into account the presence of correlation
between sensors. In general, the presence of correlation
would limit the number of edges and, if properly exploited
at the AP, improve the performance with respect to that
obtained in the following. A pictorial description of the
proposed scenario is given in Figure 1(c). In particular, we
investigate the performance when the communication links
between the sensors and the AP are noisy, that is, errors may
be introduced during data transmission. Note that, under the
assumption that the geographical positions are known, from
the estimated edges’ positions the real geographic structure
of the phenomenon (e.g., area with gas leakage) can be
immediately determined.

Denote the overall phenomenon status as H =
[H1, . . . ,HN ], where Hi ∈ {0, 1} is the status at the ith sensor
(i = 1, . . . ,N). The signal observed at the ith sensor can be
expressed as

ri = cE,i + ni, (1)

where

cE,i �
⎧
⎨

⎩

0, if Hi = 0,

s, if Hi = 1,
(2)

and {ni} are additive observation noise samples. Assuming
that the noise samples {ni} are independent with the same
Gaussian distribution N (0, σ2), the common signal-to-noise
ratio (SNR) at the sensors can be defined as follows:

SNRsensor =
[
E
{
cE,i | Hi = 1

}− E
{
cE,i | Hi = 0

}]2

σ2
= s2

σ2
.

(3)

Each sensor processes (through proper quantization) the
observed signal and the value output by the ith sensor is
denoted as di � fquant(ri), where the function fquant(·)
depends on the specific quantization strategy. In the follow-
ing, we consider (i) binary quantization and (ii) absence
of quantization. The analytical framework in the case of
multilevel quantization can be easily derived from that
presented in [18] for a scenario with ideal communication
links. Upon reception of the messages sent by the sensors, the
goal of the AP is to estimate, through MMSE or simplified
detection strategies, the status of the binary phenomenon
H. As reference performance indicator, we will consider
the quadratic distance (simply referred to as “distance”) D
between the observed phenomenon H and its estimate Ĥ,
that is,

D
(

H, Ĥ
)

�
∣
∣
∣H⊕ Ĥ

∣
∣
∣

2
, (4)

where the notation ⊕ stands for bit-by-bit EX-OR and Ĥ is
the estimated phenomenon. Given that α = [α1, . . . ,αNbs ]
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Figure 1: Illustrative scenario of interest: (a) a chemical facility processing dangerous gas; (b) scenario after gas leakage; (c) logical
representation of the sensor network.

are the true edges’ positions, Ĥ = [Ĥ1, . . . , ĤN ] can be
directly derived from the estimated edges’ positions α̂ =
[α̂1, . . . , α̂Nbs ]. Therefore, our goal is to accurately estimate
α. The particular expression for α̂ depends on the chosen
distributed detection strategy, as will be shown in the fol-
lowing. We will also consider, as a meaningful performance
indicator, the probability of LSEE, that is, the probability that
the estimated phenomenon status at a sensor is wrong. In
Section 5.2, it will be shown how the probability of LSEE is
related to D.

3. MMSEOne-Dimensional Edge Detection

The following assumptions are expedient to simplify the
derivation of the MMSE one-dimensional edge detection
strategy:

(i) the edges cannot be in correspondence to the first
sensor and the last sensor: the number of edges must
then be such that 1 ≤ Nbs ≤ N − 2 (in particular,
HN = HN−1);

(ii) the phenomenon status is perfectly known at the first
sensor: without loss of generality, we assume H1 = 0.

According to the above assumptions, the positions of the Nbs

edges {α1, . . . ,αNbs} have to satisfy the following conditions:

2 ≤ α1 < α2 < · · · < αk−1 < αk < · · · < αNbs ≤ N − 1.
(5)

Therefore, between positions 1 and α1 − 1 the phenomenon
status is “0,” between positions α1 and α2 − 1 the phe-
nomenon status is “1,” and so on. The following bound on
the position of the kth edge must necessarily hold:

k + 1 < αk ≤ (N − 1)− (Nbs − k) = N −Nbs + k − 1,
k = 1, . . . ,Nbs.

(6)

For each value of k, condition (6) formalizes the intuitive idea
that the kth edge cannot fall beyond the (N − 1−Nbs + k)th
position, in order for the successive (remaining) Nbs−k edges
to have admissible positions.

In the remainder of this section, we derive the MMSE
detection rules depending on the quantization strategy at the
sensors.

3.1. Binary Quantization. In this scenario, the ith sensor
makes a decision comparing its observation ri with a
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threshold value τi, and computes a local binary decision di =
fquant(ri) = U(ri−τi), whereU(·) is the unit step function. To
optimize the system performance, the thresholds {τi} need to
be properly selected. In this paper, regardless of the value of
N , a common value τ � s/2 at all sensors is considered [18].

