
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2010, Article ID 753931, 11 pages
doi:10.1155/2010/753931

Research Article

Stability Analysis of Hybrid ALOHA

HuahuiWang and Tongtong Li

Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA

Correspondence should be addressed to Tongtong Li, tongli@egr.msu.edu

Received 22 March 2010; Revised 5 July 2010; Accepted 4 August 2010

Academic Editor: Vincent Lau

Copyright © 2010 H. Wang and T. Li. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We perform stability analysis of a recently proposed MAC protocol, hybrid ALOHA, based on the multipacket reception (MPR)
model. Hybrid ALOHA distinguishes from conventional slotted ALOHA by allowing conditional collision-free channel estimation
and simultaneous transmissions, and hence improves the MPR capability of the system. The stability analysis of the two-user case
(N = 2) has been conducted in our previous work. In this paper, we study the stability region of hybrid ALOHA for the generalN-
user (N > 2) system. By using the method of stochastic dominance and mathematical induction, we obtain the sufficient condition
for the stability of hybrid ALOHA. As an illustration, we characterize the stability inner bounds for theN = 3 case. In this particular
situation, the results are derived by solving a nonhomogeneous Riemann-Hilbert problem. Potentially, themathematical tools used
in this paper can be exploited for obtaining closed-form results in stability analysis of wireless networks.

1. Introduction

The study of interacting queueing systems has received
enormous attention due to their importance in applications
(e.g., multiple-access channel models and shared computer
processor systems) as well as to their theoretical interest.
However, the theoretical analysis of such systems has inher-
ent difficulties due to the coupling of the queues (users).
Assume there are a total of N users in the system. In [1],
Fayolle and Iasnagorodski have displayed the mathematical
difficulty of the analysis of two coupled users (N = 2). For
systems with more than two users (N > 2), the analysis
is even more arduous due to the higher dimensionality of
the problem. Hence, the study of N > 2 systems becomes
a challenging task and deserves more research attention.

Among various design tasks of queueing systems, a
fundamental issue is the stability, which can be roughly
understood as the ability of a system to keep the queue length
in a bounded region. Extensive research on stability has been
carried out for slotted ALOHA [2], which is probably the
simplest system. A historic retrospection, however, reveals
that in spite of its simple form, queueing theoretic analysis
of ALOHA turns out to be truly difficult even under the
so-called collision model [3]. Under this simplified model,
a user is assumed to be successful in packet transmission if

and only if there are no simultaneous transmissions from
other users. In 1979, Tsybakov and Mikhailov initialized
in [4] the stability analysis of finite-user slotted ALOHA
and found the ergodicity conditions of the system, that is,
the conditions under which the queues remain finite with
probability 1. They found a simple bound for the stability
region and also obtained the explicit stability region for
the N = 2 users case. Szpankowski presented in [5] some
improved bounds for the average queue lengths. Even tighter
lower (inner) bounds for the stability region of the system
with an arbitrary finite number of users were derived by
Rao and Ephremides in [6], where a series of hypothetical
auxiliary systems of queues that closely parallel the operation
of the system of interest were constructed, and the inner
bounds were obtained by means of stochastic dominance.
The exact stability region of ALOHA for the finite-user case
was obtained for a simple arrival process by Anantharam [7],
yet the general results for arbitrary arrival distributions are
still unknown. In [8], Szpankowski found the sufficient and
necessary conditions for the stability of queues for a fixed
transmission probability vector for the N > 2 case. However,
the difficulty in computation of the stationary joint queue
statistics makes it hard, if not impossible, to verify these
conditions. Luo and Ephremides [9] introduced the concept
of instability ranks in queues to obtain tight inner and outer
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bounds on theN > 2 case. Despite all the efforts, to date there
is still no closed-form characterization of the stability region
for the general finite-user case.

All the works discussed above were based on the collision
model. A breakthrough was made by Naware et al. in [10],
where the multipacket reception (MPR) model originally
proposed by Ghez et al. [11, 12] was adopted for slotted
ALOHA, enabling the feasibility of the successful simultane-
ous transmissions from different users. The stability region
for N = 2 case under the MPR model was characterized
and the result was extended to the symmetric N > 2 user
system. In [13], Luo and Ephremides presented an interesting
result about the equivalence between the stability region and
the throughput region based on a conjectured sensitivity
monotonicity property over “standard” MPR channels. The
coincidence of the stability and throughput regions was
further strengthened by Shrader and Ephremides [14] in
considering a 2×2 broadcast network. However, these results
relied on the validity of the conjectured property, which
remained unproven and necessitated further research efforts.

Recently, based on the MPR model, we proposed a
capacity-reaching random access protocol [15], named
hybrid ALOHA. By allowing conditional collision-free chan-
nel estimation and simultaneous transmissions, hybrid
ALOHA improves the MAC layer MPR capability and
outperforms the traditional slotted ALOHA in terms of
throughput, stability, and delay. The stability regions and
delay bounds have been studied for the N = 2 case
in [15]. In this paper, we further investigate the stability
condition of the hybrid ALOHA system for the general
N > 2 case. The results for the N = 2 case are used as
the arguments of the mathematical induction for deriving
the sufficient condition of the stability of the N > 2
system. By means of stochastic dominance, we characterize
the stability inner bounds for the general N-user system.
However, the explicit characterization of these bounds is
nontrivial. As an illustration, we study the characterization of
the stability inner bounds for the N = 3 case. Starting from
a system functional equation, we show that characterizing
such inner bounds reduces to solving a general Riemann-
Hilbert problem. Potentially, the mathematical tools used in
this paper can be applied for obtaining closed-form results
in stability analysis, albeit they could be in very complicated
forms.

