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Transmit diversity is necessary in harsh environments to reduce the required transmit power for achieving a given error
performance at a certain transmission rate. In networks, cooperative communication is a well-known technique to yield transmit
diversity and network coding can increase the spectral efficiency. These two techniques can be combined to achieve a double
diversity order for a maximum coding rate Rc = 2/3 on the Multiple-Access Relay Channel (MARC), where two sources share
a common relay in their transmission to the destination. However, codes have to be carefully designed to obtain the intrinsic
diversity offered by the MARC. This paper presents the principles to design a family of full-diversity LDPC codes with maximum
rate. Simulation of the word error rate performance of the new proposed family of LDPC codes for the MARC confirms the full
diversity.

1. Introduction

Multipath propagation (small-scale fading) is an important
salient effect of wireless channels, causing possible destruc-
tive adding of signals at the receiver. When the fading
varies very slowly, error-correcting codes cannot combat
the detrimental effect of the fading on a point-to-point
channel. Space diversity, that is, transmitting information
over independent paths in space, is a means to mitigate the
effects of slowly varying fading. Cooperative communication
[1–4] is a well-known technique to yield transmit diversity.
The most elementary example of a cooperative network is the
relay channel, consisting of a source, a relay, and a destination
[3, 5]. The task of the relay is specified by the strategy or
protocol. In the case of coded cooperation [4], the relay
decodes the message received from the source, and then
transmits to the destination additional parity bits related to
the message; this results in a higher information theoretic
spectral efficiency than simply repeating the message received
from the source [6]. The resulting outage probability [7]
exhibits twice the diversity, as compared to point-to-point
transmission. However, the overall error-correcting code

should be carefully designed in order to guarantee full
diversity [8].

We focus on capacity achieving codes, more precisely,
low-density parity-check (LDPC) codes [9], because their
word error rate (WER) performance is quasi-independent of
the block length [10] when the block length is becoming very
large.

Considering two users, S1 and S2, and a common
destination D, a double diversity order can be obtained by
cooperating. When no common relay R is used, the maximum
achievable coding rate that allows to achieve full diversity
is Rc = 0.5 (according to the blockwise Singleton bound
[7, 11]). However, when one common relay R for two users
is used (a Multiple Access Relay Channel—MARC), it can
be proven that the maximum achievable coding rate yielding
full diversity is Rc = 2/3 [12]. The increase of the maximum
coding rate yielding full diversity from Rc = 0.5 to Rc =
2/3 is achieved through network coding [13] at the physical
layer, that is, R sends a transformation of its incoming bit
packets to D (only linear transformations over GF(5) are
considered here). From a decoding point of view, this linear
transformation can be interpreted as additional parity bits of
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a linear block code. Hence, the destination will decode a joint
network-channel code. Therefore, the problem formulation
is how to design a full-diversity joint network-channel code
construction for a rate Rc = 2/3.

Up till now, no family of full-diversity LDPC codes with
Rc = 2/3 for coded cooperation on the MARC has been
published. Chebli, Hausl, and Dupraz obtained interesting
results on joint network-channel coding for the MARC with
turbo codes [14] and LDPC codes [15, 16], but these authors
do not elaborate on a structure to guarantee full diversity at
maximum rate, which is the most important criterion for a
good performance on fading channels. A full-diversity code
structure describes a family of LDPC codes or an ensemble of
LDPC codes, permitting to generate many specific instances
of LDPC codes.

In this paper, we present a strategy to produce excel-
lent LDPC codes for the MARC. First, we outline the
physical layer network coding framework. Then, we derive
the conditions on the MARC model and the coding rate
necessary to achieve a double diversity order. In the second
part of the paper, we elaborate on the code construction.
A joint network-channel code construction is derived that
guarantees full diversity, irrespective of the parameters of the
LDPC code (the degree distributions). Finally, the coding
gain can be improved by selecting the appropriate degree
distributions of the LDPC code [17] or using the doping
technique [18] as shown in Section 7.2. Simulation results
for finite and infinite length (through density evolution) are
provided. To the best of authors’ knowledge, this is the first
time that a joint full-diversity network-channel LDPC code
construction for maximum rate is proposed.

Channel-State Information is assumed to be available
only at the decoder. In order to simplify the analysis, we
consider orthogonal half-duplex devices that transmit in
separate timeslots.

2. SystemModel and Notation

2.1. Multiple Access Relay Channel. We consider a Multiple
Access Relay Channel (MARC) with two users S1 and S2,
a common relay R, and a common destination D. Each
of the three transmitting devices transmits in a different
timeslot: S1 in timeslot 1, S2 in timeslot 2, and R in timeslot
3 (Figure 1). In this paper, we limit the scheme to two
sources, but any extension to a larger number of sources is
possible by applying the principles explained in the paper.
We consider a joint network-channel code over this network,
that is, an overall codeword c = [c1, . . . , cN ]T is received at
the destination during timeslot 1, timeslot 2, and timeslot
3, which form together one coding block. The codeword
is partitioned into three parts: cT = [c(1)Tc(2)Tc(3)T],
where c(1) = [c1, . . . , cNs]

T , c(2) = [cNs+1, . . . , c2Ns]
T , and

c(3) = [c2Ns+1, . . . , cN ]T , and where S1 and S2 transmit Ns bits
(note that each user is given an equal slot length because of
fairness), and R transmits Nr bits, so that N = 2Ns + Nr . We
define the level of cooperation, β, as the ratio Nr/N . Because
the users do not communicate between each other, the bits

S1

S2

R

D

Timeslot 1

Timeslot 3

Timeslot 2

Figure 1: The multiple access relay channel model. The solid arrows
correspond to timeslot 1, the dotted arrows to timeslot 2, and the
dashed arrow to timeslot 3.

c(1), transmitted by S1, and the bits c(2), transmitted by S2,
are independent.

Since the focus in this paper is on coding, BPSK signaling
is used for simplicity, so that the transmitters send symbols
x(b)n ∈ {±1}, where b stands for the timeslot number
and n is the symbol time index in timeslot b. The channel
is memoryless with real additive white Gaussian noise and
multiplicative real fading. The fading coefficients are only
known at the decoder side where the received signal vector
at the destination D is

y(b) = αbx(b) + w(b), b = 1, . . . , 3, (1)

where y(1) = [y(1)1, . . . , y(1)Ns
]T , y(2) = [y(2)1, . . . ,

y(2)Ns
]T , and y(3) = [y(3)1, . . . , y(3)Nr

]T are the received
complex signal vectors in timeslots 1, 2, and 3, respectively.
The noise vector w(b) consists of independent noise samples
which are real Gaussian distributed, that is, w(b)n ∼
N (0, σ2), where 1/2σ2 is the average signal-to-noise ratio
γ = Es/N0. The Rayleigh distributed fading coefficients α1,
α2 and α3 are independent and identically distributed. (The
average signal-to-noise ratios on the S1-D, S2-D; and R-D
channels are the same.) The channel model is illustrated in
Figure 2. In some parts of the paper, a block binary erasure
channel (block BEC) [19, 20] will be assumed, which is a
special case of block fading. In a block BEC, the fading gains
belong to the set {0,∞}, where α = 0 means the link is a
complete erasure, while α = ∞means the link is perfect.

