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The training-based channel estimation (TBCE) scheme in multiple-input multiple-output (MIMO) frequency-selective Rician
fading channels is investigated. We propose the new technique of shifted scaled least squares (SSLS) and the minimum mean
square error (MMSE) estimator that are suitable to estimate the above-mentioned channel model. Analytical results show that
the proposed estimators achieve much better minimum possible Bayesian Cramér-Rao lower bounds (CRLBs) in the frequency-
selective Rician MIMO channels compared with those of Rayleigh one. It is seen that the SSLS channel estimator requires less
knowledge about the channel and/or has better performance than the conventional least squares (LS) and MMSE estimators.
Simulation results confirm the superiority of the proposed channel estimators. Finally, to estimate the channel Rice factor, an
algorithm is proposed, and its efficiency is verified using the result in the SSLS and MMSE channel estimators.

1. Introduction

In wireless communications, multiple-input multiple-
output (MIMO) systems provide substantial benefits in both
increasing system capacity and improving its immunity
to deep fading in the channel [1, 2]. To take advantage
of these benefits, special space-time coding techniques
are used [3, 4]. In most previous research on the coding
approaches for MIMO systems, however, the accurate
channel state information (CSI) is required at the receiver
and/or transmitter. Moreover, in the coherent receivers [1],
channel equalizers [5], and transmit beamformers [6], the
perfect knowledge of the channel is usually needed.

In the literature, three classes of methods for channel
identification are presented. They include training-based
channel estimation (TBCE) [7, 8], blind channel estimation
(BCE) [9, 10], and semiblind channel estimation (SBCE)
[11, 12]. Due to low complexity and better performance,

TBCE is widely used in practice for quasistatic or slow fading
channels, for instance, indoor MIMO channels. However,
in outdoor MIMO channels where channels are under fast
fading, the channel tracking and estimating algorithms as
the Wiener least mean squares (W-LMS) [13], the Kalman
filter [14], recursive least squares (RLS) [15], generalized RLS
(GRLS) [16], and generalized LMS (GLMS) [17] are used.

TBCE schemes can be optimal at high signal-to-noise
ratios (SNRs) [18]. Moreover, it is shown in [19] that at high
SNRs, training-based capacity lower bounds coincide with
the actual Shannon capacity of a block fading finite impulse
response (FIR) channel. Nevertheless, at low SNRs, training-
based schemes are suboptimal [18].

The optimal training signals are usually obtained by
minimizing the channel estimation error. For MIMO flat
fading channels, the design of optimal training sequences
to satisfy the required semiunitary condition in the channel
estimator error, given in [7, (9)], is straightforward. For
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instance, a properly normalized submatrix of the discrete
Fourier transform (DFT) matrix has been used in [7] to
estimate the Rayleigh flat fadingMIMO channel. In this case,
a Hadamard matrix can also be applied.

On the other hand, to estimate MIMO frequency-
selective or MIMO intersymbol interference (ISI) channels,
training sequences are designed considering a few aspects.
For MIMO ISI channel estimation, training sequences
should have both good autocorrelations and cross cor-
relations. Furthermore, to separate the transmitted data
and training symbols, one of the zero-padding- (ZP-)
based guard period or cyclic prefix- (CP-) based guard
period is inserted. In order to estimate the Rayleigh fading
MIMO ISI channels, the delta sequence has been used in
[20] as optimal training signal. This sequence satisfies the
semiunitary condition in the mean square error (MSE) of
channel estimator. However, it may result in high peak to
average power ratio (PAPR) that is important in practical
communication systems.

The optimal training sequences of [21–25] not only
satisfy the semiunitary condition but also introduce good
PAPR. In [21], a set of sequences with a zero correlation
zone (ZCZ) is employed as optimal training signals. In
[26–28], to find these sequence sets, some algorithms are
presented. In [22], different phases of a perfect polyphase
sequence such as the Frank sequence or Chu sequence
are proposed. Furthermore, in [23–25], uncorrelated Golay
complementary sets of polyphase sequences have been used.
Since both ZCZ and perfect polyphase sequences have
periodic correlation properties, the CP-based guard period
is employed with them. On the other hand, uncorrelated
Golay complementary sets of polyphase sequences have both
aperiodic and periodic types that are used with ZP- and CP-
based guard periods, respectively.

Since all sequences under their conditions attain the
same channel estimation error [25] and also our goal is not
comparing them in this paper (this work is done in [24, 25]),
we will use ZCZ sequences here.

In [25], the performance of the best linear unbiased
estimator (BLUE) and linear minimum mean square error
(LMMSE) estimator is studied in the frequency-selective
Rayleigh fading MIMO channel. It is observed that the
LMMSE estimator has better performance than the BLUE,
because it can employ statistical knowledge about the chan-
nel. Nevertheless, all estimators of [23–25] are optimal since
they achieve the minimum possible classical (or Bayesian)
Cramér-Rao Lower Bound (CRLB) in the Rayleigh fading
channels.

In most previous research on the MIMO channel esti-
mation, the channel fading is assumed to be Rayleigh. In
[29], the SLS and minimum mean square error (MMSE)
estimators of [7] have been used to estimate the Rician
fading MIMO channel. It is notable that these estimators
are appropriate to estimate the Rayleigh fading channels, and
hence the results of [29] are controversial. In [30], to estimate
the channel matrix in the Rician fading MIMO systems, the
MMSE estimator is analyzed. It is proved in [30] analytically
that the MSE improves with the spatial correlation at both
the transmitter and the receiver side. An interesting result

in this paper is that the optimal training sequence length
can be considerably smaller than the number of transmitter
antennas in systems with strong spatial correlation.