The organization of the paper is as follows. In Section 2,
we describe the system model and present the generalized
hybrid ALOHA protocol. In Section 3, we derive the suffi-
cient condition for stability of N > 2 systems. For the special
case of N = 3, Section 4 derives the stability inner bound of
the system. The problem is reduced to solving a Riemann-
Hilbert boundary value problem. Section 5 concludes the
article.

2. The Hybrid ALOHA Protocol

2.1. System Model. Consider a wireless network with a setN
of users,N = {1, 2, . . . ,N}, communicating with a common
access point. Each user is equipped with an infinite buffer for

storing arriving and backlogged packets. The packet arrival
processes are assumed to be independent from user to user.
The channel is slotted in time, with slot period larger than
the packet length. When the buffer of the ith (i ∈ N ) user is
nonempty, he/she transmits with probability pi. Packets are
assumed to be of equal size for all users and composed of
two parts: the first part is the training sequence for channel
estimation and the second part is the information data. The
length of the training sequence is typically much smaller than
that of the information data. The arrivals of the ith user are
assumed to be independent and identically distributed (i.i.d)
Bernoulli random variables from slot to slot, with the average
number of arrivals being λi packets per slot.

We adopt the general MPRmodel in [10] where the mul-
tiuser physical layer is characterized by a set of conditional
probabilities. For any subset S ⊆ N of users transmitting
in a slot, the marginal probability of successfully receiving
packets from users in R ⊆ S, given that users in S transmit,
is defined as

qR|S =
∑

U:R⊆U⊆S
qU,S , (1)

where qU,S is the conditional probability of reception defined
as

qU,S = Pr
{
only packets from U are successfully received |
users in S transmit}, U ⊆ S.

(2)

In the two-user case, for example,N = {1, 2}, for i = 1, 2,

qi,{i} = Pr
{
user i is successful | only user i transmits

}
,

qi,{1,2} = Pr{user i is successful | both users transmit},
q{1,2},{1,2} = Pr{both users are successful |

both users transmit},
(3)

and the marginal probabilities

qi|{i} = qi,{i}, qi|{1,2} = qi,{1,2} + q{1,2},{1,2}. (4)

Assume that at the end of each slot, the receiver gives
an instantaneous feedback of all the packets that were
successfully received to all the users. The users remove
successful packets from their buffers while unsuccessful
packets are retained. Let Nt

i denote the queue length of the
ith user at the beginning of time slot t, the queue evolution
function for the ith (i ∈ {1, 2, . . . ,N}) queue is given by
[8, 10]

Nt+1
i = [

Nt
i − Yt

i

]+
+ βti , (5)

where βti is the number of arrivals during the tth slot to the
ith user with E(βti) = λi < ∞, Yt

i is the Bernoulli random
variable denoting the departure from queue i in time slot t,
and [x]+ = max(0, x).
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Figure 1: Illustration of the hybrid ALOHA slot structure for
M = 2, in the case that two users (N = 2) transmit their training
sequences at nonoverlapping pilot subslots.

2.2. Hybrid ALOHA. The proposed hybrid ALOHA protocol
aims at improving MPR capability by allowing conditional
collision-free channel estimation and simultaneous trans-
mission. In hybrid ALOHA, each slot contains one data
sub-slot and multiple pilot sub-slots, and each user can
randomly select one of the pilot sub-slots to transmit his/her
training sequence. In other words, idle pilot sub-slot(s) are
introduced to make it possible for different users to trans-
mit their training sequences at nonoverlapping sub-slots,
whereby collision-free channel estimation could be achieved.
If the physical layer can accommodate M users, (i.e., given
reasonably accurate channel estimation, the user’s packet can
be successfully decoded if and only if there are no more than
M simultaneous users then the hybrid ALOHA slot has M
pilot sub-slots, which implies that M − 1 idle sections are
inserted to each traditional ALOHA slot. (Signal processing
plays a key role in separating/retrieving multiple users’
signals. The principal (and not exclusive) example of systems
with multiple access interference arises in networks using
code-division multiple-access (CDMA) for uplink channel
sharing. The area of study that deals with signal separation
is multiuser detection. Various techniques, including linear
multiuser detectors such as the zero-forcing and MMSE, as
well as nonlinear interference cancellation techniques, have
been proposed in the literature and implemented in real
systems [16, 17].),

Figure 1 illustrates the slot structure of hybrid ALOHA
in the case of M = 2. Throughout the paper, without loss
of generality, we investigate this specific case for description
convenience. Each slot hasM+1 = 3 sub-slots. The preceding
two sub-slots, each having a length of τ, are the “pilot
sub-slots” reserved for training sequences. When a user is
involved in a transmission, we assume that the selection of
the pilot sub-slots is random and of equal probability. The
information data is always transmitted in the last sub-slot
referred to as the “data sub-slot.” We assume that the length
of the data sub-slot is 1 − τ with τ � 1. The length of the
traditional ALOHA slot is used as the reference time unit,
denoted as 1, which consists of a training sub-slot of length τ
and a data sub-slot of length 1− τ.

3. Sufficient Condition of Stability forN > 2

In this paper, the sufficient condition for stability of N > 2
hybrid ALOHA systems is derived based on the simplistic
model which assumes that the users who collide in pilot sub-
slots fail in transmission whereas the users who have collision-
free channel estimation survive, under the condition that there

are no more than M users transmitting simultaneously in one
slot. More general results can be referred to [15].

The mathematical definition of stability is given as
follows [8].

Definition 1. A multidimensional stochastic process Nt =
(Nt

1, . . . ,N
t
N ) is said to be stable if for x ∈ NN the following

holds:

lim
t→∞Pr

{
Nt < x

} = F(x), lim
x→∞F(x) = 1, (6)

where F(x) is the limiting distribution function.
For an N-user system, the stability region is defined as

the set of arrival rates λ = [λ1, λ2, . . . , λN ] for which there
exists a transmission probability vector p = [p1, p2, . . . , pN ]
such that the queues in the system are stable. When N = 2,
suppose that the arrival rates for the two users are λ1 and λ2
(packets per slot), and their transmission probabilities are p1
and p2, respectively. We have derived the following result in
[15].