In the presence of binary quantization at the sensors, the
noisy communication links are modeled as BSCs. We denote
as d the sequence of binary decisions at the sensors and dAP as
the sequence of binary decisions received at the AP. Under the
assumption of BSCs, the received decisions dAP might differ
from d (there could be “bit-flipping” in some of the links). In
particular, the ith decision received at the AP (i = 1, . . . ,N)
can be expressed as

dAP
i =

⎧
⎨

⎩

di, with probability
(
1− p

)
,

1− di, with probability p,
(7)

where p is the cross-over probability of the BSC.

Theorem 1. Assuming that Nbs is known at the AP and
denoting by α = (α1, . . . ,αNbs) the positions of the edges, the
kth (k = 1, . . . ,Nbs) MMSE detected edge can be expressed as

α̂k =
N−Nbs+k−1∑

αk=k+1

αkP
(

αk | dAP
)

. (8)

(For ease of notational simplicity, in (8) we use the same symbol
αk to denote both the random variable (in the second term) and
its realization (in the third and fourth terms). This simplified
notational approach will be considered in the remainder of
Section 3. The context should eliminate any ambiguity.)

Proof. The MMSE detection strategy leads to the selection of
the following vector of edges [19]:

α̂ = E
[

α | dAP
]

. (9)

The kth component (k = 1, . . . ,Nbs) of the vector α̂ can then
be written as

α̂k = E
[

αk | dAP
]

=
N∑

αk=1

αkP
(

αk | dAP
)

. (10)

Taking into account the constraint (6), the upper and lower
limits of the sum in (10) can be further refined, obtaining the
right-hand side expression in (8).

The computation of the conditional probabilities appear-
ing at the right-hand side of (8) can be carried out as
outlined in Appendix A.1.

3.2. Absence of Quantization. In this case, a local likelihood
value, such as the conditional probability density function
(PDF) of the observable, is transmitted from each sensor
to the AP. Obviously, this is not a practical approach, since
an infinite bandwidth would be required to transmit a
PDF value. However, investigating this case allows to derive
useful information about the limiting performance of the

considered detection schemes, since transmission of the
PDFs of the observables does not entail any information
loss at the sensors. Note that this limiting performance can
be achieved by using multilevel quantization at the sensors
with an increasing number of quantization bits [18]. Since
the sensors transmit real numbers (the likelihood values)
to the AP, the BSC model for noisy communication links
does not apply. In order to obtain results comparable with
those associated with a scenario with binary quantization, we
consider AWGN communication links. In other words, the
ith observable at the AP (i = 1, . . . ,N), denoted as rAP

i , can
be written as

rAP
i = rsensor

i + ncomm
i , (11)

where rsensor
i is the observable transmitted by the ith sensor

and ncomm
i has a Gaussian distribution N (0, σ2

comm). The
value of σ2

comm is set in order to make the AWGN scenario
consistent with the BSC scenario. In particular, in the
presence of uncoded binary phase shift keying (BPSK)
transmission over AWGN links, the bit error rate is [20]

BER = Q

(√
Eb

σ2
comm

)

(12)

withQ(x) �
∫∞
x (1/

√
2π) exp(−y2/2)dy. Therefore, imposing

that the BER in (12) is equal to the cross-over probability p of
the equivalent BSC, the corresponding value of σ2

comm can be
obtained. This makes the performance comparison between
the cases with binary quantization and without quantization
consistent.

Theorem 2. Assuming that Nbs is known at the AP, the kth
(k = 1, . . . ,Nbs) MMSE detected edge can be recursively
computed from

α̂k = E
[

αk | rAP
]

=
N−Nbs+k−1∑

αk=k+1

αkP
(

αk | rAP
)

. (13)

Proof. The proof follows exactly that of Theorem 1, but for
replacing dAP with rAP.

The computation of the conditional probabilities appear-
ing at the right-hand side of (13) can be carried out as
outlined in Appendix A.2.

3.3. Remarks. We would like to remark that the MMSE
strategy outlined above is based, regardless of the quan-
tization strategy, on the assumption of knowledge of the
number of edges Nbs at the AP. However, in the scenario
of interest, for example, monitoring of a gas leakage, this
knowledge may not be a priori available and Nbs should be
properly estimated. In this case, by averaging over all possible
realizations of Nbs, the average performance, with respect to
the number of edges, could be determined. This extension
goes beyond the scope of this paper. In fact, the performance
of the MMSE algorithm with knowledge of Nbs at the AP will
be used as a benchmark for the performance of the simplified
(and feasible) one-dimensional edge detection algorithms
introduced in Section 4.
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4. Simplified One-Dimensional Edge Detection

Since the computational complexity of the MMSE detec-
tion strategy increases very quickly with the number of
phenomenon edges (see Section 5.4 for more details), the
derivation of a simplified distributed detection algorithm
with low complexity (but limited performance loss) is
crucial. As considered in Section 3 for MMSE detection, we
distinguish between scenarios with binary quantization and
without quantization.