In [31–33], the TBCE scheme is investigated in MIMO
systems when the Rayleigh fading model is replaced by
the more general Rician model. By the new methods of
shifted scaled least squares (SSLS) and LMMSE channel
estimators, it is shown that increasing the Rice factor
improves the performance of channel estimation. In [31],
it is assumed that the Rician fading channel has spatial
correlation. It has also been shown that the error of the
LMMSE channel estimator decreases when the Rice factor
and/or the correlation coefficient increase.

In this paper, we extend the results of [31–33] in flat
fading to the frequency-selective fading case. For channel
estimator error, the new formulations are obtained so that in
the special case where the channel has flat fading, the results
reduce to the previous results in [31–33]. The substantial
benefits of Rician fadingmodel are investigated in theMIMO
channel estimation. It is seen that Rician fading not only
can increase the capacity of a MIMO system [2] but it also
may be helpful for channel estimation. It is notable that the
aforementioned channel model is suitable for suburban areas
where a line of sight (LOS) path often exists. This may also
be true for microcellular or picocellular systems with cells of
less than several hundred meters in radius.

First, the traditional least squares (LS) method is probed.
It is notable that for linear channel model with Gaussian
noise, the maximum likelihood (ML), LS, and BLUE esti-
mators are identical [34]. Simulation results show that the
LS estimator achieves the minimum possible classical CRLB.
Clearly, the performance of this estimator is independent
of the Rice factor. Then, the SSLS and MMSE channel
estimators are proposed. Simulation results show that these
estimators attain their minimum possible Bayesian CRLBs.
Furthermore, analytical and numerical results show that the
performance of these estimators is improved when the Rice
factor increases. It is also seen that in the frequency-selective
Rician fading MIMO channels, the MMSE estimator outper-
forms the LS and SSLS estimators. However, it requires that
both the power delay profile (PDP) of the channel and the
receiver noise power as well as the Rice factor be known a
priori. In general, the SSLS technique requires less knowledge
about the channel statistics and/or has better performance
than the LS and MMSE approaches.

Moreover, to estimate the channel Rice factor, we propose
an algorithm which is important in practical usages of
the proposed SSLS and MMSE estimators. In single-input
single-output (SISO) channels, different methods have been
proposed for estimation of the Rice factor. In [35], the ML
estimate of the Rice factor is obtained. In [36], a Rice factor
estimation algorithm based on the probability distribution
function (PDF) of the received signal is proposed. In [37–
41], the moment-based methods are used for the Rice factor
estimation. Besides, to estimate the Rice factor in low SNR
environments, the phase information of received signal has
been used in [42]. Moreover, in [43, 44], the Rice factor along
with some other parameters is estimated in MIMO systems
using weighted LS (WLS) and ML criteria.
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In the above-mentioned references, the channel Rice
factor is estimated using the received signals. However, in
this paper, we suggest an algorithm based on training signal
and LS technique. Simulation results corroborate the good
performance of this algorithm in channel estimation. In
practice, such algorithms are required to identify the type of
environment (Rayleigh or Rician) in several applications, for
instance, adaptive modulation for MIMO antenna systems.

The next section describes the MIMO channel model
underlying our framework and some assumptions on the
fading process. The performance of the LS, SSLS, and
MMSE estimators in the frequency-selective Rician fading
MIMO channel estimation and optimal choice of training
sequences are investigated in Sections 3, 4, and 5, respectively.
Numerical examples and simulation results are presented
in Section 6. Finally, concluding remarks are presented in
Section 7.
Notation: (·)H is reserved for the matrix Hermitian, (·)−1 for
the matrix inverse, (·)T for the matrix (vector) transpose,
(·)∗ for the complex conjugate,⊗ for the Kronecker product,
tr{·} for the trace of a matrix, mean(·) for the mean value
of the elements in a matrix, mode(·) for the mode value of
the elements in a vector and abs(·) for the absolute value
of the complex number. vec(·) stacks all the columns of
its matrix argument into one tall column vector. E{·} is
the mathematical expectation, Im denotes them×m identity
matrix, and ‖ · ‖F denotes the Frobenius norm.

2. Signal and Channel Models

We assume block transmission over block fading Rician
MIMO channel withNT transmit andNR receive antennas.
The frequency-selective fading subchannels between each
pair of Tx-Rx antenna elements are modeled by L + 1
taps as hrt = [hr,t(0) hr,t(1) · · · hr,t(L)]

T , for all r ∈
[1,NR] and t ∈ [1,NT]. We suppose identical PDP
as (b0, b1, . . . , bL) for all subchannels. Then, the lth taps
of all the subchannels have the same power bl, that
is,E{|hr,t(l)|2} = bl; for all l, t, r. It is also assumed unit
power for each sub-channel, that is,

∑L
l=0 bl=1.

The discrete-time base-band model of the received
training signal at symbol timem can be described by

y(m) =
L∑

l=0
Hlx(m− l) + v(m), (1)

where y(i) and x(i) are the NR×1 complex vector of received
symbols on the NR-Rx antennas and the NT × 1 vector
of transmitted training symbols on the NT-Tx antennas at
symbol time i, respectively. TheNR × 1 vector v(i) in (1) is
the complex additive Rx noise at symbol time i. The L +
1matricesNR × NT ,{Hl}Ll=0, constitute the L + 1 taps of the
multipath MIMO channel.