Lemma 1. For a fixed transmission probability vector p =
[p1, p2], the stability region of hybrid ALOHA is given by

λ1 ≤ p1 − p1λ2
2− p1

, for λ2 ≤ p2 − p1p2
2

, (7)

λ2 ≤ p2 − p2λ1
2− p2

, for λ1 ≤ p1 − p1p2
2

, (8)

where λ1 and λ2 are the arrival rates for the two users,
respectively.

When N > 2, we will use the method of stochastic
dominance [6] and the Loynes Theorem [18] to derive the
sufficient condition for stability of hybrid ALOHA. (A real
random variable X is said to stochastically dominate a real
random variable Y if for all z ∈ R, Pr{X > z} ≥ Pr{Y >
z}. This dominance is denoted by X≥stY .) To achieve this
goal, we construct a modified system as follows. Let P =
{S,U} be a partition of N such that users in S /=N work
exactly in the same manner as in the original system, while
users in Upersistently transmit dummy packets even if their
queues are empty. Users in U are called persistent and those
in Snonpersistent. Such modified system is denoted by ΘP .
Let Nt

P = (Nt
S ,N

t
U) denote the queue lengths in ΘP and

it can be proved that Nt
P stochastically dominates Nt of

the original system provided that the initial conditions are
identical [4, 5].

By the construction above, the process Nt
S is an |S|-

dimensional Markov chain that mimics the behavior of the
original system. Note that the system consisting of users in
S forms a smaller copy of the original system with modified
reception probabilities. Generally, for any S′ ⊆ S and i ∈ S′,
the modified reception probabilities for the smaller system
consisting of the stand-alone nonpersistent set S are given by
[10]

qSi|S′ =
∑

T ⊆U

⎡
⎣
∏

j∈T
pj

∏

k∈U\T

(
1− pk

)
⎤
⎦qNi|S′∪T . (9)
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Induction arguments can then be applied to establish the
stability condition. We further assume that the Markov chain
Nt

S is stationary and ergodic. We denote the stationary

version as N
0
S to indicate that the process starts from the

stationary distribution.
Let Yt

i (P ) be the departure process from the ith queue in
the dominant system ΘP , then we have

Yt
i (P ) =

2∑

j=1

[
1− χ

(
Rt
i, j

)]
Rt
i, j

· 1
⎡
⎣

∑

k∈S\{i}
Rt
k, jχ

(
Nt

k

)
+

∑

k∈U\{i}
Rt
k, j = 0

⎤
⎦

· 1
⎡
⎣

∑

k∈S\{i}
Rt
k, jχ

(
Nt

k

)
+

∑

k∈U\{i}
Rt
k, j ≤ 1

⎤
⎦,

(10)

where j is the index of the pilot sub-slot and j = {1, 2} \ { j};
1[·] is the indicator function; Rt

i, j is the i.i.d Bernoulli (pi, j)
random variable for 1 ≤ i ≤ N , indicating the outcomes
of transmission attempts, where pi, j is the transmission
probability of the training sequence at sub-slot j for user
i, hence the transmission probability of user i in one slot is
given by pi =

∑2
j=1 pi, j . For hybrid ALOHA, since one user

cannot transmit in both pilot sub-slots, Rt
i, j = 1 − Rt

i, j . The

function χ(k) is defined as

χ(k) =
⎧
⎨
⎩
0, k = 0,

1, k > 0.
(11)

The two indicator functions represent, respectively, that
when there is a transmission occurring in sub-slot i, no
others can transmit in that same sub-slot, and at most one
other user can transmit in the other sub-slot.

Given that Yt
i (P ) is stationary, we denote Pi

succ(P ) =
E[Yt

i (P )] as the probability of a successful transmission
from the ith user in system ΘP , which is given by

Pi
succ(P ) = pi

∏

k∈U\{i}

(
1− pk

)

×
∑

zS∈{0,1}|S|

⎛
⎝Pr

{
χ
(
N

0
S

)
= zS

} ∏

k∈S\{i}

(
1− pk

)zk
⎞
⎠

+

⎛
⎝

2∑

j=1
pi, j

∑

k∈U\{i}

⎡
⎣pk, j

∏

k′∈U\{i,k}

(
1− pk′

)
⎤
⎦
⎞
⎠

·
∑

zS∈{0,1}|S|

⎛
⎝Pr

{
χ
(
N

0
S

)
= zS

} ∏

k∈S\{i}

(
1− pk

)zk
⎞
⎠

+
∏

k∈U\{i}

(
1− pk

)

×
⎛
⎜⎝

2∑

j=1
pi, j

∑

zS∈{0,1}|S|
Pr
{
χ
(
N

0
S

)
= zS

}

·
⎡
⎣

∑

k∈S\{i}
pzkk, j

∏

k′∈S\{i,k}

(
1− pk′

)zk′
⎤
⎦
⎞
⎠,

(12)

where χ(N
0
S) = (χ(N

0
i1 ), . . . , χ(N

0
i|S|)) with ik ∈ S for all

k = 1, . . . , |S|. The first term of the right-hand side of (12)
represents the probability of successful transmission of user
i when no one else transmits. The second and third terms
represent the probabilities of successful transmission of user
i when there is another user involved in the transmission.
The second term corresponds to the case when the extra user
belongs to U, and the third term corresponds to the case
when the extra user belongs to S.