4.1. Binary Quantization. Define the following “reconstruc-
tion” function:

fbq

(

k,dAP
k , p

)

�
(
1− 2p

)
k∑

i=1

[

P
(

Hi = 0 | dAP
i

)

− P
(

Hi = 1 | dAP
i

)]

,

(14)

where dAP
k = (dAP

1 , . . . ,dAP
k ) (k = 1, . . . ,N) and the

conditional probabilities {P(Hi = � | dAP
i )} are eval-

uated in Appendix B.1. The key idea of our approach is
the following. While the phenomenon does not change
its status, the function fbq(k,dAP

k , p) is a monotonically
increasing (or decreasing) function of k. In correspondence
to each change of the phenomenon status, the function
fbq(k,dAP

k , p) changes its monotonic behavior. More pre-
cisely, a phenomenon variation from “0” to “1” corresponds
to a change, trendwise, from increasing to decreasing; a
phenomenon variation from “1” to “0” corresponds to a
change, trendwise, from decreasing to increasing. Therefore,
through the monotonicity changes of fbq one can detect the
positions of the edges. Moreover, since p ∈ (0, 0.5) it follows
that the term (1 − 2p) is always positive and, therefore, can
be neglected to study the monotonicity of fbq. An illustrative
example of the behavior of fbq is shown in Figure 2, where
the phenomenon under observation and the reconstruction
function are shown, together with the detected edges. In this
pictorial example, the estimated phenomenon coincides with
the observed phenomenon.

4.2. Absence of Quantization. In the absence of quantization
at the sensors, one can define the following reconstruction
function:

fnq
(

k, rAP
k

)

�
k∑

i=1

[

P
(

Hi = 0 | rAP
i

)

− P
(

Hi = 1 | rAP
i

)]

(15)

where rAP
k = (rAP

1 , . . . , rAP
k ) (k = 1, . . . ,N) and {P(Hi =

� | rAP
i )} are computed in Appendix B.2. The edge detection

algorithm at the AP is then identical to that presented in the
case with binary quantization, but for the use of fnq at the
place of fbq.

4.3. Remarks. One should observe that, unlike the MMSE
strategy, our simplified edge detection algorithm (with

fbq

Phenomenon

Estimated boundaries

1

1

2

2 3 4 5 6 7 8
k

Figure 2: Illustrative example: the phenomenon under observation
(solid line with circles) and the corresponding reconstruction
function fbq in (14) (dashed arrows). The estimated edges are
indicated by vertical arrows.

binary quantization and no quantization, resp.) does not
require knowledge of the number of edges Nbs at the
AP. Therefore, the simplified algorithm is suitable for area
monitoring applications, since in this scenario Nbs is not
a priori known. Obviously, we expect that the proposed
algorithm will incur a performance degradation with respect
to the MMSE algorithm. However, this loss will be limited, as
shown with simulation results in Section 5.

5. Numerical Results

5.1. Performance Analysis: Distance. The performance of the
proposed detection schemes is first analyzed by evaluating of
the distance D = D(H, Ĥ) between the true phenomenon
H and the estimated phenomenon Ĥ. More precisely, the
Monte Carlo simulation results are obtained through the
following steps:

(1) the number of edges is randomly generated—the AP
is assumed to know this number in the MMSE case;

(2) for a selected number of edges, their positions are
randomly generated (From an operative viewpoint,
in a scenario where the number of edges is larger than
one, after the position of an edge is extracted, the
following edge position is randomly chosen among
the remaining positions. After all edges’ positions are
extracted, they are ordered.) ;

(3) either the sensors’ decisions or the PDFs of the
observables, according to the chosen quantization
strategy at the sensors, are transmitted to the AP;

(4) a noisy version of the transmitted data is received at
the AP;

(5) the AP detects the edges’ positions through either
MMSE or simplified detection algorithms;

(6) the distance D is evaluated, on the basis of the
detected sequence of edges’ positions;

(7) steps (1) ÷ (6) are repeated for sufficiently large
number of times in order to derive statistically
meaningful results;
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Figure 3: Distance, as a function of the cross-over probability p,
in a scenario with N = 8 sensors and binary quantization. Three
values for the sensor SNR are considered: (i) −10 dB, (ii) 0 dB, and
(iii) 10 dB. Both MMSE and simplified detection algorithms at the
AP are considered.

(8) the average distance D is finally computed as the
arithmetic average of the distances computed at the
previous iterations (in step (6) at each iteration).