For Rician frequency-selective fading channels, the ele-
ments of the matrixHl, for all l ∈ [0,L], are defined similar
to [45, 46] in the following form:

Hl =
√

bl
κ

κ + 1
M̃l +

√
bl

κ + 1
H̃l, (2)

where κ is the channel Rice factor. Thematrices M̃l and H̃l

describe the LOS and scattered components, respectively. We
assume that the elements of M̃l, for all l are complex as (1 +
j)/
√
2 and the elements of the matrix H̃l, for all l , are

independently and identically distributed (i.i.d.) complex
Gaussian random variables with the zero mean and the
unit variance. The frequency-selective fading MIMO chan-
nel can be defined as the NR × NT(L + 1) matrix H =
{H0,H1, . . . ,HL}, whereHl has the following structure

Hl =

⎡

⎢
⎢
⎢
⎢
⎣

h11(l) h12(l) · · · h1NT (l)
h21(l) h22(l) · · · h2NT (l)

...
... · · · ...

hNR1(l) hNR2(l) · · · hNRNT (l)

⎤

⎥
⎥
⎥
⎥
⎦
, ∀l ∈ [0,L]. (3)

Moreover, it is assumed that the elements of matri-
ces H̃l1 and H̃l2 , for all l1, l2 are independent of each other.
Hence, the elements of the matrix H are also independent of
each other. Using (2), the mean value and the variance of the
elements hr,t(l) ofH can be computed as follows:

E
{
hr,t(l)

} =
√

bl
κ

κ + 1

(
1 + j

)

√
2

+

√
bl

κ + 1
× 0

=
√

bl
κ

κ + 1

(
1 + j

)

√
2

= μl√
2

(
1 + j

)
,

(4)

σ2l = E
{∣
∣hr,t(l)

∣
∣2
}
− ∣∣E{hr,t(l)

}∣
∣2

= bl − bl
κ

κ + 1
= bl

κ + 1
,

(5)

where μl =
√
blκ/(1 + κ). According to (4) and (5), the

channel Rice factor can vary the mean value and the variance
of the channel in the defined model.

Suppose that h = vec(H). TheNRNT(L+1)×NRNT(L+1)
covariance matix of h can be obtained as follows:

Ch = Rh − E{h}E{h}H = CΣ ⊗ INRNT , (6)

where

CΣ =

⎡

⎢
⎢
⎢
⎢
⎣

σ20 0 0 · · · 0
0 σ21 0 · · · 0
...

...
...

...
0 0 0 · · · σ2L

⎤

⎥
⎥
⎥
⎥
⎦

= 1
1 + κ

⎡

⎢
⎢
⎢
⎢
⎣

b◦ 0 0 · · · 0
0 b1 0 · · · 0
...

...
...

...
0 0 0 · · · bL

⎤

⎥
⎥
⎥
⎥
⎦
.

(7)

Note that the latter one is written using (5).
In order to estimate the channel matrix H, the NP ≥

NT(L+1)+L symbols are transmitted from each Tx antenna.
The L first symbols are CP guard period that are used to
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avoid the interference from symbols before the first training
symbols. At the receiver, because of their pollution by data,
due to interference, these symbols are discarded. Hence, by
collecting the last NP − L received vectors of (1) into the
NR × (NP − L)matrix Y = [y(L + 1), y(L + 2), . . . , y(NP)],
the compact matrix form of received training symbols can be
represented in a linear model as

Y = HX +V, (8)

where X is the NT(L + 1) × (NP − L) training matrix. The
matrix X is constructed by the NP-vector of transmitted
symbols in the form of x(i) = [x1(i), x2(i), . . . , xNT (i)]

T as
follows:

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x(L + 1) x(L + 2) · · · x(NP)
x(L) x(L + 1) · · · x(NP − 1)
...

...
...

...
x(2) x(3) · · · x(NP − L + 1)
x(1) x(2) · · · x(NP − L)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (9)

Note that xt(i) is the transmitted symbol by the tth Tx
antenna at symbol time i. The matrix V in (8) is the complex
NR-vector of additive Rx noise. The elements of the noise
matrix are i.i.d. complex Gaussian random variables with
zero-mean and σ2n variance, and we have

RV = E
{
VHV

}
= σ2nNRINP−L. (10)

The elements of H and noise matrix are independent of each
other.

The matrix H is a complex normally distributed matrix
and its NR ×NT(L+ 1) mathematical expectation matrix can
be written as M = E{H} = {M0,M1, . . . ,ML}, where the
elements of the matrixMl are

mr,t(l) = μl√
2

(
1 + j

)
. (11)

Using (5) and (11), it is straightforward to show that the
elements of the columns ofH have the following NT(L+1)×
NT(L + 1) covariance matrix

CH = RH −MHM = E
{
HHH

}
−MHM

= NR
(
CΣ ⊗ INT

)
.

(12)

In a particular case, when the uniform PDP is used, that is,
b0 = b1 = · · · = bL = 1/(L + 1), we have

CH = NR

(1 + κ)(1 + L)
INT (L+1). (13)

When κ = 0, (12) reduces to the Rayleigh fading channel
introduced in [24, 25].