We assume that no errors occur on the S1-R and S2-R
channels. This simplifies the analysis and does not change the
criteria for the code to attain full-diversity, as will be shown
in Section 3.2.

2.2. LDPC Coding. We focus on binary LDPC codes
C[N , 2K]2 with block length N and dimension 2K , and
coding rate Rc = 2K/N . (We consider two sources each with
K information bits and an overall error-correcting code with
N codebits.) The code C is defined by a parity-check matrix
H , or equivalently, by the corresponding Tanner graph [7, 9].
Regular (db,dc) LDPC codes have a parity-check matrix with
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Figure 2: Codeword representation for a multiple access relay channel. The fading gains α1, α2, and α3 are independent.

db ones in each column and dc ones in each row. For irregular
(λ(x), ρ(x)) LDPC codes, these numbers are replaced by the
so-called degree distributions [9]. These distributions are the
standard polynomials λ(x) and ρ(x) [21]:

λ(x) =
db∑

i=2

λix
i−1, ρ(x) =

dc∑

i=2

ρix
i−1, (2)

where λi (resp., ρi) is the fraction of all edges in the Tanner
graph, connected to a bit node (resp., check node) of degree
i. Therefore, λ(x) and ρ(x) are sometimes referred to as left
and right degree distributions from an edge perspective. In

Section 6, the polynomials
◦
λ(x) and

◦
ρ(x), which are the left

and right distributions from a node perspective, will also be
adopted:

◦
λ(x) =

db∑

i=2

◦
λix

i−1,
◦
ρ(x) =

dc∑

i=2

◦
ρix

i−1, (3)

where
◦
λi (resp.,

◦
ρi) is the fraction of all bit nodes (resp.,

check nodes) in the Tanner graph of degree i, hence
◦
λi =

(λi/i)/(
∑

j λ j / j) and likewise with
◦
ρi.

The goal of this research is to design a full-diversity
ensemble of LDPC codes for the MARC. An ensemble of
LDPC codes is the set of all LDPC codes that satisfy the left
degree distribution λ(x) and right degree distribution ρ(x).

In this paper, not all bit nodes and check nodes in
the Tanner graph will be treated equally. To elucidate the
different classes of bit nodes and check nodes, a compact
representation of the Tanner graph, adopted from [22] and
also known as protograph representation [9, 23, 24] (and
the references therein), will be used. In this compact Tanner
graph, bit nodes and check nodes of the same class are
merged into one node.

2.3. Physical Layer Network Coding. The coded bits transmit-
ted by R are a linear transformation of the information bits
from S1 and S2, denoted as i(1) and i(2), where both vectors
are of length K . (In some papers, the coded bits transmitted
by R are a linear transformation of the transmitted bits from
S1 and S2, which boils down to the same as the information
bits, since the transmitted bits (parity bits and information
bits) are a linear transformation of the information bits.) Let
∗ stand for a matrix multiplication in GF(5);

c(3) = T ∗
[

i(1)
i(2)

]
. (4)

The matrix T represents the network code, which has to
be designed. Let us split T into two matrices HN and V such
that T = H−1

N ∗ V , where HN is an Nr × Nr matrix and V is
an Nr × 2K matrix. Now we have the following relation:

HN ∗ c(3) = V ∗
[

i(1)
i(2)

]
. (5)

Equation (5) can be inserted into the parity-check matrix
defining the overall error-correcting code. Instead of design-
ing T , we can design HN and V using principles from coding
theory.

3. Diversity and Outage Probability of MARC

3.1. Achievable Diversity Order. The formal definition of
diversity order on a block fading channel is well known [25].

Definition 1. The diversity order attained by a code C is
defined as

d = − lim
γ→∞

logPe
log γ

, (6)

where Pe is the word error rate after decoding.

However, in this document, as far as the diversity order
is concerned, we mostly use a block BEC. It has been proved
that a coding scheme is of full diversity on the block fading
channel if and only if it is of full diversity on a block BEC
[22]. The channel model is the same as for block fading,
except that the fading gains belong to the set {0,∞}. Suppose
that on the S1-D, S2-D, and R-D links, the probability of a
complete erasure, that is, α = 0, is ε.

Definition 2. A code C achieves a diversity order d on a block
BEC if and only if [26]

Pe ∝ εd, (7)

where Pe is the word error rate after decoding and ∝ means
proportional to.

Therefore, it is sufficient to show that two erased channels
cause an error event to prove that d < 3, because the
probability of this event is proportional to ε2. Consider, for
example, that the R-D channel has been erased, as well as the
S1-D channel. Then, the information from S1 can never reach
D, because S2 does not communicate with S1. Therefore, the
diversity order d < 3.
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A diversity order of two is achieved if the destination
is capable of retrieving the information bits from S1 and
S2, when exactly one of the S1-D, S2-D, or R-D channels is
erased. The maximum coding rate allowing the destination
to do so will be derived in Section 3.4.

3.2. Perfect Source-Relay Channels. Here, we will show that
the achieved diversity at D does not depend on the quality of
the source-relay (S-R) channel. Therefore, in the remainder
of the paper, we will assume errorless S-R channels to
simplify the analysis.

Let us consider a simple block fading relay channel
with one source S, one relay R, and one destination D. All
considered point-to-point channels (S-R, S-D, R-D) have an
intrinsic diversity order of one. In a cooperative protocol,
where R has to decode the transmission from S in the first
slot, two cases can be distinguished: (1) R is able to decode
the transmission from S and cooperates with S in the second
slot, hence D receives two messages carrying information
from S; (2) R is not able to decode the transmission from
S and therefore does not transmit in the second slot, hence
D receives only one message carrying information from
S, namely, on the S-D channel. Now, the decoding error
probability, that is, the WER Pe, at D can be written as
follows:

Pe = P(case 1)P(e | case 1) + P(case 2)P(e | case 2).
(8)

The probability P(case 2) is equal to the probability of
erroneous decoding at R. For large γ, we have P(case 2) ∝
1/γ and P(case 1) = (1 − c/γ) [25], where c is a constant.
The probability P(e | case 2) is equal to the probability of
erroneous decoding on the S-D channel; hence for large γ,
P(e | case 2) ∝ 1/γ. Now, the error probability Pe at large γ
is proportional to

Pe ∝ P(e | case 1) +
c′

γ2
, (9)

where c′ is a positive constant. According to Definition 1,
full-diversity requires that at large γ, Pe ∝ 1/γ2. We see
that this only depends on the behavior of P(e | case 1)
at large γ, because the second case where the relay cannot
decode the transmission from the source in the first slot
does automatically give rise to a double diversity order
without the need for any code structure. This means that
as far as the diversity order is concerned, it is sufficient
to assume errorless S-R channels (yielding Pe = P(e |
case 1)). Furthermore, techniques [8] are known to extend
the proposed code construction to nonperfect source-relay
channels, so that, for the clarity of the presentation, perfect
source-relay channels are assumed in the remainder of the
paper.