Let SH−ALOHA be the stability region of the original
hybrid ALOHA system. Let SN and SS be, respectively,
stability regions for dominant system ΘP and the system
consisting of nonpersistent users S under the partition of
P = (S,U). Defining a region

SN =
⋃

P

{
λN = {λ1, . . . , λN} : λk < Pk

succ(P ) ∀ k ∈U,

λS ∈ SS

}
,

(13)

we have the following result.

Proposition 1 (see [15]). If λN = {λ1, . . . , λN} ∈ SN , then
hybrid ALOHA is stable, that is,SN ⊆ SH−ALOHA.

Evaluation of the stability condition for the general N
is nontrivial, if not impossible, due to the difficulty in
evaluating the stationary distribution of the queues with
arbitrary input distributions. In the next section, the specific
case of N = 3 is inspected and the stability inner bounds of
such a case are derived.

4. Special Case: Stability InnerBounds forN = 3

4.1. Inner Bounds Characterization. Recall that P = {S,U}
is a partition of N . Consider the three partitions Pi =
{Ni, {i}}, where Ni = N \ {i}, i = 1, 2, 3. Define Pi =
{{i},Ni}. From (12), it can be verified that Pi

succ(Pi) ≤
Pi
succ(Pi) (Appendix A). This result is intuitively correct as

well because chances of collision for user i in system Pi are
smaller than that in system Pi, due to the way of system
construction. Hence, it follows from Proposition 1 that the
stability inner bound R is the union of three regions Ri

corresponding to Pi, i = 1, 2, 3, respectively. In what follows,
we closely inspect region R3 that is corresponding to P3 =
{{1, 2}, {3}}. The other two regionsR1 andR2 can be easily
obtained through similar procedures.

Let Nt
i and βti denote, respectively, the queue length and

the number of arriving packets of user i(i = 1, 2) in time slot
t. Let F3(x, y) be the moment generating function of the joint
arrival process for users 1 and 2. Thus, for |x| ≤ 1, |y| ≤ 1,
t ∈ N,

F3
(
x, y

) = E
(
xβ

t
1 yβ

t
2

)
=
(
xλ1 + λ1

)(
yλ2 + λ2

)
, (14)

where λi = 1− λi, for i = 1, 2.
The investigated systemmodel implies that (Nt

1,N
t
2) is an

irreducible, aperiodic Markov chain. Hence the stability of
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the system is equivalent to existence of a unique stationary
(limiting) distribution. Let G3(x, y) be the moment generat-
ing function of the joint stationary queue process, namely,

G3
(
x, y

) = lim
t→∞E

(
xN

t
1 yN

t
2

)
, (15)

which is analytic with respect to x and y whenever |x|, |y| ≤
1.

In Appendix B, we derive the following functional equa-
tion:

K
(
x, y

)
G3
(
x, y

) = a
(
x, y

)
G3
(
0, y

)
+ b

(
x, y

)
G3(x, 0)

+ c
(
x, y

)
G3(0, 0),

(16)

with

K
(
x, y

) = 1(
xλ1 + λ1

)(
yλ2 + λ2

) − p1p2
(
1− p3/2

)

x

− p2p1
(
1− p3/2

)

y
− p1p2p3

2xy
− Δ,

a
(
x, y

) = p1p2
(
1− p3/2

)

y
+

p1p2
(
1− p3/2

)

x
− p1p2p3

2xy

+ p1

(
1− p3

2

)(
1− 2p2

)
+

p1p2p3
2

,

b
(
x, y

) = p1p2
(
1− p3/2

)

x
+

p2p1
(
1− p3/2

)

y
− p1p2p3

2xy

+ p2

(
1− p3

2

)(
1− 2p1

)
+

p1p2p3
2

,

c
(
x, y

) = p1p2p3
2xy

− p1p2
(
1− p3/2

)

y
− p1p2

(
1− p3/2

)

x

+
1
2
p1p2

(
3− p3

)
,

(17)

where Δ = 1− (1− p3/2)(p1p2 + p1p2)− p1p2p3/2.
Define P3(z1, z2)

.= Pr{χ(N1) = z1, χ(N2) = z2} with
user 3 being the persistent one. Then from (B.5)− (B.8) we
have

P3(0, 0) = G3(0, 0),

P3(1, 0) = G3(1, 0)−G3(0, 0),

P3(0, 1) = G3(0, 1)−G3(0, 0),

P3(1, 1) = 1 +G3(0, 0)−G3(0, 1)−G3(1, 0).

(18)

Using these relations and (12) and assuming pi, j = pi/2
for i = 1, 2, 3, j = 1, 2, we can obtain the following results:

P1
succ(P3) = p1p3

[
1− (

1−G3(1, 0)p2
)]

+
(
p1,1p3,2 + p1,2p3,1

)[
1− (1−G3(1, 0))p2

]

+ p3
[(
p1,1p2,2 + p1,2p2,1

)
(P3(0, 1) + P3(1, 0))

]

= p1

[
1− 1

2
p3 − 1

2
p2(1−G3(1, 0))

]
,

P2
succ(P3) = p2p3

[
1− (

1−G3(0, 1)p1
)]

+
(
p2,2p3,1 + p2,1p3,2

)[
1− (1−G3(0, 1))p1

]

+ p3
[(
p2,1p1,2 + p2,2p1,1

)
(P3(0, 1) + P3(1, 0))

]

= p2

[
1− 1

2
p3 − 1

2
p1(1−G3(0, 1))

]
,

P3
succ(P3) = p3

[
P3(0, 0) +

(
1− 1

2
p1

)
P3(1, 0)

+
(
1− 1

2
p2

)
P3(0, 1)

+
(
1− 1

2
p1 − 1

2
p2

)
P3(1, 1)

]

= p3

[
1− 1

2
p1(1−G3(0, 1))− 1

2
p2(1−G3(1, 0))

]
.

(19)

Stability regionR3 can then be characterized byR3 = {λi <
Pi
succ(P3), i = 1, 2, 3}. The other two regionsR1 andR2 can

be similarly calculated and the following result is then readily
in form.