In Figure 3, the distance is shown, as a function of the
cross-over probability p, in a scenario with N = 8 sensors
and binary quantization—in this case, the communication
links are modeled as BSCs. Three values for the sensor SNR
are considered: (i) −10 dB, (ii) 0 dB, and (iii) 10 dB. Both
MMSE and simplified detection algorithms at the AP are
considered. As expected, the use of the simplified detection
algorithm at the AP leads to a performance worse than
that with the MMSE detection algorithm. However, the
higher is the sensor SNR, the lower is the difference between
the performance of the two algorithms. Moreover, one can
observe that the distance might not converge to zero (as in
the case with ideal communication links), due to the presence
of two independent noise components (i.e., observation and
communication noises). For a sufficiently large value of the
sensor SNR, however, the distance reduces to zero when p
tends to zero, in agreement with the results in [18].

In Figure 4, the distance D is shown, as a function of
the sensor SNR, in a scenario with N = 8 sensors and
binary quantization at the sensors. Four different values of
the cross-over probability p are considered: (i) 0.1, (ii) 0.2,
(iii) 0.3, and (iv) 0.4. The performance with both MMSE
and simplified detection algorithms at the AP is investigated.
Unlike the results presented in [18] for a scenario with
ideal communication links, there appears to be a distance
floor (higher than zero) for larger and larger values of the
sensor SNR. This is to be expected, since the communication
noise (independent of the observation noise at the sensors)
prevents the AP from correctly recovering the data sent by
the sensors. In particular, when the cross-over probability
is sufficiently large (e.g., p = 0.4), the performance does

MMSE

Simplified
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SNRsensor (dB)
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Figure 4: Distance, as a function of the sensor SNR, in a scenario
with N = 8 sensors and binary quantization. Four different values
of the cross-over probability p are considered: (i) 0.1, (ii) 0.2, (iii)
0.3, and (iv) 0.4. Both MMSE and simplified detection algorithms
at the AP are considered.

not depend on the value of the sensor SNR, since the noisy
communication links make the data sent by the sensors
very unreliable, regardless of the observation quality. Finally,
one can observe that, for small values of the sensor SNR,
the simplified detection algorithm shows a nonnegligible
performance loss with respect to the MMSE detection
algorithm. However, this loss reduces to zero, for increasing
values of the sensor SNR, only for sufficiently small values
of p. In other words, if the communication links are not
reliable, then increasing the accuracy of the observations at
the sensors is useless.

In Figure 5 the distance D is shown, as a function of the
sensor SNR, in a scenario with N = 8 sensors and absence of
quantization—in this case, the noisy communication links
are modeled as AWGN channels. Two different values of
the bit error rate p (corresponding to different values of
σ2

comm according to (12)) are considered: (i) 0.1 and (ii) 0.2.
The performance of both MMSE and simplified detection
algorithms at the AP is evaluated. One can observe that,
unlike the case with binary quantization at the sensors, the
distance reduces to zero when the sensor SNR increases,
that is, no floor appears. Moreover, the distance with the
simplified detection rule at the AP approaches that with
the MMSE detection rule, that is, it reduces to zero. This
means that the proposed simplified detection algorithm is
(asymptotically) effective. Obviously, this is only a theoretical
performance limit. In fact, even if the communication links
were noisy, the transmission of the “exact” observables
(requiring an infinite bandwidth) from the sensors would
allow a correct estimation of the true phenomenon. This can-
not happen in realistic scenarios with limited transmission
bandwidths.

In order to evaluate the loss incurred by the use of the
simplified detection algorithm, it is expedient tointroduce
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the following percentage loss:

L �

√
√
√
√
√
√
√

D
simp −D

MMSE

D
MMSE

︸ ︷︷ ︸

Term1

· D
simp −D

MMSE

N2
︸ ︷︷ ︸

Term2

, (16)

where D
simp

and D
MMSE

correspond to the distances obtained
with the simplified and MMSE detection algorithms, respec-
tively. The intuition behind the definition of L in (16),
corresponding to the geometric average of Term1 and Term2,
is the following. Term1 represents the relative loss of the
simplified detection rule with respect to the MMSE detection
rule. However, using only this term could be misleading.

In fact, for high sensor SNRs, the terms D
simp

and D
MMSE

are much lower than N2 (the maximum possible distance).

Therefore, even if D
simp

> D
MMSE

(e.g., D
simp = 4 and

D
MMSE = 1 with N = 32), both algorithms might

perform very well. The introduction of Term2 eliminates
this ambiguity, since it represents the relative loss (between
MMSE and simplified detection algorithms) with respect to
the maximum (quadratic) distance, that is, N2. In Figure 6,
the behavior of L is shown, as a function of the sensor SNR, in
a scenario with N = 8. In the region of interest (SNRsensor ≥
0 dB), one can observe that L is lower than 20%, that is, the
proposed simplified detection algorithm is effective.