3. LS Channel Estimator

In this section, H is assumed to be an unknown but
deterministic matrix. The LS channel estimator minimizes
tr{(Y−HX)H(Y−HX)} and is given by

ĤLS = YXH
(
XXH

)−1
. (14)

This estimator utilizes only received and transmitted signals
that are given at the receiver. It has no knowledge about
channel statistics. The channel estimation error is defined by
E{‖H− ĤLS‖2F} that results in

JLS = σ2nNR tr
{(

XXH
)−1}

. (15)

Let us findXwhichminimizes the error of (15) subject to
a power constraint on X. This is equivalent to the following
optimization problem

min
X

tr
{(

XXH
) −1}

S.T. tr
{
XXH

}
= P, (16)

where P is a given constant value considered as the total
power of training matrix X. To solve (16), the Lagrange
multiplier method is used. The problem can be written as

L
(
XXH ,η

)
= tr

{(
XXH

) −1}
+ η

[
tr
{
XXH

}
− P

]
, (17)

where η is the Lagrange multiplier. By differentiating this
equation with respect to XXH and setting the result equal to
zero as well as using the constraint tr{XXH} = P, we obtain
that the optimal training matrix should satisfy

XXH = P

NT(L + 1)
INT (L+1). (18)

Substituting the semiunitary condition (18) back into (15),
the error under optimal training is

(JLS)min = σ2n(NT(L + 1))2NR

P
. (19)

For flat fading, L = 0, (19) is similar to that of [7]. In
order to achieve the minimum error of (19), the training
sequences should satisfy the semiunitary condition (18). Due
to the structure of X in (9), it means that the optimal
training sequence in each Tx antenna has to be orthogonal
not only to its shifts within L taps, but also to the training
sequences in other antennas and their shifts within L taps.
Here, we consider the ZCZ sequences as optimal training
signals without loss of generality.

It is supposed that the transmitted power of any Tx
antennas at all times is p. Then,

P = pNT(L + 1)(NP − L). (20)

Substituting (20) back into (19), the minimum error can be
rewritten as

(JLS)min = σ2nNTNR(L + 1)
p(NP − L)

(21)

From (21), holding L constant, the minimum error of the LS
estimator decreases when NP increases. On the other hand,
holding NP constant, the minimum error of this estimator
increases when L increases.

For optimal training which satisfies (18), the LS channel
estimator (14) reduces to

ĤLS = NT(L + 1)
P

YXH. (22)
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This estimator obtains the minimum possible classical
CRLB (21). However, the error of (21) is independent of
the Rice factor. Clearly, the LS estimator cannot exploit any
statistical knowledge about the frequency-selective Rayleigh
or Rician fading MIMO channels. In the next sections, we
derive new results in the frequency-selective Rician channel
model by the proposed SSLS and MMSE estimators.

4. Shifted Scaled Least Squares
Channel Estimator

The SSLS channel estimator of [33] is an optimally shifted
type of the presented scaled LS (SLS) method of [7, 21].
The motivation of using it is the further reduction of
the error in the MIMO frequency-selective Rician fading
channel estimation. This estimator has been expressed in the
following general form

ĤSSLS = γĤLS + B, (23)

where γ and B are the scaling factor and the shifting matrix,
respectively. They are obtained so that the total mean square

error (TMSE), E{‖H− ĤSSLS‖2F}, is minimized. The results
are [33]

ĤSSLS = γĤLS +
(
1− γ

)
M,

γ = tr{CH}
JLS + tr{CH} .

(24)

Note that in the special case, κ = 0, the Rayleigh fading
model, this estimator is identical to the SLS estimator of
[7, 21]. Here, JLS is given by (15). The minimum TMSE with
respect to γ and B can be given by

min
γ,B

JSSLS = JLS tr{CH}
JLS + tr{CH} . (25)

The minimum TMSE obtained from (25) is lower than
the presented JSLS in [21], because always tr{CH} ≤ tr{RH}.
Therefore, it is derived from [21] and (25) that

JSSLS < JSLS < JLS, κ > 0. (26)

It means that the SSLS estimator has the lowest error
among the LS, SLS, and SSLS estimators. In order to choose
the optimal training sequences, let us to find X which
minimizes JSSLS subject to a transmitted power constraint.
Clearly, such an optimization problem and (16) are equiv-
alent. Since tr{CH} > 0, from (25) it is obvious that JSSLS
is a monotonically increasing function of JLS. Note that
tr{CH} is not a function of X and so JLS is the only term
in (25) which depends on X. Therefore, the optimal choice
of training matrix for the SSLS channel estimator is the same
as for the LS approach. Using (12), (21), and (25), we obtain
that the minimum possible Bayesian CRLB (Since all of the
estimators utilized in this paper attain the minimum possible
CRLB, we use CRLB and TMSE interchangeably.) under the
optimal training is given by

(JSSLS)min = σ2nNRNT(L + 1)
σ2n(L + 1)(1 + κ) + p(NP − L)

. (27)

From (27), it is seen that increasing the Rice factor
leads to decreasing TMSE in the introduced SSLS estimator.
In other words, the SSLS channel estimator achieves lower
minimum possible CRLB compared with the traditional LS
estimator. The SSLS channel estimator under the optimal
training can be rewritten in the following form using (20)–
(24)

ĤSSLS = tr{CH}
σ2nNRNT(L + 1) + p(NP − L) tr{CH}YX

H

+
σ2nNRNT(L + 1)

σ2nNRNT(L + 1) + p(NP − L) tr{CH}M.

(28)

This estimator offers a more significant improvement
than the LS and SLSmethods. However, from (28), it requires
that tr{CH} and M or equivalently the Rice factor as well as
σ2n be known a priori. The required knowledge of the channel
statistics can be estimated by some methods. For instance,
the problem of estimating the MIMO channel covariance,
based on limited amounts of training sequences, is treated in
[47]. Moreover, in [48], the channel autocorrelation matrix
estimation is performed by an instantaneous autocorrelation
estimator that only one channel estimate (obtained by a very
low complexity channel estimator) has been used as input.