3.3. Outage Probability of the MARC. We denote an outage
event of the MARC by Eo. An outage event is the event that
the destination cannot retrieve the information from S1 or
S2, that is, the transmitted rate is larger than or equal to the

instantaneous mutual information. The transmitted rate ru
is the average spectral efficiency of user u whereas r is the
overall spectral efficiency, so that r = r1 + r2. (The average
spectral efficiency denotes the average number of bits per
overall channel uses, including the channel uses of the other
devices, that is, transmitted over the MARC channel.) We can
interprete r as the total spectral efficiency, that is, transmitted
over the network. The MARC block fading channel has a
Shannon capacity, that is, essentially zero since the fading
gains make the mutual information a random variable which
does not allow to achieve an arbitrarily small word error
probability under a certain spectral efficiency. This word
error probability is called information outage probability in
the limit of large block length, denoted by

Pout = P(Eo). (10)

The outage probability is a lower bound on the average word
error rate of coded systems [27].

The mutual information from user 1 to the destination
is the weighted sum of the mutual informations from the
channels from S1-D and R-D. (The transmission of R
corresponds to redundancy for S1 and S2 at the same time.
From the point of view of S1, the transmission of R contains
interference from S2. By using the observations from S2, the
decoder at the destination can at most cancel the interference
from S2 in the transmission from R.) Hence the spectral
efficiency r1 is upper bounded as

r1 <

(
1− β

2

)
I(S1;D) + βI(R;D), (11)

where (1 − β)/2 and β are the fractions of the time during
which S1 and R are active [25, Section 5.4.4]. The same holds
for user 2:

r2 <

(
1− β

2

)
I(S2;D) + βI(R;D). (12)

Combining (11) and (12) yields

r <

(
1− β

2

)
I(S2;D) +

(
1− β

2

)
I(S1;D) + 2βI(R;D).

(13)

However, there is a tighter bound for r. Indeed, (11) and
(12) both rely on the fact that the destination can cancel the
interference from the other user on the relay-to-destination
channel, but therefore, the destination must be able to
decode one of the users’ information from their respective
transmission. Hence, there exist two scenarios: (1) in the
first scenario, D decodes the information of S2 from the
transmission of S2 (r2 < ((1 − β)/2)I(S2;D)), so that it can
cancel the interference from S2 in the transmission from R
((11) holds); (2) the second scenario is the symmetric case
(r1 < ((1−β)/2)I(S1;D) and (12) holds). Both scenarios lead
to a tighter bound for r:

r <

(
1− β

2

)
I(S2;D) +

(
1− β

2

)
I(S1;D) + βI(R;D).

(14)
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Figure 3: In these three cases, where each time one link is erased, a full-diversity code construction allows the destination to retrieve the
information bits from both S1 and S2.

Bound (14) can be verified when considering the instan-
taneous mutual information between the sources and the
sinks in the network. We denote the instantaneous mutual
information of the MARC as I(α, γ), which is a function of
the set of fading gains α = [α1,α2,α3] and average SNR γ.
The overall mutual information is

I
(
α, γ

) =
(
1− β

)

2
I(S1;D) +

(
1− β

)

2
I(S2;D) + βI(R;D),

(15)

because the three timeslots behave as parallel Gaussian chan-
nels whose mutual informations add together. Of course, the
timeslots timeshare a time-interval, which gives a weight to
each mutual information term [25, Section 5.4.4]. The total
transmitted rate must be smaller than I(α, γ), which yields
(14).

From the above analysis, we can now write the expression
of an outage event:

Eo =
{[

r1 ≥
(

1− β

2

)
I(S1;D) + βI(R;D)

]

∪
[
r2 ≥

(
1− β

2

)
I(S2;D) + βI(R;D)

]

∪
[
r ≥

(
1− β

2

)
(I(S2;D) + I(S1;D)) + βI(R;D)

]}
.

(16)

The three terms I(S1;D), I(S2;D), and I(R;D) are each the
average mutual information of a point-to-point channel with
input x ∈ {−1, 1}, received signal y = αx + w with w ∼
N (0, σ2), conditioned on the channel realization α, which is
determined by the following well-known formula [28]:

I(X ;Y | α) = 1− EY |{x=1,α}

{
log2

(
1 + exp

[−2yα
σ2

])}
,

(17)

where EY |{x=1,α} is the mathematical expectation over Y
given x = 1 and α. Therefore, three terms I(S1;D), I(S2;D),
and I(R;D) are

I(S1;D) = EY(1)|{x(1)=1,α1}
{

log2

(
1 + e−2y(1)α1/σ2

)}
,

I(S2;D) = EY(2)|{x(2)=1,α2}
{

log2

(
1 + e−2y(2)α2/σ2

)}
,

I(R;D) = EY(3)|{x(3)=1,α3}
{

log2

(
1 + e−2y(3)α3/σ2

)}
.

(18)

Now, the outage probability can be easily determined
through Monte-Carlo simulations to average over the fading
gains and to average over the noise. (Averaging over the
noise can be done more efficiently using Gauss-Hermite
quadrature rules [29].)

3.4. Maximum Achievable Coding Rate for Full Diversity. In
Section 3.1, we established that the maximum achievable
diversity order is two. Here, we will derive an upper bound
on the coding rate yielding full diversity, valid for all discrete
constellations (assume a discrete constellation with M bits
per symbol).

It has been proved that a coding scheme is of full diversity
on the block fading channel if and only if it is of full diversity
on a block BEC [22]. So let us assume a block BEC, hence
αi ∈ {0,∞}, i = 1, 2, 3. The strategy to derive the maximum
achievable coding rate is as follows: erase one of the three
channels (see Figure 3), and derive the maximum spectral
efficiency that allows successful decoding at the destination.
(Another approach from a coding point of view has been
made in [30].)

The criteria for successful decoding at the destination
are given in the previous subsection see (11), (12), and
(14). Because one of the three channels has been erased
(see Figure 3), one of the mutual informations is zero. The
channels that are not erased have a maximum mutual infor-
mation M (discrete signaling). A user’s spectral efficiency
allows successful decoding if and only if

ri ≤M min
β

((
1− β

2

)
,β

)
, i = 1, 2, (19)

r ≤M min
β

(
(
1− β

)
,

1 + β

2

)
, (20)

It can be easily seen that (20) is a looser bound than (19)
(r = r1 + r2), so that finally

r ≤ 2M min
β

((
1− β

2

)
,β

)
, (21)

which is maximized if β = 1/3, such that r < 2M/3. The
destination decodes all the information bits on one graph
that represents an overall code with coding rate Rc. Hence the
maximum achievable overall coding rate is Rc = r/M = 2/3.
It is clear that to maximize r = r1 +r2, the spectral efficiencies
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r1 and r2 should be equal, that is, all users in the network
transmit at the same rate. In this case, (21) and (19) are
equivalent and it is sufficient to bound the sum-rate only. In
our design, we will take r1 = r2 = 1/3, so that the maximum
achievable coding rate can be achieved.

4. Full-Diversity Coding for Channels with
Multiple Fading States

In the first part of the paper, we established the channel
model, the physical layer network coding framework, the
maximum achievable diversity order, and the maximum
achievable coding rate yielding full diversity. In a nutshell,
if the relay transmits a linear transformation of the infor-
mation bits from both sources during 1/3 of the time, a
double diversity order can be achieved with one overall error-
correcting code with a maximum coding rate Rc = 2/3.
Now, in the second part of the paper, this overall LDPC
code construction that achieves full diversity for maximum
rate will be designed. First, in this section, rootchecks
will be introduced, a basic tool to achieve diversity on
fading channels under iterative decoding [22]. Then, in the
following section, application of these rootchecks to the
MARC will define the network code, that is, HN and V , such
that a double-diversity order is achieved. Finally, these claims
will be verified by means of simulations for finite length and
infinite length codes.