In Figure 7(a), we investigate the distance, as a function
of the cross-over probability p, in a scenario with binary
quantization. Three values for the number of sensors are
considered: (i) 16, (ii) 32, and (iii) 64. For each number of
sensors, the sensor SNR assumes three possible values: (i)
−10 dB, (ii) 0 dB, and (iii) 10 dB. In these scenarios, only
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Figure 6: Percentage loss, as a function of the sensor SNR, in
a scenario with N = 8 and simplified detection algorithm at
the AP. Both absence of quantization and binary quantization
at the sensors. Three values for p are considered: (i) 0 (ideal
communication links), (ii) 0.1, and (iii) 0.2.

the simplified detection algorithm is considered, since the
computational complexity of the MMSE detection algorithm
becomes unfeasible (see Section 5.4). In all cases, the distance
is a monotonically nondecreasing function of p, but it might
not converge to zero for p → 0+, because of the residual
observation noise. For a sufficiently high value of the sensor
SNR, however, the distance becomes very low when p → 0+,
in agreement with the results in Figure 3. Moreover, note that
for p = 0.5 the distance, for a given number of sensors,
reaches the same value, regardless of the sensor SNR. This is
due to the fact that, when p = 0.5, the AP receives “random”
decisions and its estimate Ĥ is extracted randomly among all
possible ones for the corresponding number of edges. This
limit (for p = 0.5), denoted as Drand, depends only on N and
in Appendix C we derive a simple analytical approximation
for it.

In order to better understand the impacts of the commu-
nication and observation noises, it is expedient to normalize,
sensor SNR by sensor SNR, D = D(SNRsensor, p,N) by
Drand(N). In this way, the normalized distance D/Drand,
denoted as Dnorm = Dnorm(SNRsensor, p,N), assumes values
in [0, 1] and allows to directly compare scenarios with
different numbers of sensors. The normalized versions of
the distance curves of Figure 7(a) are shown in Figure 7(b).
Obviously, when p = 0.5 the distance goes to the same
value (i.e., 1), regardless of the values of N and SNRsensor.
As expected, for a given value of p (i.e., the communication
quality), the higher the sensor SNR is (i.e., the observation
quality) the more pronounced is the performance degrada-
tion for increasing values of N .
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Figure 7: Distance, as a function of the cross-over probability p,
in a scenario with binary quantization and simplified detection
algorithm. Three values for the number of sensors are considered:
(i) 16, (ii) 32, and (iii) 64. For a given number of sensors, three
values for the sensor SNR are analyzed: (i) −10 dB, (ii) 0 dB, and
(iii) 10 dB. In case (a), the distance is shown, whereas in case (b)
the distance is normalized, for each value of N , to its corresponding
maximum value (D(p = 0.5)).

5.2. Performance Analysis: Probability of Local Status Estima-
tion Error. Considering the same Monte Carlo simulation
scenario described at the beginning of Section 5.1, the
probability of LSEE can be approximated as follows:

PLSEE � 1
Ntrials

Ntrials∑

i=1

P(i)
LSEE, (17)

−5
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Simplified fusion rule, p = 0.1, UB
Simplified fusion rule, p = 0.2, UB
MMSE detection rule, p = 0.1

Figure 8: Probability of LSEE, as a function of the sensor SNR, for
the same cases shown in Figure 5. For the MMSE case with p = 0.1,
the exact performance and the UB are shown. For the other cases,
only the UBs are shown.

where Ntrials is the number of simulation runs, and P(i)
MD is

the probability of LSEE at the ith simulation run and can be
written as

P(i)
LSEE �

√
Di

N
, (18)

where Di is the distance at the ith simulation run. It then
follows:

PLSEE � 1
Ntrials

Ntrials∑

i=1

√
Di

N

= 1
N

∑Ntrials
i=1

√
Di

Ntrials

−→
Ntrials →∞

1
N

√
D.

(19)

Observing that
√· is a concave function and by using the

Jensen inequality [21], one can write

√
D = E

[√
D
]

≤
√

E[D] =
√

D. (20)

Therefore, the probability of LSEE can be upper bounded as
follows:

PLSEE �
√
D

N
. (21)

In other words, the evaluation of the average distance D
allows to directly derive un upper bound (UB) on the
probability of LSEE. In Figure 8, the probability of LSEE is
shown, as a function of the sensor SNR, for the same cases
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shown in Figure 5 (note that similar considerations hold for
all other scenarios considered in Section 5.1). For the sake
of graphical clarity, the exact performance is reported only
for the scenario with the MMSE detection rule and p = 0.1.
However, in all cases the maximum SNR distance between
the UB and the true curve is less than 2 dB (for PLSEE ≤
10−2). From the results in Figure 8, a bimodal behavior of the
probability of LSEE can be observed. In fact, this probability
decreases very slowly, for increasing SNRs, till a value around
10−2, below which it drops very rapidly to zero. The knee of
the probability of LSEE is placed at an SNR which depends
on the chosen detection (MMSE or simplified) strategy and
on the communication noise level. Note that at very low SNR
the probability of LSEE tends to be 0.5, that is, it randomly
decides on the phenomenon status at each sensor.