Using (12) and (21), the scaling factor in (24) can be
rewritten as

γ = pNT/σ2n
(1 + κ) + pNT/σ2n

. (29)

The SNR is defined as SNR = pNT/σ2n . Then, we have

γ = SNR
(1 + κ) + SNR

. (30)

From (30), it is seen that increasing SNR leads to
increasing γ which is restricted by 1. Then, the SSLS
estimator in (24) reduces to the LS estimator when SNR →
∞. Moreover, decreasing the Rice factor to zero (which
implies that μl = 0 and hence M = 0) leads to increasing
γ which is restricted by SNR/(SNR + 1). Hence, the SSLS
estimator in (24) reduces to the SLS estimator of [21] when
κ = 0. On the other hand, at SNR = 0 or for κ → ∞ (which
implies that γ = 0), the SSLS estimator in (24) reduces to
ĤSSLS =M = E{H}.

Generally speaking, the scaling factor in (24) is between 0
and 1. When the channel fading is weak (κ → ∞ or AWGN)
or the transmitted power is small, that is, tr{CH} � JLS, the
scaling factor γ → 0. Also, when the channel fading is strong
(κ → 0 or Rayleigh) or the transmitted power is large, that
is, tr{CH} 
 JLS, the scaling factor γ → 1. Finally, in the
Rician fading channel (0 < κ <∞), we have 0 < γ < 1.

5. MMSE Channel Estimator

For the linear model described in Section 2, the MMSE,
LMMSE, and maximum a posteriori (MAP) estimators are
identical [34]. Hence, we obtain a general form of the
linear estimator, appropriate for Rician fading channels, that
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minimizes the estimation error of channel matrix H. It can
be expressed in the following form

ĤMMSE = E{H} + (Y− E{Y})A◦
=M + (Y−MX)A◦,

(31)

where A◦ has to be obtained so that the following TMSE is
minimized

JMMSE = E
{∥
∥
∥H− ĤMMSE

∥
∥
∥
2

F

}

. (32)

The optimal A◦ can be found from ∂JMMSE/∂A◦ = 0 and it is
given by

A◦ =
(
XHCHX + σ2nNRINT−L

)−1
XHCH. (33)

Proof. See the appendix.

Substituting A◦ back into (31), the linear MMSE estimator of
H can be rewritten as

ĤMMSE =M + (Y−MX)

·
(
XHCHX + σ2nNRINT−L

)−1
XHCH.

(34)

It is notable that in the frequency-selective Rayleigh
fading MIMO channel, M = 0,CH = RH . The performance
of MMSE channel estimator is measured by the error matrix
ε = H− ĤMMSE, whose pdf is Gaussian with zero mean and

Cε = Rε = E
{
εHε

}
=
(

C−1H +
1

σ2nNR
XXH

)−1
. (35)

The MMSE estimation error can also be computed as

JMMSE = E
{ ∥
∥
∥H− ĤMMSE

∥
∥
∥
2

F

}

= E
{
tr
(
εHε

)}
(36)

= tr{Cε} = tr

⎧
⎨

⎩

(

C−1H +
1

σ2n NR
XXH

)−1⎫⎬

⎭
. (37)

Let us find X which minimizes the channel estimation
error subject to a transmitted power constraint. This is
equivalent to the following optimization problem

min
X

tr

⎧
⎨

⎩

(

C−1H +
1

σ2n NR
XXH

)−1⎫⎬

⎭

S.T. tr
{
XXH

}
= P.

(38)

By using ZCZ training sequences that satisfy(18), C−1H +
(1/σ2nNR)XXH will be a diagonal matrix. Note thatCH in (12)
is a diagonal matrix. Therefore, according to the lemma 1 in
[7] (see also the proposition 2 in [24]) and by using (12) and
(20), we obtain that the TMSE (37) will be minimized as

(JMMSE)min = σ2nNRNT

L∑

l=0

bl
p(NP − L)bl + σ2n(κ + 1)

. (39)

When κ = 0, (39) is analogous to the acquired result in
[24, 25] for LMMSE estimator. For κ > 0, the minimum
CRLB (39) is lower than the minimum CRLB of this channel
estimator. Equation (39) will be equal to (27) when the
channel has uniform PDP. In this case, using (13), (18), and
(20) the MMSE channel estimator (34) reduces to

ĤMMSE = βM + αYXH , (40)

where

α = 1
p(NP − L) + σ2n(1 + L)(1 + κ)

,

β = σ2n(L + 1)(κ + 1)
p(NP − L) + σ2n(1 + L)(1 + κ)

.

(41)

Then, the SSLS and MMSE channel estimators are identical
within the uniform PDP.

6. Simulation Results

In this section, the performance of the LS, SLS, SSLS, and
MMSE channel estimators is numerically examined in the
frequency-selective Rayleigh and Rician fading channels. It
is assumed that each sub-channel has the exponential PDP
as

bl =
(
1− e −1

)
e −l

1− e −L−1
; l = 0, 1, . . . ,L. (42)

As a performance measure, we consider the channel TMSE,
normalized by the average channel energy as

NTMSE =
E
{∥
∥
∥H− Ĥ

∥
∥
∥
2

F

}

E
{
‖H‖2F

} . (43)

Here, we denote a ZCZ set with length N = NP − L,
size NT , and ZCZ length Z = L by ZCZ-(N ,NT ,Z). In
the following subsections, we present several numerical
examples to illustrate both the superiority and reasonability
of the proposed SSLS and MMSE channel estimators in the
frequency-selective Rician fading models.