4.1. Diversity Rule. In order to perform close to the outage
probability, an error-correcting code must fulfil two criteria:

(1) full-diversity, that is, the slope of the WER is the same
as the slope of the outage probability at γ → ∞;

(2) coding gain, that is, minimizing the gap between the
outage probability and the WER performance at high
SNR.

The criteria are given in order of importance. The first
criterion is independent of the degree distributions of the
code [22], hence serves to construct the skeleton of the code.
It guarantees that the gap between the outage probability and
the WER performance is not increasing at high SNR. The
second criterion can be achieved selecting the appropriate
degree distributions or applying the doping techniques (see
Section 7.2). In this paper, the most attention goes to the first
criterion.

In the belief propagation (BP) algorithm, probabilistic
messages (log-likelihood ratios) are propagating on the
Tanner graph. The behavior of the messages for γ → ∞
determines whether the diversity order can be achieved
[17]. However, the BP algorithm is numerical and messages
propagating on the graph are analytically intractable. For-
tunately, there is another much simpler approach to prove
full diversity. Diversity is defined at γ → ∞. In this region
the fading can be modeled by a block BEC, an extremal case
of block-Rayleigh fading. Full diversity on the block BEC is
a necessary and sufficient condition for full diversity on the
block-Rayleigh fading channel [22]. The analysis on a block
BEC channel is a very simple (bits are erased or perfectly

known) but very powerful means to check the diversity order
of a system.

Proposition 1. One obtains a diversity order d = 2 on the
MARC, provided that all information bits can be recovered,
when any single timeslot is erased.

This rule will be used in the remainder of the paper to
derive the skeleton of the code.

4.2. Rootcheck. Applying Proposition 1 to the MARC leads to
three possibilities (Figure 3).

Case 1. The S1-D channel is erased: α1 = 0, α2 = ∞, α3 = ∞

Case 2. The S2-D channel is erased: α1 = ∞, α2 = 0, α3 = ∞

Case 3. The R-D channel is erased: α1 = ∞, α2 = ∞, α3 = 0.

Let us zoom on the decoding algorithm to see what is
happening. We illustrate the decoding procedure on a
decoding tree, which represents the local neighborhood of
a bit node in the Tanner graph (the incoming messages
are assumed to be independent). When decoding, bit nodes
called leaves pass extrinsic information through a check
node to another bit node called root (Figure 4). Because we
consider a block BEC channel, the check node operation
becomes very simple. If all leaf bits are known, the root bit
becomes the modulo-2 sum of the leaf bits, otherwise, the
root bit is undetermined (P(bit=1)=P(bit=0)=0.5). Dealing
with Case 3 is simple: let every source send its information
uncoded and R sends extra parity bits. If D receives the
transmissions of S1 and S2 perfectly, it has all the information
bits. So the challenging cases are the first two possibilities.
Let us assume that the nodes corresponding to the bits
transmitted by S1, S2, and R are filled red, blue, and white,
respectively. Assume that all red (blue) bits are erased at D. A
very simple way to guarantee full diversity is to connect a red
(blue) information bit node to a rootcheck (Figures 4(a) and
4(b)).

Definition 3. A rootcheck is a special type of check node,
where all the leaves have colors that are different from the
color of its root.

Assigning rootchecks to all the information bits is the
key to achieve full diversity. This solution has already been
applied in some applications, for example, the cooperative
multiple access channel (without external relay) [8]. Note
that a check node can be a rootcheck for more than one bit
node, for example, the second rootcheck in Figure 4.

4.3. An Example for the MARC. The sources S1 and S2

transmit information bits and parity bits that are related to
their own information, and R transmits information bits and
parity bits related to the information from S1 and S2. The
previous description naturally leads to 8 different classes of
bit nodes. Information bits of S1 are split into two classes:
one class of bits is transmitted on fading gain α1 (red)
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Red

+

Root

White

Leaves

White Blue White Blue

(a)

Blue

+

Root

White

Leaves

White Red White White

(b)

Figure 4: Two examples of a decoding tree, where we distinguish
a root and the leaves. While decoding, the leaves pass extrinsic
information to the root. Both examples are rootchecks; the root can
be recovered if bits corresponding to other colors are not erased. (a)
recovers the red root bit if all red bits are erased. (b) recovers the
blue root bit if all blue bits are erased.

and is denoted as 1i1, the other class is transmitted on α3

(white) and denoted as 2i1; similarly, red and white parity
bits derived from the message of S1 are of the classes 1p1 and
2p1, respectively. Likewise, bits related to S2 are split into four
classes: blue bits 1i2 and 1p2 (transmitted on α2), and white
bits 2i2 and 2p2 (transmitted on α3). The subscripts of a class
refer to the associated user. In the remainder of the paper, the
vectors 1i1, 2i1, 1p1, and 2p1 collect the bits of the classes 1i1,
2i1, 1p1, and 2p1, respectively. A similar notation holds for
S2. This notation is illustrated in Figure 5.

Above, we concluded that all information bits should
be the root of a rootcheck. The class of rootchecks for
1i1 is denoted as 1c. Translating Figure 4 to its matrix
representation renders

1i1 1p1
{

1i2, 1p2, 2i1, 2p1, 2i2, 2p2
}

[I 0 Hrest ] 1c. (22)

The identity matrix concatenated with a matrix of zeros
assures that bits of the class 1i1 are the only red bits connected

S1

S2

R

D

[1i1 1p1]

[2i1 2p1 2i2 2p2]

[1i2 1p2]

Figure 5: The multiple access relay channel model with the 8
introduced classes of bit nodes.

to check nodes of the class 1c. (Note that the identity matrix
can be replaced by a permutation matrix. For the simplicity
of the notation, in the rest of the paper I will be used.)
As the bits from S1 and S2 are independent, the matrix
representation can be further detailed:

1i1 1p1 1i2 1p2
{

2i1, 2p1
}

2i2 2p2

[I 0 0 0 H′
rest 0 0] 1c. (23)

Hence, a full-diversity code construction for the MARC can
be formed by assigning this type of rootchecks (introducing
new classes 2c, 3c, and 4c) to all information bits:

1i1 1p1 1i2 1p2 2i1 2p1 2i2 2p2⎡
⎢⎢⎢⎣

I
H1i1

0
0

0
H1p1

0
0

0
0
I

H1i2

0
0
0

H1p2

H2i1
I
0
0

H2p1

0
0
0

0
0

H2i2
I

0
0

H2p2

0

⎤
⎥⎥⎥⎦

1c
2c
3c
4c.
(24)

(The reader can verify that this is a straightforward extension
of full-diversity codes for the block fading channel [22].)
S1 transmits 1i1 and 1p1, S2 transmits 1i2 and 1p2, and
the common relay first transmits 2i1 and 2p1 and then
transmits 2i2 and 2p2, hence the level of cooperation is
β = 0.5. The reader can easily verify that if only one color
is erased, all information bits can be retrieved after one
decoding iteration. Note that both sources do not transmit
all information bits, but the relay transmits a part of the
information bits. This is possible because if R receives 1i1

and 1p1 perfectly it can derive 2i1 (because of the rootchecks
2c) and consequently 2p1 (after reencoding). (This code
construction can be easily extended to nonperfect relay
channels using techniques described in [8].) The same holds
for S2. It turns out that splitting information bits in two parts
and letting one part to be transmitted on the first fading
gain and the other part on the second fading gain is the
only way to guarantee full diversity for maximum coding rate
[22]. This code construction is semirandom, because only
parts of the parity-check matrix are randomly generated.
However, every set of rows and set of columns contains
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a randomly generated matrix and, therefore, can conform
to any degree distribution. It has been shown that despite
the semirandomness (due to the presence of deterministic
blocks), these LDPC codes are still very powerful in terms
of decoding threshold [22]. No network coding has been
used to obtain the code construction discussed above. The
aim of this subsection was to show that through rootchecks,
it is easy to construct a full-diversity code construction.
However, when applying network coding, as will be discussed
in Section 5, the spectral efficiency can be increased.