Proposition 2. For N = 3, hybrid ALOHA is stable in the
regionR = ⋃3

k=1Rk, with

Rk =
{
λi < Pi

succ(Pk), i = 1, 2, 3
}
, (20)

where Pi
succ(Pk) for k = 3, i = 1, 2, 3, are shown in (19), and it

can be calculated in the same manner for k = 1, 2, i = 1, 2, 3.

It can be seen that the probability of success Pi
succ(Pk)

depends explicitly on Gk(1, 0) and Gk(0, 1). These functions
are generally nonlinear functions of the input rates. It will be
shown in the sequel that finding out the explicit expression of
these functions reduces to solving a general Riemann-Hilbert
problem. The analysis follows the procedures in [1, 19].

4.2. Analysis of the Kernel K(x, y). The analysis of the kernel
K(x, y) is the key to solving the functional equation (16). For
description simplicity, in what follows we omit the subscript
of the function Gk(x, y). Since G(x, y) is analytic in |x| <
1, |y| < 1 and continuous in |x| ≤ 1, |y| ≤ 1, the right-
hand side of (16) must vanish whenever the “kernel” K(x, y)
vanishes for |x| ≤ 1, |y| ≤ 1.
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Rewrite the kernel K(x, y) given in (17) as

K
(
x, y

) = 1(
xλ1 + λ1

)(
yλ2 + λ2

) − p1p2
(
1− p3/2

)

x

− p2p1
(
1− p3/2

)

y
− p1p2p3

2xy
− Δ.

(21)

Solving for x the equation K(x, y) = 0, we will have a
root x = fx(y) satisfying

A
(
y
)
x2 + B

(
y
)
x + C

(
y
) = 0, (22)

where, by definingΔ = 1−(1−p3/2)(p1p2+p1p2)−p1p2p3/2,
we have

A
(
y
) = λ1

[
p1p2

(
1− p3

2

)(
λ2 +

λ2
y

)
+ Δ

(
yλ2 + λ2

)]
,

B
(
y
) =

[
λ1p1p2

(
1− p3

2

)
+ λ1Δ

](
yλ2 + λ2

)

+

[
λ1p1p2

(
1− p3

2

)
+ λ1

p1p2p3
2

](
λ2 +

λ2
y

)
− 1,

C
(
y
) = λ1p1p2

(
1− p3

2

)(
yλ2 + λ2

)
+ λ1

p1p2p3
2

(
λ2 +

λ2
y

)
.

(23)

Therefore,

fx
(
y
) =

−B(y)±
√
D
(
y
)

2A
(
y
) , (24)

withD(y) = B(y)2−4A(y)C(y). Defining t(y,φ) = −B(y)−
2 cos(φ)

√
A(y)C(y), we have the following lemma.

Lemma 2. For φ ∈ [0, 2π], the equation t(y,φ) = 0 has
exactly two real roots y = r1(φ) and y = r2(φ) which satisfy
0 < r1(φ) < 1 < r2(φ).

Proof. Please refer to Appendix C.

Since D(y) = t(y, 0)t(y,π), it is readily seen that y1 =
r1(π), y2 = r1(0), y3 = r2(0), y4 = r2(π) are the four
zeros of D(y) (branch points of x(y)) satisfying 0 < y1 <
y2 < 1 < y3 < y4. This result is evidently also valid for
the branch points x1, x2, x3, x4 of the function y(x). The
following lemma then holds.

Lemma 3. The equation K(x, y) = 0 has one root x = k(y)
which is an analytic algebraic function of y in the whole
complex plane cut along [y1, y2]∪[y3, y4]. Moreover, |k(y)| ≤
1 for |y| = 1.

Similar propositions apply to y(x). That is, there exists y =
h(x) such that K(x,h(x)) = 0 with |h(x)| ≤ 1 for |x| = 1.

Proof. Please refer to Appendix D.

Defining

ρ
(
φ
) .=

⎛
⎝
λ1
[
p1p2

(
1− p3/2

)
r1
(
φ
)
+ p1p2p3/2

)]

λ1
[
Δr1

(
φ
)
+ p1p2

(
1− p3/2

)]

⎞
⎠
1/2

,

(25)

we then have the following result.

Lemma 4. One has k(r1(φ)) = ρ(φ)eiφ for φ ∈ [0, 2π].

Proof. From Lemma 3, fx(y) = k(y) is the algebraic branch
of K(x, y) = 0 such that |x(y)| ≤ 1 for |y| = 1. Denote
kc(y) as the other root of equation K(x, y) = 0. It is shown
that for y ∈ C \ [y1, y2]∪ [y3, y4], the minus and plus signs
in (24) correspond to k(y) and kc(y), respectively (compute
k(1) and kc(1)). Observe that y = r1(φ) sweeps twice the cut
[y1, y2] as φ traverses the interval [0, 2π], then k(r1(φ)) and
kc(r1(φ)) are two conjugate complex numbers satisfying

k
(
r1
(
φ
))
kc
(
r1
(
φ
)) = C

(
r1
(
φ
))

A
(
r1
(
φ
)) = ∣∣ρ

(
φ
)∣∣2. (26)

From the definition of the algebraic branch, it is shown that
k(r1(φ)) = ρ(φ)eiφ,φ ∈ [0, 2π].

The image of the cut [y1, y2] under themapping x = k(y)
is then denoted as Lx

.= {x ∈ C : x = ρ(φ)eiφ,φ ∈ [0, 2π]},
which is a smooth closed contour enclosing 0.

4.3. Reduction to the Riemann-Hilbert Problem. It will be
shown in this subsection that the problem of finding the
expressions of functionG(x, 0) andG(0, y) reduces to solving
a general Riemann-Hilbert boundary value problem.