6.1. The Shorter Training Length to Estimate the Rician Fading
Model. Figure 1 shows the normalized TMSE JLS/NRNT of
the LS channel estimator versus SNR in the Rayleigh (κ = 0)
and Rician (κ = 1, 10) fading channels. As it is expected,
the performance of the LS estimator is independent of the
fading model. In order to improve the performance of this
estimator, the training length may be increased. It is notable
that the bandwidth is wasted when the training length is
increased.

Figures 2 and 3 show the normalized TMSE of SSLS and
MMSE channel estimators, respectively, versus SNR in the
Rayleigh (κ = 0) and Rician (κ = 1, 10) fading channels. It
is observed that for the given length of training sequences,
the performance of SSLS andMMSE estimators in the Rician
fading channel is significantly better than the Rayleigh one.
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In the Rayleigh fading model, increasing the training length
improves the normalized TMSE of the estimators. However,
in the Rician fading channels, the performance of both SSLS
andMMSE estimators with a shorter training length is better
than the Rayleigh fading model with a longer training length
particularly at low SNRs and high Rice factors. Then, the
training length can be reduced in the presence of the Rician
channel model. At higher SNRs, the normalized TMSEs of
each estimator with various Rice factors are nearly identical.
In practice, for the given values of TMSE, SNR, and κ, the
optimum training length can be calculated from (27), (39),
or these figures.

The sequences under test in Figures 1 through 3 are
ZCZ-(4, 2, 1) and ZCZ-(8, 2, 1) sets [26]. It is notable that
these results are obtained based on both the channel model
and the channel Rice factor which are defined in Section 2.

6.2. Comparing the LS-Based and MMSE Channel Estima-
tors. All estimators are optimal because they achieve their
minimum possible CRLB. However, the performance of
the estimators is different. This subsection compares the
computational complexity and performance of the LS, SLS,
SSLS, and MMSE estimators. As illustrated in Table 1 and
Figures 4 and 5 due to lower number of multiplications
and additions, the LS-based (LS, SLS, and SSLS) estimators
have lower computational complexity than MMSE esti-
mator. Moreover, LS-based algorithms do not include the
matrix inverse operation. However, the LMMSE channel
estimator of [25, 29] cannot fundamentally benefit from
the Rice factor of the Rician fading channels. The general
form of this estimator has a complexity near to it, while
it can fully exploit a priori knowledge of the CH and
M.

In Figures 6 and 7, the performances of LS-based and
MMSE estimators are compared in the cases of L = 4 and
L = 8, respectively. The ZCZ-(16, 2, 4) and ZCZ-(64, 4, 8)
sets are used in these figures, respectively. We obtained
the ZCZ-(64, 4, 8) set using the algorithm of [28] and
the (P,V ,M) = (16, 4, 2) code of [26]. Table 2 shows
the generated ZCZ-(64, 4, 8) set. As depicted, the MMSE
channel estimator has the best performance among all the
methods tested. However, it requires that the channel PDP
and σ2n as well as κ be known a priori. For the large
values of L, the MMSE channel estimator outperforms
the SSLS channel estimator. However, for the small values
of L, the performances of both estimators are similar.
Practically, even small values of L lead to enough accuracy
for the channel order approximation if there is a good
synchronization. Hence, the SSLS channel estimator that
requires less knowledge about the channel statistics and
has lower complexity than the MMSE estimator can be
used. Furthermore, the normalized TMSEs of the SSLS and
MMSE estimators coincide at low SNRs when the Rice factor
increases. It is noteworthy that the performances of the two
above-mentioned estimators are always identical in uniform
PDP.

6.3. The Rician Fading Model with a Higher Number of
Antennas. In Figures 8 and 9, the effect of both the channel

fading type and the number of Tx-Rx antennas is considered
in a joint state. The two sets of ZCZ-(64, 2, 8), that is, x1
and x2 of Table 2, and ZCZ-(64, 4, 8) are employed in 2 × 2
and 4 × 4 MIMO systems, respectively, the former system
has the Rayleigh fading and the latter one has the Rician
model. At low SNRs, it is seen that the performance of the
SSLS and MMSE estimators in the Rician fading model with
a higher number of antennas is still better than the Rayleigh
fading model with lower number of antennas especially at
high Rice factors. At higher SNRs, the performances of the
above mentioned estimators in both models are analogous.
It is noteworthy that the capacity of MIMO system increases
almost linearly with the number of antennas. It should
also be noted that Rician fading can improve capacity,
particularly when the value of κ is known at the transmitter
[2].

6.4. Increasing Rice Factor. Figure 10 indicates the channel
estimation normalized TMSE of the LS, SSLS, and MMSE
estimators versus κ for SNR = 10 dB. From this figure, it is
observed that increasing the Rice factor leads to decreasing
the normalized TMSE of the SSLS and MMSE channel
estimators. At high Rice factors, the performances of the
proposed estimators are analogous particularly at low SNRs
and for the small values of L (see also Figures. 6 and 7). It
is noteworthy that the TMSE of LS and SLS estimators is
independent of κ. The channel will be no fading or AWGN
when κ → ∞.

6.5. Substantial Benefits of the Rician FadingMIMOChannels.
In Tables 3 and 4, substantial benefits of the frequency-
selective Rician fading MIMO channels are shown using the
SSLS and MMSE estimators. According to these tables, a
lower SNR or shorter training length can be used to estimate
the channel in the presence of the Rician model. In practice,
the Rice factor can be measured at the receiver and fed
back to the transmitter to adjust the SNR or training length.
Hence, resources can be saved in the interested channel
model. As illustrated in these tables, a higher number of
antennas may be used in the mentioned channel without
increasing TMSE. This means that the capacity of MIMO
systems is increased.