4.4. Rootchecks for Punctured Bits. In the previous sub-
section, we have illustrated that, through rootchecks, full-
diversity can be achieved. Another feature of rootchecks is to
retrieve bits that have not been transmitted, which are called
punctured bits. Punctured bits are very similar to erased bits,
because both are not received by the destination. However,
the transmitter knows the exact position of the punctured
bits inside the codeword which is not the case for erased
bits. Formally, we can state that from an algebraic decoding
or a probabilistic decoding point of view, puncturing and
erasing are identical, an erased/punctured bit is equivalent to
an error with known location but unknown amplitude. From
a transmitter point of view, punctured bits have always fixed
position in the codeword whereas channel erased bits have
random locations.

When punctured bits are information bits, the destina-
tion must be able to retrieve them. There are two ways to
protect punctured bits.

(i) The punctured bit nodes are connected to one or
more rootchecks. If the leaves are erased or punc-
tured, the punctured root bit cannot be retrieved after
the first decoding iteration. The erased or punctured
leaves on their turn must be connected to rootchecks,
such that they can be retrieved after the first iteration.
Then, in the second iteration the punctured root
bit can be retrieved. These rootchecks are denoted
as second-order rootchecks (see Figure 6). Similarly,
higher-order rootchecks can be used.

(ii) The punctured bit nodes are connected to at least two
rootchecks where both rootchecks have leaves with
different colors (see Figure 6). If one color is erased,
there will always be a rootcheck without erased leaves
to retrieve the punctured bit node.

Combinations of both types of rootchecks are also possible.

5. Full-Diversity Joint Network-Channel Code

In this section, we join the principles of the previous section
with the physical layer network coding framework. We will
use the same bit node classes as in the previous section, hence
S1 transmits 1i1 and 1p1, and S2 transmits 1i2 and 1p2. The
bits transmitted by the relay are determined by (5) and are of

the class c(3). Adapting (5) to the classes of bit nodes gives

HNc(3) =
[
V1 V2 V3 V4

]
∗

⎡
⎢⎢⎢⎣

1i1

1i2

2i1

2i2

⎤
⎥⎥⎥⎦, (25)

where the dimensions of Vi are Nr×K/2. Please note that 2i1,
2p1, 2i2, and 2p2 are not transmitted anymore (these bits are
punctured). The number of transmitted bits c(3) by the relay
is determined by the coding rate. There are 2K information
bits. The sources S1 and S2 each transmit K bits, hence to
obtain a coding rate Rc = 2/3, the relay can transmit Nr = K
bits. We will include the punctured information bits 2i1 and
2i2 in the parity-check matrix for two reasons:

(i) without 2i1 and 2i2, we cannot insert (25) in the
parity-check matrix;

(ii) the destination wants to recover all information bits,
that is, 1i1, 1i2, 2i1, and 2i2, so 2i1 and 2i2 must be
included in the decoding graph.

(The matrices in the following of the paper correspond to
codewords that must be punctured to obtain the bits actually
transmitted.) The parity-check matrix now has the following
form:

1i1 1p1 1i2 1p2 2i1 2i2 c(3)⎡
⎢⎢⎢⎣

H1i1
0

V1

H1p1

0
0
0

0
H1i2

V2

0
H1p2

0
0

I
0

V3

0
I

V4

0
0

HN

⎤
⎥⎥⎥⎦

1c
2c
3c
4c

(26)

Because the nodes 2i1 and 2i2 have been added, we have now
4K columns and 2K rows. K rows are used to implement
(25), while the other K rows define 1p1 in terms of the
information bits 1i1 and 2i1 (used for encoding at S1), and
1p2 in terms of the information bits 1i2 and 2i2 (used for
encoding at S2). The first two set of rows 1c and 2c are
rootchecks for 2i1 and 2i2; see Section 4. Now it boils down
to design the matrices V1, V2, V3, V4, and HN , such that
the set of rows 3c and 4c represent rootchecks of the first or
second order for all information bits. There exist 8 possible
parity-check matrices that conform to this requirement; see
Appendix A. With the exception of matrix (A.7), all matrices
have one or both of the following disadvantages.

(i) There is no random matrix in each set of columns,
such that H cannot conform to any degree distribu-
tion.

(ii) There is an asymmetry wrt. 2i1 and 2i2 and/or wrt.
1i1 and 1i2 and/or 3c and 4c which results in a loss of
coding gain.

Therefore, we select the matrix (A.7). The parity-check
matrix (A.7) of the overall decoder at D shows that the
bits transmitted by R are a linear transformation of all the
information bits 1i1, 2i1, 1i2, and 2i2. Furthermore, the
checks [3c 4c] represent rootchecks for all the information
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(a)

Red
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Red
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Figure 6: Two special rootchecks for punctured bits (shaded bit nodes). (a) is a second-order rootcheck. Imagine that all blue bits are erased,
than the shaded bit node will be retrieved in the second iteration. (b) represents two rootchecks where both rootchecks have leaves with
other colors. Imagine that one color has been erased, than the shaded bit node will still be recovered after the first iteration.

bits, guaranteeing full diversity. The checks [1c 2c] are
necessary because the bits [2i1 2i2] are not transmitted.
Note that the punctured bits [2i1 2i2] have two rootchecks
that have leaves with different colors. One of the rootchecks
is a second-order rootcheck. For example, the punctured bits
of the class 2i1 have two rootchecks, one of the class 1c and
one of the class 4c. The rootcheck of the class 1c has only red
leaves, while the rootcheck of the class 4c has white and blue
leaves. All but one blue leaves are punctured such that the
rootcheck of the class 4c is a second-order rootcheck.

6. Density Evolution for theMARC

In this section, we develop the density evolution (DE)
framework, to simulate the performance of infinite length
LDPC codes. In classical LDPC coding, density evolution

[9, 24, 31] is used to simulate the threshold of an ensemble
of LDPC codes. (Richardson and Urbanke [9, 31] established
that, if the block length is large enough, (almost) all codes in
an ensemble of codes behave alike, so the determination of
the average behavior is sufficient to characterize a particular
code behavior. This average behavior converges to the cycle-
free case if the block length augments and it can be found
in a deterministic way through density evolution (DE).) The
threshold of an ensemble of codes is the minimum SNR at
which the bit error rate converges to zero [31].