Riemann-Hilbert Problem. Let L+ be a finite or infinite
region, bounded by a smooth contour L. It is required to find
a functionΦ(z), holomorphic in L+ and continuous in L+∪L,
satisfying the boundary condition

R[U(z)Φ(z)] = V(z) on L, (27)

where U(z),V(z) are continuous functions given on L.
The formulation of the boundary value problem is

illustrated below.
For pairs (x, y) satisfying K(x, y) = 0 and |x| ≤ 1, |y| ≤

1, we should have

a
(
x, y

)
G
(
0, y

)
+ b

(
x, y

)
G(x, 0) + c

(
x, y

)
G(0, 0) = 0. (28)

Defining D = {y ∈ C : |y| ≤ 1, |k(y)| ≤ 1} and Dc =
{y ∈ C : |y| ≤ 1, |k(y)| > 1}, we have, for y ∈ D,

a
(
k
(
y
)
, y
)
G
(
0, y

)
+ b

(
k
(
y
)
, y
)
G
(
k
(
y
)
, 0
)

= −c(k(y), y)G(0, 0).
(29)

G(0, y) and G(x, 0) are analytic inD\[y1, y2]. When |y| ≤ 1,
k(y) is in the region containing the curve Lx. Then (29) can
be used to continue G(x, 0) as a meromorphic function up to
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Lx. The eventual poles of G(x, 0) are the zeros of b(k(y), y)
for y ∈ Dc.

The definition entails that the power series expansion of
G(0, y) has positive coefficients for |y| ≤ 1. Hence, we have
R{iG(0, y)} = 0 for y ∈ [y1, y2]. It then follows that

R

{
ib(x,h(x))
a(x,h(x))

G(x, 0)
}
= R

{−ic(x,h(x))
a(x,h(x))

G(0, 0)
}
,

for x ∈ Lx.
(30)

If a(x,h(x)) = 0 has a setA of solutions on Lx, and ai denotes
the ith solution of multiplicity mi, we can reformulate (30)
into

R

{
ib(x,h(x))

∏
ai∈A(x − ai)

mi

a(x,h(x))
G(x, 0)

}

= R

{−ic(x,h(x))∏ai∈A(x − ai)
mi

a(x,h(x))
G(0, 0)

}
,

(31)

wheremi = 0 means root ai does not exist.
Let

U(x) = b(x,h(x))
∏

ai∈A(x − ai)
mi

a(x,h(x))
, (32)

V(x) = R

{−ic(x,h(x))∏ai∈A(x − ai)
mi

a(x,h(x))
G(0, 0)

}
. (33)

and denote

Φ(x) = G(x, 0). (34)

The problem of finding the expression of G(x, 0) then
reduces to finding a function Φ(x) which is analytic in L+x ,
continuous in Lx ∪ L+x , and satisfies

R{iU(x)Φ(x)} = V(x), for x ∈ Lx. (35)

This is a typical Riemann-Hilbert boundary value problem,
and it will be demonstrated in the next subsection how to
obtain the solution.

Remark. In the case where the unit disk is not entirely
contained in L+x , we need to analytically continue the solution
Φ(x) to the unit circle to obtain G(x, 0) for all |x| ≤ 1. The
expression of function G(0, y) can be obtained in the same
manner.

4.4. Solution to the Riemann-Hilbert Problem (35). The solu-
tion of (35) can be directly obtained as in [20, pages 99−107],
whenever the contour Lx is a unit circle. The problem is more
complicated when Lx is arbitrary. Fortunately, Riemann’s
mapping theorem guarantees the existence of a conformal
mapping which maps Lx conformally onto the unit circle.
Such amapping can be fulfilled at the aid of the Theodorsen’s
procedure [21, pages 70−73], which performs the inverse
mapping from the unit circle to Lx and is stated in the
following lemma [21].

Lemma 5. The conformal mapping f0 of the unit circle z =
eit, t ∈ [0, 2π] onto the curve Lx = {x : x = ρ(φ)eiφ,φ ∈
[0, 2π]} is defined as

f0
(
eit
)
= ρ

(
φ(t)

)
eiφ(t), (36)

where f0 is assumed to be normalized by f0(0) = 0 and f ′0 (0) >
0. For |z| < 1, f0(z) is uniquely determined by

f0(z) = z exp

[
1
2π

∫ 2π

0
log ρ

(
φ(t)

) eit + z

eit − z
dt

]
, for |z| < 1,

(37)

where φ(t) satisfies

φ(t) = t − 1
2π

∫ 2π

0
log ρ

(
φ(ω)

)
cot

1
2
(ω − t)dω, 0 ≤ t ≤ 2π.

(38)

This is Theodorsen’s integral equation for φ(t); it is a nonlinear,
singular integral equation.

The details of solving the equations in Lemma 5 can be
found in [21] and will not be discussed in this paper. We
denote f (z) as the inverse of f0(z). Using Lemma 5 and the
methods in [21, pages 68−69], and [20, pages 99−107], we
can find the solution to the Riemann-Hilbert problem (35)
as below.

Define the index of the nonhomogeneous Riemann-
Hilbert boundary value problem (35) as

κ = −1
π

arg [U(x)]x∈Lx , (39)

where arg[U(x)]x∈Lx is the variation of the argument of the
function U(x) when x moves along the contour Lx in the
positive direction.

We present the solution to (35) for κ ≥ 0 in what follows.
The solution is given by Φ(x) = H( f (x)), where

H(z) = zκS(z)
2π

∫

|t|=1
t−κV(t)dt
U(t)S+(t)t

−
{∫

|t|=1
V(t)dt

U(t)S+(t)(t − z)

+ zκ
∫

|t|=1
t−κV(t)dt

U(t)S+(t)(t − z)

}
S(z)
2π

.