5.3. System Robustness. We now investigate the robustness of
the proposed simplified distributed detection algorithm with
respect to possible mismatches between the actual system
parameters and the used ones. In particular, we focus on a
scenario with binary quantization at the sensors. Our conclu-
sions hold also in other scenarios with different quantization
strategies. In order to investigate the system robustness,
we consider possible mismatches in the observation and
communication phases, respectively.

(i) In the observation phase, we assume that there could
be an error in the decision threshold used at each
sensor. More precisely, denoting by τ the optimized
decision threshold (τ � /2), we assume that each
sensor makes use of an actual decision threshold
which is uniformly distributed in [τ − ηoτ, τ + ηoτ],
where ηo ∈ [0, 1]. The decision thresholds at different
sensors are supposed to be independent.

(ii) In the communication phase, we assume that, while
the detection algorithm at the AP assumes a constant
cross-over probability (denoted as p) for all com-
munication links, the actual cross-over probabilities
in the various links are independent and uniformly
distributed in the [p−ηcp, p+ηcp], where ηc ∈ [0, 1].

For the sake of simplicity, we consider a scenario with
N = 8 sensors, binary quantization at the sensors, and
simplified detection rule at the AP. In Figure 9, we show the
performance results, in terms of distance versus (a) ηo and
(b) ηc, in the presence of mismatches in the (a) observation
phase and (b) communication phases, respectively. In case
(a), three values of the cross-over probability p of the
communication links are considered: (i) 0, (ii) 0.2, and (iii)
0.5. In case (b), three values are considered for the average
cross-over probability p: (i) 0.1, (ii) 0.2, and (iii) 0.5. For
each value of p or p, three values for the sensor SNR are
considered: (i) −10 dB, (ii) 0 dB, and (iii) 10 dB.

In case (a), one can observe that, for sufficiently high
values of the communication noise intensity p, there is
a performance degradation (i.e., the distance increases)
for increasing observation threshold mismatch (i.e., for
increasing values of ηo), regardless of the sensor SNR.
On the other hand, for low values of the communication
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Figure 9: Distance, as a function of (a) ηo and (b) ηc, in the presence
of mismatches in the (a) observation phase and (b) communication
phases, respectively. In all cases, we consider N = 8 sensors, binary
quantization at the sensors, and simplified detection rule at the AP.
Various combinations of the values of p (in case (a)), p (in case (b)),
and the sensor SNR are considered.

noise intensity p and very high values of the sensor SNR
(e.g., SNRsensor = 10 dB), for increasing values of ηo the
distance slightly increases. Finally, for low values of the
communication noise intensity p and low/medium values of
the sensor SNR, the distance slightly decreases for increasing
values of ηo—this is due to the fact that in the presence
of strong observation noise, the considered local decision
strategy is no longer optimized. In all possible situations, the
distance saturates at ηo = 0.1. In other words, the proposed
simplified detection strategy is robust against local decision
threshold mismatches.

In case (b), instead, the decision threshold τ at the
sensors is fixed to s/2. As one can see, for high values of p,
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for increasing variability of the communication link quality
(i.e., for increasing values of ηc) the performance rapidly
degrades. For low values of p, for increasing ηc there is a
slight decrease of the distance, that is, a slight performance
improvement—as previously commented, this depends on
the fact that local sensor decision and AP detection strategies
are no longer optimized. As in case (a), the performance
with any scheme saturates at ηc = 0.1, that is, the proposed
simplified detection rule is robust also against mismatches in
the communication phase.

As a final remark, we point out that the fact that the
proposed simplified detection rule is insensitive to strong
fluctuations of the observation and communication qualities
means that the system performance basically depends on the
average observation and communication conditions.

5.4. Computational Complexity. Finally, we evaluate the
improvement, in terms of computational complexity reduc-
tion with respect to the MMSE detection rule, brought by
the use of the simplified detection algorithms. As complexity
indicators, we choose the numbers of additions and mul-
tiplications (referred to as Ns and Nm, resp.) required by
the considered detection algorithms, evaluated as functions
of the number of sensors N . In a scenario with noisy
communication links, the same considerations carried out in
[18] for a scenario with ideal communication links still hold.
In fact, the structures of the proposed detection algorithms
are the same in both scenarios, since only the expressions
of the used probabilities and PDFs change. Therefore, it can
be shown that the numbers of additions and multiplications
required by the MMSE detection algorithm would be N

opt
s =

Θ(NN−2) and N
opt
m = Θ(NN−1). On the other hand,

the computational complexity of the proposed simplified

detection algorithm is characterized by N
sub−opt
m = 0 and

N
sub−opt
s = N , showing a significant complexity reduction

with respect to the MMSE detection algorithm—this also
justifies the performance loss at small values of the sensor
SNR.