It is generally true that the less the channel estimation
error, the better the bit error rate (BER) performance for a
fixed data detection scheme. The proposed methods can also
guarantee the best BER performance for a given detection
method.

6.6. A New Algorithm to Estimate the Rice Factor. The differ-
ence of the proposed estimators with the other estimators
such as SLS of [7, 21] or LMMSE of [25] is that the
performance of our proposed estimators can be improved
because of exploiting the Rice factor, while the othermethods
cannot use this factor. In order to perform the proposed SSLS
and MMSE channel estimators in the Rician fading MIMO
channels, it is required that the channel Rice factor be known
at the receiver. In this subsection, we propose an algorithm to
estimate κ. This algorithm has the following steps.
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Table 1: Computational complexity of the LS-based and MMSE channel estimators (NP = NT(L + 1) + L).

Channel estimation
algorithm

Number of real multiplications Number of real additions
Matrix
inverse
operation

LS, SLS 2NRN
2
T(L + 1)2 2NRN

2
T(L + 1)2 − 2NRNT(L + 1) No

SSLS 2NRN
2
T(L + 1)2 2NRN

2
T(L + 1)2 No

MMSE (κ = 0) 3N3
T(L + 1)3 + 2NRN

2
T(L + 1)2 3N3

T(L + 1)3 − 2N2
T(L + 1)2 + 2NRN

2
T(L + 1)2 − 2NRNT(L + 1) Yes

General MMSE 3N3
T(L + 1)3 + 4NRN

2
T(L + 1)2 3N3

T(L + 1)3 − 2N2
T(L + 1)2 + 4NRN

2
T(L + 1)2 − 2NRNT(L + 1) Yes

Table 2: ZCZ-(64, 4, 8) set.

x1 = [1 −1 −1 −1 −1 −1 1 −1 1 −1 −1 −1 −1 −1 1 −1 −1 1 1 1 −1 −1 1 −1 −1 1 1 1 −1 −1 1 −1 1 −1 −1 −1 −1 −1 1 −1 −1
1 1 1 1 1 −1 1 −1 1 1 1 −1 −1 1 −1 1 −1 −1 −1 1 1 −1 1]

x2 = [1 −1 1 1 −1 −1 −1 1 1 −1 1 1 −1 −1 −1 1 −1 1 −1 −1 −1 −1 −1 1 −1 1 −1 −1 −1 −1 −1 1 1 −1 1 1 −1 −1 −1 1 −1 1

−1 −1 1 1 1 −1 −1 1 −1 −1 −1 −1 −1 1 1 −1 1 1 1 1 1 −1]
x3 = [1 −1 −1 −1 −1 −1 1 −1 −1 1 1 1 1 1 −1 1 −1 1 1 1 −1 −1 1 −1 1 −1 −1 −1 1 1 −1 1 1 −1 −1 −1 −1 −1 1 −1

1 −1 −1 −1 −1 −1 1 −1 −1 1 1 1 −1 −1 1 −1 −1 1 1 1 −1 −1 1 −1]
x4 = [1 −1 1 1 −1 −1 −1 1 −1 1 −1 −1 1 1 1 −1 −1 1 −1 −1 −1 −1 −1 1 1 −1 1 1 1 1 1 −1 1 −1 1 1 −1 −1 −1 1 1 −1 1

1 −1 −1 −1 1 −1 1 −1 −1 −1 −1 −1 1 −1 1 −1 −1 −1 −1 −1 1]
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Figure 1: Normalized TMSE of the LS estimator in the Rayleigh and
Rician fading channels (NT = NR = 2, L = 1, NP = 5, 9).

Table 3: Substantial benefits of Rician fading MIMO channel by
using SSLS estimator (L = 8).

NT NP SNR (dB) κ Normalized TMSE

2 72 5 0 8.17 × 10−2

2 72 −4.56 10 8.17 × 10−2

2 40 5 10 6.02 × 10−2

4 72 5 10 6.02 × 10−2
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Figure 2: Normalized TMSE of the SSLS estimator in the Rayleigh
and Rician fading channels (NT = NR = 2, L = 1, NP = 5, 9).

Table 4: Substantial benefits of Rician fading MIMO channel by
using MMSE estimator (L = 8).

NT NP SNR (dB) κ Normalized TMSE

2 72 5 0 4.60 × 10−2

2 72 −0.58 10 4.60 × 10−2

2 40 5 10 3.46 × 10−2

4 72 5 10 3.46 × 10−2
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Figure 3: Normalized TMSE of the MMSE estimator in the
Rayleigh and Rician fading channels (NT = NR = 2, L = 1, NP =
5, 9).

Step 1. Calculate the mathematical expectation matrix of the
channel by using the LS estimates of H during the observed
N previous blocks as follows:

M̂n = 1
n

n∑

i=1
ĤLS(i) (n = 1, 2, . . . ,N). (44)

Step 2. Partition M̂n to M̂n = [M̂n0 M̂n1 · · · M̂nL], where
M̂nl = E{Hl}.