(40)

In the above equation,

S(z) = C · eΓ(z), (41)

where C is a nonzero constant and

Γ(z) = 1
2πi

∫

|t|=1
log[t−κJ(t)]dt

t − z
, (42)



8 EURASIP Journal on Wireless Communications and Networking

with

J(t) = iU(t)
iU(t)

,

U(t) = b
(
f0(t),h

(
f0(t)

))∏
ai∈A

(
f0(t)− ai

)mi

a
(
f0(t),h

(
f0(t)

)) ,

V(t) = R

{−ic( f0(t),h
(
f0(t)

))∏
ai∈A( f0(t)− ai)

mi

a
(
f0(t),h

(
f0(t)

))

×G(0, 0)
}
.

(43)

For t0 ∈ L, S+(t0) is defined to be the limit when t approaches
t0 along any path, which remains, however, on the left of L,
that is,

S+(t0) = lim
t→ t0,t∈L+

S(t). (44)

Applying the Plemelj-Sokhotski formulas [21, page 32], it
can be shown that, in (40),

S+(t0) = 1
2
S(t0) +

1
2πi

∫

|t|=1
S(t)
t − t0

dt. (45)

Finally, G(x, 0) is obtained through (34).
On the other hand, G(0, y) can be computed through the

similar procedures, and consequently the stability bound in
Proposition 2 can be explicitly determined.

5. Conclusions

In this paper, we studied the stability region of the hybrid
ALOHA protocol for the N > 2 case. The method of
stochastic dominance was applied to obtain the results.
Specifically, by constructing modified systems dominating
the original system, and by means of mathematical induc-
tion, the sufficient condition for stability of the N > 2 user
system was obtained. Furthermore, we elaborated on the
characterization of stability inner bounds for the N = 3 case,
for which the results were obtained by solving a nonhomo-
geneous Riemann-Hilbert boundary value problem.

Appendices

A. Proof of Pi
succ(Pi) ≤ Pi

succ(Pi) in Section 4.1

According to the partitions that Pi = {Ni, {i}} and Pi =
{{i},Ni}, we can see that the second term of (12) vanishes

for Pi
succ(Pi) and the third term vanishes for Pi

succ(Pi). The
following inequality then holds:

Pi
succ(Pi) = pi

∑

zS∈{0,1}|S|

⎛
⎝Pr

{
χ
(
N

0
S

)
= zS

}∏

k∈Ni

(
1− pk

)zk
⎞
⎠

+
2∑

j=1
pi, j

∑

zS∈{0,1}|S|
Pr
{
χ
(
N

0
S

)
= zS

}

·
⎡
⎣
∑

k∈Ni

pzkk, j
∏

k′ /= k

(
1− pk′

)zk′
⎤
⎦

≥ pi
∑

zS∈{0,1}|S|

⎛
⎝Pr

{
χ
(
N

0
S

)
= zS

}∏

k∈Ni

(
1− pk

)
⎞
⎠

+
2∑

j=1
pi, j

∑

zS∈{0,1}|S|
Pr
{
χ
(
N

0
S

)
= zS

}

·
⎡
⎣
∑

k∈Ni

pk, j
∏

k′ /= k

(
1− pk′

)
⎤
⎦

= pi
∏

k∈Ni

(
1− pk

)
+

2∑

j=1
pi, j

∑

k∈Ni

pk, j
∏

k′ /= k

(
1− pk′

)

= Pi
succ

(
Pi

)
.

(A.1)

This concludes the proof.

B. Formulation of Functional Equation (16)

Let D10(t) be a binary-valued random variable that takes
value 1 if Nt

1 > 0,Nt
2 = 0, and the departure from

queue 1 is successful. Similarly, D01(t) is a binary-valued
random variable that takes value 1 if Nt

2 > 0,Nt
1 = 0, and

the departure from queue 2 is successful. In the situation
when both queues are nonempty, the binary-valued variables
Di

11(t) for i = 1, 2 take value 1 when departure from queue i
is successful. The recursive equations for Nt

i are given as

Nt+1
1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

βt1, Nt
1 = 0, Nt

2 = 0,

βt1 +Nt
1 −D10(t), Nt

1 > 0, Nt
2 = 0,

βt1, Nt
1 = 0, Nt

2 > 0,

βt1 +Nt
1 −D1

11(t), Nt
1 > 0, Nt

2 > 0,

(B.1)

Nt+1
2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

βt2, N t
1 = 0, Nt

2 = 0,

βt2, Nt
1 > 0, Nt

2 = 0,

βt2 +Nt
2 −D01(t), Nt

1 = 0, Nt
2 > 0,

βt2 +Nt
2 −D2

11(t), Nt
1 > 0, Nt

2 > 0.

(B.2)
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If a persistent user 3 exists, that is we investigate the partition
P3, then from (B.1) and (B.2), we have

E
(
xN

t+1
1 yN

t+1
2

)

= E
(
xβ

t
1 yβ

t
2

)

×
{
E
(
1
[
Nt

1 = 0, Nt
2 = 0

])

+ E
(
xN

t
11
[
Nt

1 > 0, Nt
2 = 0

]) ·
[
Δ1

x
+ 1− Δ1

]

+ E
(
yN

t
21
[
Nt

1 = 0, Nt
2 > 0

]) ·
[
Δ2

y
+ 1− Δ2

]

+ E
(
xN

t
1 yN

t
21
[
Nt

1 > 0, Nt
2 > 0

])