6. Concluding Remarks

In this paper, we have analyzed the problem of one-
dimensional edge detection in wireless sensor networking
scenarios with noisy communication links. This situation
arises in many practical applications such as those where
an area of interest needs to be actively monitored to detect
the presence of a phenomenon, for example, the presence
of a gas leakage. We have proposed an analytical framework
considering two quantization strategies at the sensors: (i)
no quantization at the sensors and (ii) binary quantization.
In each case, the MMSE detection algorithm at the AP has
been derived and the impacts of relevant network parameters
(e.g., the sensor SNR, the communication noise level, and
the number of sensors) have been investigated. Then, a low-
complexity and feasible detection algorithm, which does not
require any a priori information on the number of edges,
has been derived. We have shown that the performance
penalty induced by the use of the simplified detection

algorithms is asymptotically (for high sensor SNR and low
communication noise level) negligible. Moreover, the sim-
plified detection algorithm has proved to be robust against
system parameters’ variations. Finally, we have quantified the
relevant computational complexity reduction brought by the
use of the simplified detection algorithms with respect to the
MMSE ones.

Appendices

A. Details on theMMSEDistributed
Detection Strategy

A.1. Binary Quantization. The probability P(αk | d) (k =
1, . . . ,Nbs) can be obtained by marginalizing the joint
probabilities of the edges’ positions as follows:

P
(

αk | dAP
)

=
∑

α1

· · ·
∑

αk−1

∑

αk+1

· · ·
∑

αn

P
(

α | dAP
)

=
∑

α:αk

P
(

α | dAP
)

,
(A.1)

where k = 1, . . . ,Nbs and the notation α : αk indicates all
sequences α with αk at the kth position.

At this point, one needs to evaluate the joint conditional
probability mass functions (PMFs) at the right-hand side
of (A.1). By applying the Bayes formula and the total
probability theorem [22], after a few manipulations one
obtains

P
(

α | dAP
)

= P
(

dAP | α
)

P(α)

×

⎡

⎢
⎣

N−Nbs∑

α1=2

· · ·
N−Nbs+k−1∑

αk=k+1

· · ·
N−1∑

αNbs=Nbs+1

P(dAP | α)P(α)

⎤

⎥
⎦

−1

.

(A.2)

We now characterize the three multiplicative terms at the
right-hand side of (A.2). The first multiplicative term at the
right-hand side of (A.2) can be written as

P
(

dAP | α
)

=
N∏

i=1

P
(

dAP
i | α

)

=
α1−1∏

i0=1

P(dAP
i0 | α)

︸ ︷︷ ︸
Hi0=0

α2−1∏

i1=α1

P(dAP
i1 | α)

︸ ︷︷ ︸
Hi1=1

· · ·
N∏

iNbs=αNbs

P(dAP
iNbs
| α)

︸ ︷︷ ︸
HiNbs

=0 or 1

,

(A.3)

where we have used the fact that the sensors’ decisions are
conditionally independent. Note that HiNbs

= 0 if Nbs is even,
whereas HiNbs

= 1 if Nbs is odd. The component conditional
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probabilities at the right-hand side of (A.3) can be expressed
as follows:

P
(

dAP
i | α

)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p +
(
1− 2p

)
P

(

ni
dAP
i =0
<

d
>

AP
i =1

τ

)

, if i ∈ I0(α),

p +
(
1− 2p

)
P

(

ni
dAP
i =0
<

d
>

AP
i =1

τ − s

)

, if i ∈ I1(α),

(A.4)

where

I�(α) �
{

positions {i} such that Hi = � | α} � = 0, 1.
(A.5)

After a few manipulations, one obtains:

P
(

dAP
i | α

)

=

⎧
⎪⎨

⎪⎩

p +
(
1− 2p

)
Ψ
(

dAP
i , τ, σ , 0

)

if i ∈ I0(α)

p +
(
1− 2p

)
Ψ
(

dAP
i , τ, σ , 1

)

if i ∈ I1(α),

(A.6)

where

Ψ
(

dAP
i , τ, σ ,m

)

�
(

1− dAP
i

)[

1−Q
(
τ − s ·m

σ

)]

+ dAP
i Q

(
τ − s ·m

σ

)

(A.7)

with Q(x) �
∫∞
x (1/

√
2π) exp(−y2/2)dy.

The second multiplicative term at the right-hand side of
(A.2) can be written, using the chain rule [22], as

P(α) =
Nbs∏

i=1

P(αi | αi−1, . . . ,α1) = P(α1)
Nbs∏

i=2

P(αi | αi−1),

(A.8)

where we have used the fact that the position of the ith edge
depends only on the position of the (previous) (i − 1)th
edge. The multiplicative terms at the right-hand side of (A.8)
can be evaluated by observing that each edge is spatially
distributed according to the constraints in (6). In particular,
by using combinatorics, it follows that

P(α1) = 1
N −Nbs + 1

P(αk | αk−1) = 1
N −Nbs + k − αk−1

k = 2, . . . ,Nbs.