Step 3. Estimate the μ parameter (based on (11)) for all paths
of the multipath channel as

μ̂nl = abs
[
mean

(
M̂nl

)]
, ∀l ∈ [0, 1, . . . ,L],

n ∈ [1, 2, . . . ,N].
(45)

Step 4. Calculate the Rice factor for all paths of the multipath
channel as

κ̂nl = μ̂
2
nl/
(
bl − μ̂

2
nl

)
, ∀l ∈ [0, 1, . . . ,L],

n ∈ [1, 2, . . . ,N].
(46)

Step 5. Calculate the channel Rice factor by calculating the
mean value of the several paths’ Rice factors in the following
form:

κ̂n = 1
L

L∑

l=0
κ̂nl, ∀n ∈ [1, 2, . . . ,N]. (47)

Step 6. Estimate the final Rice factor by calculating the
mode value of the several estimated Rice factors during the
observed N consecutive blocks as

κ̂ = mode(K), K = [κ̂1, κ̂2, . . . , κ̂N ]. (48)
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Figure 4: Computational complexity of the LS-based and MMSE
channel estimators (Real multiplications for NT = NR = 2 and
NT = NR = 4).
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Figure 5: Computational complexity of the LS-based and MMSE
channel estimators (Real additions for NT = NR = 2 and NT =
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Figure 6: Normalized TMSEs of LS-based and MMSE estimators
for various Rice factors in the case of L = 4, NT = NR = 2, NP =
20.
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Figure 7: Normalized TMSEs of LS-based and MMSE estimators
for various Rice factors in the case of L = 8, NT = NR = 4, NP =
72.
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Figure 8: Normalized TMSEs of the SSLS estimator versus SNR in
Rayleigh and Rician fading MIMO systems with L = 8, NP = 72.
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Figure 9: Normalized TMSEs of the MMSE estimator versus SNR
in Rayleigh and Rician fading MIMO systems with L = 8, NP = 72.

In simulation processes, it is seen that for some restricted
values of N , the estimated Rice factors in Step 5 deviate from
the actual values of the Rice factor randomly (not shown).
This event especially occurs at low SNRs and high values of
κ. Step 6 is used to remove this deficiency. In this step, we
use MATLAB FUNCTION (HIST and MAX) to calculate the
mode value of the elements in vector K. Hence, the accurate
Rice factor can be obtained. It is assumed that the channel
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Figure 10: Normalized TMSE of the LS, SSLS, and MMSE
estimators versus Rice factor for SNR = 10 dB, NT = NR = 4, L =
8, NP = 72.

Rice factor is stable during the receivedN consecutive blocks.
It should be noted that the channel Rice factor estimator
can be updated using a sliding window comprisingN blocks,
which would be useful in real-time estimation of κ.

For example, the performance of the SSLS and MMSE
channel estimators using the aforementioned algorithm is
probed in Figures 11 and 12. First, the channel Rice factor
is estimated using the proposed algorithm. Then, the result
is applied to the channel estimator. In order to compare
the results with other works, normalized TMSE of the SLS
estimator of [21] and the MMSE estimator in the case of
κ = 0 is plotted in Figures 11 and 12, respectively. Also, the
CRLB of the channel estimators is displayed as a reference.
As depicted, the normalized TMSE of the channel estimators
using the proposed algorithm is very close to the CRLB,
especially for low values of κ. However, for high values of
κ, the results diverge from CRLB, particularly at low SNRs.
Nevertheless, it is observed that increasing the number of
received blocks, N , leads to a better result for normalized
TMSE of the channel estimators.

7. Conclusion

In this paper, the performance of training-based channel
estimators in the frequency-selective Rician fading MIMO
channels is investigated. The conventional LS technique and
proposed SSLS and MMSE approaches have been probed.
TheMMSE channel estimator has better performance among
the tested estimators, but it requires more knowledge about
the channel. For channels with uniform PDP or a lower
number of taps, the SSLS estimator is acceptable. However,
for nonuniform PDP with a higher number of taps, the
MMSE channel estimator is required to attain a lower TMSE.
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Figure 11: Normalized TMSE of the SSLS estimator by using the
Rice factor estimation algorithm (NT = NR = 2, L = 1, NP = 5).
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Figure 12: Normalized TMSE of the MMSE estimator by using the
Rice factor estimation algorithm (NT = NR = 2, L = 1, NP = 5).
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In general, the SSLS technique provides a good tradeoff
between the TMSE performance and the required knowledge
about the channel. Moreover, the computational complexity
of this estimator is lower than that of MMSE and near to
that of LS estimator. Finally, we proposed an algorithm to
estimate the channel Rice factor. Numerical results validate
the good performance of this algorithm in Rician fading
MIMO channel estimation.

The estimators suggested in this paper can be practically
used in the design of MIMO systems. For instance, in order
to obtain a given value of TMSE in the Rician channel model,
either the required SNR may be decreased or the training
length can be reduced. Then, resources will be saved. Besides,
for the given values of the SNR, training length, and TMSE in
the aforementioned channel model, the number of antennas
can be increased. It is worthwhile to note that the excess
of antenna numbers in MIMO systems leads to a higher
capacity. It is also remarkable that the Rician fading is known
as a more appropriate model for wireless environments with
a dominant direct LOS path. This type of the fading model,
especially in the microcellular mobile systems and LOSmode
of WiMAX, is more suitable than the Rayleigh one.

Appendix

Proof of (33)

Using (31), the TMSE (32) yields

JMMSE = E
{‖H−M− (Y−MX)A◦‖2F

}

= E
{
tr
{
[H−M− (Y−MX)A◦]

H

· [H−M− (Y−MX)A◦]
}}

.

(A.1)

With some calculations, the TMSE (A.1) is given by

JMMSE = tr
{(

INT−L − A◦HXH
)
CH ·

(
INT−L −XA◦

)}

+ σ2nNR tr
{
A◦HA◦

}
.

(A.2)

The optimal A◦ can be found from

∂JMMSE

∂A◦
= − XTCH +XTCHX∗A◦∗ + σ2nNRA◦∗ = 0. (A.3)

Finally, we have

A◦ =
(
XHCHX + σ2nNRINT−L

)−1
XHCH. (A.4)
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