·
[
Δ3

x
+
Δ4

y
+
Δ5

xy
+ 1− Δ3 − Δ4 − Δ5

]}
,

(B.3)

where 1[·] is the indicator function and

Δ1 = p1
(
p3q{1}, {1} + p3q{1}|{1,3}

)
,

Δ2 = p2
(
p3q{2},{2} + p3q{2}|{2,3}

)
,

Δ3 = p1
(
p2p3q{1},{1} + p2p3q{1},{1,2} + p2p3q{1}|{1,3}

)
,

Δ4 = p2
(
p1p3q{2},{2} + p1p3q{2},{1,2} + p1p3q{2}|{2,3}

)
,

Δ5 = p1p2p3q{1,2},{1,2}.
(B.4)

Note that

G3(0, 0) = lim
t→∞E

(
1
[
Nt

1 = 0, Nt
2 = 0

])
, (B.5)

G3(x, 0)−G3(0, 0) = lim
t→∞E

(
xN

t
11
[
Nt

1 > 0, Nt
2 = 0

])
, (B.6)

G3
(
0, y

)−G3(0, 0) = lim
t→∞E

(
yN

t
21
[
Nt

1 = 0, Nt
2 > 0

])
,

(B.7)

G3
(
x, y

)
+G3(0, 0)−G3(x, 0)−G3

(
0, y

)

= lim
t→∞E

(
xN

t
1 yN

t
21
[
Nt

1 > 0, Nt
2 > 0

])
.

(B.8)

Assuming the Simplistic Assumption, from (B.3), it follows
that

K
(
x, y

)
G3
(
x, y

) = a
(
x, y

)
G3
(
0, y

)
+ b

(
x, y

)
G3(x, 0)

+ c
(
x, y

)
G3(0, 0),

(B.9)

where K(x, y), a(x, y), b(x, y), and c(x, y) are given in (17).

C. Proof of Lemma 2

When y → 0+,

A(0+) ∼
[
λ1p1p2

(
1− p3

2

)](
λ2 +

λ2
y

)
,

B(0+) ∼
[
−λ1p1p2

(
1− p3

2

)
− λ1

p1p2p3
2

](
λ2 +

λ2
y

)
,

C(0+) ∼
[
λ1

p1p2p3
2

](
λ2 +

λ2
y

)
.

(C.1)

Hence,

t
(
0+,φ

) = −B(0+)− 2 cosφ
√
A(0+)C(0+)

< −
⎧
⎪⎨
⎪⎩

[
λ1p1p2

(
1− p3

2

)
+ λ1

p1p2p3
2

]

+ 2

√√√√
[
λ1p1p2

(
1− p3

2

)]
·
[
λ1

p1p2p3
2

]⎫⎪⎬
⎪⎭

×
(
λ2 +

λ2
y

)

= −∞,
(C.2)

that is, t(0+,φ) = −∞.
When y = 1, then,

A(1) = λ1

[
1− p1p2

(
1− p3

2

)
− p1p2p3

2

]
,

B(1) = (2λ1 − 1)

[
p1p2

(
1− p3

2

)
+

p1p2p3
2

]
− λ1,

C(1) = λ1

[
p1p2

(
1− p3

2

)
+

p1p2p3
2

]
.

(C.3)

It can be easily seen that−B(1) = A(1)+C(1), hence t(1,φ) =
−B(1)− 2 cosφ

√
A(1)C(1) > 0.

As y → ∞,

A
(
y
) ∼ λ1λ2Δy,

B
(
y
) ∼

[
λ1p1p2

(
1− p3

2

)
+ λ1Δ

]
λ2y,

C
(
y
) ∼ λ1λ2p1p2

(
1− p3

2

)
y,

(C.4)
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then,

t
(
y,φ

)
< −B(y) + 2

√
A
(
y
)
C
(
y
)

= −yλ2
{
λ1p1p2

(
1− p3

2

)
+ λ1Δ

− 2

√(
λ1Δ

)[
λ1p1p2

(
1− p3

2

)] }

= −yλ2
(√

λ1p1p2

(
1− p3

2

)
−
√
λ1Δ

)2

.

(C.5)

Hence, t(∞,φ) < 0.
Consequently, t(y,φ) = 0 has at least two real roots

r1(φ) and r2(φ) satisfying 0 < r1(φ) < 1 < r2(φ). Since
y2t(y,φ)t(y,φ + π) is a polynomial of degree four in the
variable y, it can be deduced that t(y,φ) has exactly two real
roots, and this completes the proof.

D. Proof of Lemma 3

The first part of the lemma results from the general theory of
polynomials of two complex variables. The second assertion
is proved by using Rouche’s theorem as below.

K(x, y) can be rewritten as

K
(
x, y

) = xy − xyF
(
x, y

)
g
(
x, y

)

xyF
(
x, y

) , (D.1)

where

g
(
x, y

) = p1p2
(
1− p3/2

)

x
+

p2p1
(
1− p3/2

)

y
+

p1p2p3
2xy

+ Δ.

(D.2)

For |y| = 1 and y /= 1, |x| = 1,
∣∣xyF

(
x, y

)
g
(
x, y

)∣∣

=
∣∣∣∣∣
(
xλ1 + λ1

)(
yλ2 + λ2

)

×
[
p1p2

(
1− p3

2

)
y + p2p1

(
1− p3

2

)
x

+
p1p2p3

2
+ +Δxy

]∣∣∣∣∣

≤ 1

= ∣∣xy
∣∣.

(D.3)

Based on Rouche’s theorem, this implies that for |y| = 1,
y /= 1, there exists exactly one x, |x| < 1, such that xy −
xyF(x, y)g(x, y) = 0 and hence K(x, y) = 0.

For y = 1, K(x, 1) = 0 reduces to

(x − 1)

⎛
⎝x −

λ1
[
p1p2

(
1− p3/2

)
+ p1p − 2p3/2

]

λ
[
1− p1p2

(
1− p3/2

)− p1p − 2p3/2
]

⎞
⎠ = 0.

(D.4)

When λ1 < p1p2(1 − p3/2) + p1p2p3/2 as implied by (19),
x = 1 is the only root.
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