(A.9)

The last term at the right-hand side of (A.2) (i.e., the
denominator) can be easily computed by observing that it
is composed of terms similar to those evaluated in (A.3) and
(A.8).

A.2. Absence of Quantization. The conditional probabili-
ties at the right-hand side of (13) can be obtained, as

in Appendix A.1, through proper marginalization of joint
conditional PMFs of the following type:

P
(

α | rAP
)

= p
(

rAP | α
)

P(α)

×

⎡

⎢
⎣

N−Nbs∑

α1=2

· · ·
N−Nbs+i−1∑

αi+1

· · ·
N−1∑

αNbs=αNbs−1+1

p(rAP | α)P(α)

⎤

⎥
⎦

−1

.

(A.10)

Since sensors’ observations are independent, it holds that

p
(

rAP | α
)

=
N∏

i=1

p
(

rAP
i | α

)

, (A.11)

where

p
(

rAP
i | α

)

=

⎧
⎪⎨

⎪⎩

pcomm

(

rAP
i

)

, if i ∈ I0(α),

pcomm

(

rAP
i − s

)

, if i ∈ I1(α),

pcomm(r) � 1
√

2π
(
σ2 + σ2

comm

) exp

[

− r2

2
(
σ2 + σ2

comm

)

]

.

(A.12)

One can notice that the effects of observation and communi-
cation AWGNs add directly.

B. Details on the Simplified One-Dimensional
Edge Detection Strategy

B.1. Binary Quantization. The conditional PMFs P(Hi = � |
dAP
i ) (� = 0, 1; i = 1, . . . ,N) in (14) can be written, by

applying the Bayes formula, as

P
(

Hi = � | dAP
i

)

=
P
(

dAP
i | Hi = �

)

P
(

dAP
i | Hi = 0

)

+ P
(

dAP
i | Hi = 1

) ,

(B.1)

where we have used the fact that P(Hi = 0) = P(Hi = 1) =
1/2 and

P
(

dAP
i | Hi = �

)

= p +
(
1− 2p

)
P

(

ni
dAP
i =0
<
>

dAP
i =1

τ − s · �
)

=
(

1− dAP
i

){

p +
(
1− 2p

)
[

1−Q
(
τ − s · �

σ

)]}

+ dAP
i

[

p +
(
1− 2p

)
Q
(
τ − s · �

σ

)]

.

(B.2)

B.2. Absence of Quantization. The conditional PMFs
{P(Hi = � | rAP

i )} at the right-hand side in (15) can be
computed as follows

P
(

Hi = � | rAP
i

)

=
pcomm

(

rAP
i − s · �

)

pcomm

(

rAP
i

)

+ pcomm

(

rAP
i − s

) (B.3)

and pcomm(r) has been defined in Appendix A.2.
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C. Limiting Distance for High
Communication Noise

The limiting distance when p = 0.5 can be computed, by
averaging over the possible (equiprobable) values for the
number of edges Nbs, as

Drand(N) = 1
N − 2

N−2∑

Nbs=1

D(Nbs), (C.1)

where D(Nbs) is the average distance in the presence of Nbs

edges. The value of D(Nbs) can in turn be computed by aver-
aging over all possible pair-wise distances between the true
phenomenon configurations and all possible configurations
with Nbs edges for the (randomly) estimated phenomenon at
the AP. We denote these sets of edges as {αphen} and {αAP},
respectively. The distance between the phenomena (true and
estimated) associated to a pair of these sequences is

D
(

Nbs,αphen,αAP

)

= D
(

H
(

αphen

)

, Ĥ(αAP)
)

. (C.2)

The number of all possible sequences of Nbs edges can be
computed by simply counting all possible configurations for
the edges’ positions, that is, as follows:

g(Nbs,N) =
N−Nbs∑

α1=2

· · ·
N−Nbs+k−1∑

αk=k+1

· · ·
N−1∑

αNbs=Nbs+1

1. (C.3)

Therefore, one can write

D(Nbs) = 1
g(Nbs,N)

·
∑

{αphen}
1

g(Nbs,N)

∑

{αAP}
D
(

H
(

αphen

)

, Ĥ(αAP)
)

.

(C.4)

Finally, the limiting distance in (C.1) is

Drand(N) = 1
N − 2

N−2∑

Nbs=1

1
[
g(Nbs,N)

]2

·
∑

{αphen}

∑

{αAP}
D
(

H
(

αphen

)

, Ĥ(αAP)
)

.

(C.5)

The computation of the above expression is analytically
very cumbersome. However, as shown in Figure 7 (a), it
can be obtained out through simulations. In particular,
our results show that an accurate approximation (through
interpolation) is given by Drand(N) � φN2, where φ =
0.33—in this case, the relative error between Drand(N) and
φN2 is lower than 2.4% for N ∈ {8, . . . , 512}.
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