This technique can also be used to predict the word error
rate of an ensemble of LDPC codes [22]. We refer to the
event where the bit error probability does not converge to
0 by Density Evolution Outage (DEO). By averaging over
a sufficient number of fading instances, we can determine
the probability of a Density Evolution Outage PDEO. Now,
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Figure 7: A compact representation of the Tanner graph of the
proposed code construction (matrix (A.7)), adopted from [22] and
also known as protograph representation [23]. Nodes of the same
class are merged into one node for the purpose of presentation.
Punctured bits are represented by a shaded node.

it is possible to write the word error probability Pe of the
ensemble as

Pe = Pe|DEO × PDEO + Pe|CONV × (1− PDEO), (27)

where Pe|DEO is the word error rate given a DEO event and
Pe|CONV is the word error rate when DE converges. If the bit
error rate does not converge to zero, then the word error
rate equals one, so that Pe|DEO = 1. On the other hand,
Pe|CONV depends on the speed of convergence of density
evolution and the population expansion of the ensemble with
the number of decoding iterations [32, 33], but in any case
Pe ≥ PDEO, so that the performance simulated via DE is a
lower bound on the word error rate. Finite length simulations
confirm the tightness of this lower bound.

In summary, a tight lower bound on the word error
rate of infinite length LDPC codes can be obtained by
determining the probability of a Density Evolution Outage
PDEO. Given a triplet (α1,α2,α3), one needs to track the
evolution of message densities under iterative decoding to
check whether there is DEO. (Messages are under the form
of log-likelihood ratios (LLRs).) The evolution of message
densities under iterative decoding is described through
the density evolution equations, which are derived directly
through the evolution trees. The evolution trees represent the
local neighborhood of a bit node in an infinite length code
whose graph has no cycles, hence incoming messages to every
node are independent.

6.1. Tanner Graph and Notation. The proposed code con-
struction has 7 variable node types and 4 check node types.
Consequently, the evolution of message densities under
iterative decoding has to be described through multiple
evolution trees, which can be derived from the Tanner
graph. A Tanner graph is a representation of the parity-check
matrices of an error-correcting code. In a Tanner graph, the
focus is more on its degree distributions. In Figure 7, the
Tanner graph of matrix (A.7) is shown. The new polynomials

λ̃(x) and ˜̃
λ(x) are derived in Proposition 2.

Proposition 2. In a Tanner graph with a left degree distribu-
tion λ(x), isolating one edge per bit node yields a new left degree

distribution described by the polynomial λ̃(x):

λ̃(x) =
∑

i

λ̃ix
i−1, λ̃i−1 = λi(i− 1)/i∑

j λ j
(
j − 1

)
/ j
. (28)

Proof. Let us define Tbit,i as the number of edges connected
to a bit node of degree i. Similarly, the number of all
edges is denoted Tbit. From Section 2, we know that λ(x) =
∑dbmax

i=2 λixi−1 expresses the left degree distribution, where λi
is the fraction of all edges in the Tanner graph, connected
to a bit node of degree i. So finally λi = Tbit,i/Tbit. A similar

reasoning can be followed to determine λ̃i:

λ̃i−1
(a)= Tbit,i − (λi/i)Tbit

Tbit −
∑

j

(
λj/ j

)
Tbit

(b)= λiTbit − (λi/i)Tbit

Tbit −
∑

j

(
λj/ j

)
Tbit

= λi − λi/i
∑

j

(
λj/ j

)
j −∑

j

(
λj/ j

)

= (λi/i)(i− 1)
∑

j

(
λj/ j

)(
j − 1

) .

(29)

(a)
∑

j(λj/ j)Tbit is equal to the number of edges that are
removed which is equal to the number of bits.

(b) λiTbit is equal to the number of edges connected to a
bit of degree i.

Similarly, we can determine ˜̃
λ(x) = ∑

i
˜̃
λi xi−1, where

˜̃
λi−2 = (λi(i − 2)/i)/(

∑
j λ j( j − 2)/ j). It can be shown that

˜̃
λ(x) is the same as applying the transformation (̃) two times

consecutively, hence first on λ(x), and then on λ̃(x).

6.2. DE Trees and DE Equations. The proposed code con-
struction has 7 variable node types and 4 check node types.
But not all variable node types are connected to all check
node types. Therefore, there are 14 evolution trees. But it is
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sufficient to draw only 7 of them because of symmetry. To
write down the equations we adopt the following notation.

Let X1 ∼ p1(x) and X2 ∼ p2(x) be two independent real
random variables. The density function of X1 +X2 is obtained
by convolving the two original densities, written as p1(x) ⊗
p2(x). The notation p(x)⊗n denotes the convolution of p(x)
with itself n times.

The density function p(y) of the variable Y =
2th−1(th(X1/2)th(X2/2)), obtained through a check node
with X1 and X2 at the input, is obtained through the R-
convolution [9], written as p1(x)� p2(x). The notation th(·)
denotes the tangent hyperbolic function and p(x)�n denotes
the R-convolution of p(x) with itself n times.

To simplify the notations, we use the following defini-
tions:

λ
(
p(x)

) =
∑

i

λi p(x)⊗i−1, ρ
(
p(x)

) =
∑

i

ρi p(x)�i−1.

(30)

Next, we will use the following definitions:

ρ
(
p(x), t(x)

) =
∑

i

(
ρi p(x)�i−1 � t(x)

)
,

λ∗
(
p(x)

) =
∑

i

λi p(x)⊗i−2,

ρ∗
(
p(x)

) =
∑

i

ρi p(x)�i−2.

(31)

The first definition is necessary because of the nonlinearity of
the R-convolution. Therefore, the first equation is not equal
to t(x)� ρ(p(x)).

The following message densities at the mth iteration are
distinguished:

am1 (x)(x) = density of message from 1i1 to 1c,

f m1 (x) = density of message from 1i1 to 3c,

km1 (x) = density of message from 1p1 to 1c,

lm1 (x) = density of message from 2i1 to 1c,

qm1 (x) = density of message from 2i1 to 3c,

gm2 (x) = density of message from 2i2 to 3c,

bm1 (x) = density of message from c(3) to 3c,

μ1(x) = density of the likelihood of the channel in the

1st timeslot.
(32)

Proposition 3. The DE equations in the neighborhood of 1i1,
1p1, 2i1, and c(3) for allm are listed in (33)–(34),

am+1
1 (x) = μ1(x)⊗ λ̃

(
ρ̃
(
f1i1ca

m
1 (x) + f1p1ck

m
1 (x), lm1 (x)

))

⊗ ◦
ρ
∗(

f2i3cq
m
1 (x) + fc(3)3cb

m
1 (x), gm2 (x)

)
,

f m+1
1 (x) = μ1(x)⊗

◦
λ
(
ρ̃
(
f1i1ca

m
1 (x) + f1p1ck

m
1 (x), lm1 (x)

))
,

km+1
1 (x) = μ1(x)⊗ λ

(
ρ̃
(
f1i1ca

m
1 (x) + f1p1ck

m
1 (x), lm1 (x)

))
,

lm+1
1 (x) =

◦
λ
∗(

˜̃ρ
(
f2i3cq

m
1 (x) + fc(3)3cb

m
1 (x), f m1 (x), gm2 (x)

))

⊗ ◦
ρ
∗(

f2i4cq
m
2 (x) + fc(3)4cb

m
2 (x), f m2 (x)

)
,

qm+1
1 (x) = ˜̃

λ
(
˜̃ρ
(
f2i3cq

m
1 (x) + fc(3)3cb

m
1 (x), f m1 (x), gm2 (x)

))

⊗ ◦
ρ
(
f1i1ca

m
1 (x) + f1p1ck

m
1 (x)

)

⊗ ρ∗
(
f2i4cq

m
2 (x) + fc(3)4cb

m
2 (x), f m2 (x)

)
,

gm+1
1 (x) =

◦
λ
∗(

˜̃ρ
(
f2i3cq

m
1 (x) + fc(3)3cb

m
1 (x), f m1 (x), gm2 (x)

))

⊗ ◦
ρ
(
f1i1ca

m
1 (x) + f1p1ck

m
1 (x)

)
,

(33)

bm+1
1 (x)=μ3(x)⊗ λ

(
f3cc(3) · ˜̃ρ

(
f2i3cq

m
1 (x) + fc(3)3c

·bm1 (x), f m1 (x), gm2 (x)
)

+ f4cc(3)

× ˜̃ρ
(
f2i4cq

m
2 (x) + fc(3)4cb

m
2 (x),

f m2 (x), gm1 (x)
))

,
(34)

where

f1i1c =
∑

i

◦
λi(i− 1)

∑
i
◦
ρi(i− 1)

, (35)

f1p1c = 1− f1i1c =
∑

i

◦
λii

∑
i
◦
ρi(i− 1)

, (36)

f2i3c =
∑

i

◦
λi(i− 2)

∑
i
◦
ρi(i− 2)

, (37)

fc(3)3c = 1− f2i3c =
∑

i

◦
λii

∑
i
◦
ρi(i− 2)

, (38)

f2i4c = f2i3c, (39)

fc(3)4c = fc(3)3c, (40)

f3cc(3) = 1− f4cc(3), (41)

f3cc(3) = 0.5∗ fc(3)3c
∑

i
◦
ρi(i− 2)

∑
i

◦
λi(i)

, (42)

f4cc(3) = 0.5∗ fc(3)4c
∑

i
◦
ρi(i− 2)

∑
i

◦
λi(i)

, (43)
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Figure 8: Density evolution of full-diversity LDPC ensembles with
maximum coding rate Rc = 2/3 with iterative decoding on a MARC.
Eb/N0 is the average information bit energy-to-noise ratio on the S1-
D, S2-D, and R-D links.

Note that the message densities propagating from bits of the
class 2i1 do not contain a channel observation μ1(x) because
these information bits are punctured.

Proof. See Appendix B.

7. Numerical Results

7.1. Full-Diversity LDPC Ensembles. We evaluated the finite
length performance of full-diversity LDPC codes and the
asymptotic performance by applying DE on the proposed
code construction. The parity-check matrix (A.7) is used by
the destination to decode the information bits. This paper
focuses on full diversity, rather than coding gain. Therefore,
one of the codes is a simple regular (3, 6) LDPC code. This
means that all the random matrices in (A.7) are randomly
generated satisfying an overall row weight of 6 and an overall
column weight of 3. This matrix corresponds to a coding
rate of 0.5, but because [2i1 2i2] are punctured, the actual
coding rate is Rc = 2/3. The other code, that is, simulated
and is denoted as code 2 is an irregular (λ(x), ρ(x)) LDPC
ensemble [22] with left and right degree distributions given
by the polynomials

λ(x) = 0.285486x + 0.31385x2 + 0.199606x7 + 0.201058x14,

ρ(x) = x8.
(44)

We studied the following scenario.

(i) The S1-D, S2-D, and R-D links have the same average
SNR.

(ii) The S1-R and S2-R links are perfect.

(iii) The coding rate is Rc = 2/3 and the cooperation level
is β = 2/3.

Figure 8 shows the main results: the word error rate
(WER) of a regular (3, 6) LDPC ensemble and of an irregular
(λ(x), ρ(x)) LDPC ensemble, which are both of full diversity.

It is clear that the DE results are a lower bound on the
actual word error rates (a tight lower bound for the regular
code and a less tight lower bound for the irregular code). The
word error rate of a regular (3, 6) LDPC code is only about
1.5 dB worse than the outage probability. The irregular LDPC
code is only slightly better than the regular (3, 6) LDPC code
in terms of word error rate.

7.2. Full-Diversity RA Codes with Improved Coding Gain.
Another technique, suggested in [17], that improves the
coding gain is called doping. For all the Rootcheck based
LDPC codes the reliability of the messages exchanged by the
belief propagation algorithm can be improved by increasing
the reliability of parity bits (which are not protected
by rootchecks). In fact the LLR values of the messages
exchanged by the belief propagation algorithm are in the
form [17]:

Λm
l ∝

B∑

i=1

aiα
2
i + η, (45)

where αi are the fading coefficients, ai are positive constants,
and η represents the noise. The higher the coefficients ai,
the more reliable are the LLR messages. Since the output
messages of the check node are limited by the lowest LLR
values of the incoming messages, that is, the messages
coming from parity bits, the doping technique aims to
increase those values. The least reliable variable nodes are the
parity bits sent on a channel in a deep fade.

In case of block BEC, consider the parity bits sent on a
channel with fading coefficient α1 = 0 and suppose that all
the other fading coefficients are αi = ∞ with i /= 1. Consider
the parity-check matrix (A.7). The doping technique consists
in fixing the random matrix H1p1 such that, under BP, all
the variable nodes can be recovered after a certain number
of iterations. This is equivalent to having reliable parity bits,
that is, connected to rootchecks of a certain order, and it
guarantees to increase the coefficients ai.

While the aforementioned doping technique has been
proposed and investigated for infinite length LDPC codes,
finite length rootcheck based LDPC codes that get advan-
tage of the doping technique have not been published
yet. Ongoing studies have revealed construction problems
with doped finite length Root-LDPC codes, so that their
performance cannot be included here. An important issue,
that is often not considered, is the encoding complexity. This
suggests to embed the well-known repeat-accumulate (RA)
structure in the parity-check matrix, which results in linear-
time encoding. Hence, regardless the degree distribution, we
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Figure 9: Comparison of proposed code construction with results
from literature. Eb/N0 is the average information bit energy-to-noise
ratio on the S1-D, S2-D, and R-D links.

substitute the matrices H1p1 , H1p2 , and HN with staircase
matrices (46)

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
1 1 0 · · · 0
0 1 1 · · · 0
...

. . .
. . .

...
0 0 · · · 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (46)

Figure 9 reports the simulation results for a regular RA code
that show a 0.5 dB improvement compared to the proposed
regular (3,6) code. Together with the fact that this simple
code is now linear-time encoding, this result is impressive
because we have lowered the complexity and improved the
performance at the same time. As a benchmark the outage
probability has been plotted. We have also included the best
known LDPC code for the MARC in literature: the rate 2/3
network code proposed in [16]; it reports a loss of almost
2.5 dB wrt. the proposed full-diversity RA code.

8. Conclusions and Remarks

We have studied LDPC codes for the multiple access relay
channel in a slowly varying fading environment under
iterative decoding. LDPC codes must be carefully designed
to achieve full diversity on this channel and network coding
must be applied to increase the achievable coding rate to
a maximum rate Rcmax = 2/3. Combining network coding
with of full diversity channel coding gave rise to a new family
of semirandom full-diversity joint network-channel LDPC
codes for all rates not exceeding Rcmax = 2/3. A code that is
only 1.5 dB away from the outage probability limit has been
presented.

For a block fading channel with several fading states per
codeword, it has been pointed out that the poor reliability of
the parity bits in full-diversity LDPC codes (where especially
the information bits are well protected) causes the actual gap
with the outage probability limit. We increased the reliability
of the parity bits by using a repeat-accumulate structure
and have improved the coding gain of the presented code
construction for the MARC.

Appendices

A. Full-Diversity Parity-CheckMatrices

The reader can find here a list of full-diversity parity-check
matrices H , that is, matrices where all information bits are
assigned to a rootcheck in the last two set of rows 3c and 4c.
Matrix (A.7) performs the best for reasons of symmetry and
randomness,

1i1 1p1 1i2 1p2 2i1 2i2 c(3)
⎡
⎢⎢⎢⎢⎢⎢⎣

H1i1

0

I

0

H1p1

0

0

0

0

H1i2

I

H2i2

0

H1p2

0

0

I

0

H2i1

I

0

I

0

I

0

0

HN

⎤
⎥⎥⎥⎥⎥⎥⎦

1c

2c

3c

4c
(A.1)

1i1 1p1 1i2 1p2 2i1 2i2 c(3)
⎡
⎢⎢⎢⎣

H1i1

0
I
0

H1p1

0
0
0

0
H1i2

I
0

0
H1p2

0
0

I
0

H2i1

I

0
I

H2i2

I

0
0

HN

⎤
⎥⎥⎥⎦

1c
2c
3c
4c
(A.2)

1i1 1p1 1i2 1p2 2i1 2i2 c(3)
⎡
⎢⎢⎢⎣

H1i1

0
I

H2i2

H1p1

0
0
0

0
H1i2

I
0

0
H1p2

0
0

I
0
0
I

0
I

H2i1

I

0
0

HN

⎤
⎥⎥⎥⎦

1c
2c
3c
4c
(A.3)

1i1 1p1 1i2 1p2 2i1 2i2 c(3)
⎡
⎢⎢⎢⎣

H1i1

0
I

H2i1

H1p1

0
0
0

0
H1i2

I
H2i2

0
H1p2

0
0

I
0
0
I

0
I
0
I

0
0

HN

⎤
⎥⎥⎥⎦

1c
2c
3c
4c
(A.4)

1i1 1p1 1i2 1p2 2i1 2i2 c(3)
⎡
⎢⎢⎢⎣

H1i1

0
I

H2i2

H1p1

0
0
0

0
H1i2

H2i1

I

0
H1p2

0
0

I
0
0
I

0
I
I
0

0
0

HN

⎤
⎥⎥⎥⎦

1c
2c
3c
4c
(A.5)

1i1 1p1 1i2 1p2 2i1 2i2 c(3)
⎡
⎢⎢⎢⎣

H1i1

0
I
0

H1p1

0
0
0

0
H1i2

H2i1

I

0
H1p2

0
0

I
0

H2i2

I

0
I
I
0

0
0

HN

⎤
⎥⎥⎥⎦

1c
2c
3c
4c
(A.6)
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1i1 1p1 1i2 1p2 2i1 2i2 c(3)
⎡
⎢⎢⎢⎣

H1i1

0
I
0

H1p1

0
0
0

0
H1i2

0
I

0
H1p2

0
0

I
0

H2i1

I

0
I
I

H2i2

0
0

HN

⎤
⎥⎥⎥⎦

1c
2c
3c
4c
(A.7)

1i1 1p1 1i2 1p2 2i1 2i2 c(3)
⎡
⎢⎢⎢⎢⎢⎢⎣

H1i1

0

I

H2i1

H1p1

0

0

0

0

H1i2

0

I

0

H1p2

0

0

I

0

0

I

0

I

I

H2i2

0

0

HN

⎤
⎥⎥⎥⎥⎥⎥⎦

1c

2c

3c

4c
(A.8)

B. Proof of Proposition 3

Equations (33)–(40) are directly derived from the local
neighborhood trees (see e.g., Figures 11 and 12). The
proportionality factors (35)–(40) can easily be determined by
analyzing the Tanner graph. Let T denote the total number
of edges between the variable nodes (1i1 − 1p1) and the check
nodes 1c. Figure 10 illustrates how f1p1c and f1i1c are obtained:

T
(a)= N

8

∑

i

◦
ρi(i− 1), (B.1)

T1p
(a)= N

8

∑

i

◦
λii,

T1i
(a)= N

8

∑

i

◦
λi(i− 1),

(B.2)

f1p1c
(b)= T1p

T
,

f1i1c
(b)= T1i

T
.

(B.3)

(a) The fraction of check nodes connected to (i−1) edges
of T is

◦
ρi(N/8). A similar reasoning proves (B.2).

(b) The fraction of edges T connecting 1p1 to 1c is f1p1c

and the fraction of edges T connecting 1i1 to 1c is f1i4c.

Note that in the first iteration, a1
1(x), f 1

1 (x), k1
1(x), and

b1
1(x) are equal to μ1(x), because the received messages come

from check nodes where one of the leaves corresponds to a
punctured information bit (so that their message density is a
Dirac function on LLR = 0). Therefore, the message densities
coming from the check nodes are also Dirac functions on
LLR = 0. (The output of a check node y is determined
through its inputs xi, i = 1 · · ·dc−1 via the following formula:
th(y/2) = ∏dc−1

i=1 th(xi/2). If one of the inputs xi is always zero
because its distribution is a Dirac function on LLR = 0, then
the output y will always be zero, so that its distribution will
also be a Dirac function on LLR = 0.) But q1(x) and g1(x)
are different from a Dirac function on LLR = 0 after the
first iteration, so that the next iteration also l1(x) becomes
different from a Dirac function on LLR = 0.

1i1

T1i

T

ρ(x)

1c

T1p

N

8

N

8

N

8

N

8

1p1

2i1 1

Figure 10: Part of the compact graph representation of the
Tanner graph of proposed code construction. The number of edges
connecting (1i1 − 1p1) to 1c is T . The number of edges connecting
1p1 to 1c is T1p. The number of edges connecting 1i1 to 1c is T1i.
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Figure 11: Local neighborhood of a bit node of the class 1i1. This
tree is used to determine am+1

1 (x).
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Figure 12: Local neighborhood of a bit node of the class 1i1. This
tree is used to determine f m+1

1 (x).
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The factor 0.5 in (42) and (43) takes into account that
c(3) counts N/4 variable nodes while 3c and 4c count only
N/8 parity check equations. Solving together (40)–(43), it is
possible to prove that for any degree distribution

f3cc(3) = f4cc(3) = 1
2
. (B.4)
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[22] J. J. Boutros, A. G. I. Fàbregas, E. Biglieri, and G. Zémor,
“Low-density parity-check codes for nonergodic block-fading
channels,” IEEE Transactions on Information, vol. 56, no. 9, pp.
4286–4300, 2009.

[23] J. Thorpe, “Low-density parity-check (LDPC) codes con-
structed from protographs,” JPL INP Progress Report, vol. 42,
no. 154, pp. 1–7, 2003.

[24] W. Ryan and S. Lin, Channel Codes, Classical and Modern,
Cambridge University Press, Cambridge, UK, 2009.

[25] D. Tse and P. Viswanath, Fundamentals of Wireless Communi-
cation, Cambridge University Press, Cambridge, UK, 2005.
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