
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2010, Article ID 812356, 10 pages
doi:10.1155/2010/812356

Research Article

Power-Aware DVB-HMobile TV System onHeterogeneous
Multicore Platform

Yu-Sheng Lu,1, 2 Chin-Feng Lai,1 Chia-Cheng Hu,3 Han-Chieh Chao,4 and Yueh-Min Huang1

1Department of Engineering Science, National Cheng Kung University, No.1, University Rd., Tainan 701, Taiwan
2Business Customer Solutions Laboratory, Chunghwa Telecom Laboratories, No. 12, Lane 551,
Min-Tsu Rd. Sec.5 Yang-Mei, Taoyuan 326, Taiwan

3Department of Information Management, Naval Academy, No. 669, Junxiao Rd., Zuoying District, Kaohsiung 813, Taiwan
4College of Electrical Engineering & Computer Science, National ILan University, No. 1, Sec. 1, Shen-Lung Rd., I-Lan 260, Taiwan

Correspondence should be addressed to Yueh-Min Huang, huang@mail.ncku.edu.tw

Received 19 March 2010; Accepted 15 June 2010

Academic Editor: Liang Zhou

Copyright © 2010 Yu-Sheng Lu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In mobile communication network, the mobile device integrated with TV player is a novel technology that provides TV program
services to end users. As TV program is a real-time video service, it has greater technical difficulties to overcome than a traditional
video file download or online streaming, especially when TV programs are played on handheld devices. A challenge is how to save
power in order to provide users with longer TV program services. To address this issue, this study proposes a mobile TV system on
a heterogeneous multicore platform, which utilizes a Digital Video Broadcasting-Handheld (DVB-H) wireless network to receive
the TV program signal, thus, saving power according to the features of DVB-H TV signal and heterogeneous multi-core.

1. Introduction

Along with the progressive digital TV broadcasting technol-
ogy, TV viewing is no longer restricted by time or space; the
new trend is to watch digital TV programs through wireless
mobile devices. At present, watching TV on a mobile phone
device can be performed in two ways. Service providers
can transmit TV program data to mobile phone users by
3G network, or a base station can transmit TV programs
through a Digital Video Broadcasting network [1–3]. The
main difference between 3G and DVB network is that 3G
network transmits data through on demandwireless network
communication, hence, there will be transmission rates and
bandwidth limits if too many users access this network at
the same time. As to DVB-H, it transmits TV programs
through the broadcasting transmission of TV base station;
hence, there will be no transmission network congestion.
Three issues have been studied regarding the mobile TV
system: (1) TV signal transmission technology and how
to enhance TV signal fault-tolerance or increase signal
transport efficiency in order to improve display quality of
TV programs; (2) mobile TV application developments and

provision of personal context aware services, recommending
suitable TV programs according to user habits and prefer-
ences of watching TV; (3) how to enhance display quality,
provide smooth TV programming if delays occur, and reduce
power consumption in mobile TV players [4–7]. Concerning
power-saving issues, two parts are discussed: (1) components
of receiving TV signals, how to design receiver startup
schedule while receiving a TV program signal to save receiver
power; (2) design a power-saving play mechanism according
to TV program signal features, after received TV signal is
converted to digital data by the demodulator (Figure 1) [8–
11]. Therefore, this study proposes a power-aware DVB-H
mobile TV system on a heterogeneous multicore platform.
This system is implemented in two major parts: a front-end
buffer control mechanism and a parallel DVB-H TV signal
decoding model.

When receiving a DVB-H TV program signal from a
base station, signal is demodulated to generate video and
audio data. As video bit rate, quality, and resolution are
directly related to content complexity, running too many
buffers will consume power, while too few buffers will cause
the program to fail to be played successfully. Hence, this



2 EURASIP Journal on Wireless Communications and Networking

Broadcast
content
provider

Broadcast
content
provider

Broadcast
content
provider

DVB
multiplexer

DVB-H
transmitter

DVB-H

Broadcast network operator

Mobile TV

MPEG2
section

Video
H.264

Audio
AAC

Service
information

Program
specific

information

...

Figure 1: DVB-H Mobile TV Workflow.

paper proposes a front-end buffer control mechanism to
configure appropriate buffers according to the TV program
video features, in order to utilize buffers and save power.

The parallel DVB-H TV signal decoding model uses
a data partition processing method to run parallel DSP
decoding of DVB-H videos on a heterogeneous multicore
platform. It also schedules videos according to the DVB-H
video features, in order to reduce data dependency among
the frames on a multicore platform.

The remainder of this paper is organized as follows.
Section 2 introduces DVB-H specification and the parallel
decoding technique; Section 3 presents the overall architec-
ture of the DVB-H mobile TV system, the front-end buffer
control mechanism, and the processes and methodology of
the parallel DVB-H TV signal decoding model; Section 4
discusses implementation and result, and Section 5 gives
conclusions.

2. RelatedWork

2.1. Digital Video Broadcasting-Handheld. Digital Video
Broadcasting-Handheld (DVB-H) is based on Digital Video
Broadcasting-Terrestrial (DVB-T) specification and pro-
vides a solution to lower receiver power consumption and
improves mobile receiving performance [12–18]. Figure 2
shows the outline of the DVB-H/T system specifications
for common TV broadcasting programs using the DVB-
T signal transfer mode. Senders can use an A/D converter
to convert the analog video and audio signals to a digital
signal, respectively, and use a Moving Picture Experts Group
2 (MPEG-2) codec technique to convert TV program data
into MPEG-2 format. DVB-H service data are compressed
and encapsulated into an IP packet then encapsulated into
the transmission stream through a Multiprotocol Encap-
sulation (MPE) mechanism. Meanwhile, the time slicing
data stream is added. Along with other DVB-T TV services,
the multiplexer multiplexes it into a larger transmission
stream (or multiple program transmission stream) before
sending the data in a DVB wireless network. At the receiver,

Channel

...

MEPG2 TV service

MEPG2 TV service

MEPG2 TV service

DVB-H IP
encapsulator

MPE
MPE
-FEC

Time
slicing

MUX
DVB-T modulator

8k 4k 2k DVB-H TPS

DVB-H IP encapsulator

8k 4k 2k DVB-H TPS

New to DVB-H

Existing

TS

RF

RF

TS

IP
Time
slicing

MPE
-FEC

MPE

DVB-H IP
encapsulator

Figure 2: DVB-H/T System Archietcture.

if a client wants to receive certain services, the receiver
front-end circuit must run continuously in order to obtain
the complete transmission stream. Then, the demultiplexer
extracts the video, audio, and data information streams of
the selected programs and delivers this information to the
video decoder, audio decoder, and other applications for pro-
cessing. The sender Multi-Protocol Encapsulation-Forward
Error Correction (MPE-FEC) and time slicing mechanisms
are collectively called the DVB-H IP-Encapsulator, while the
receiver reverse recovery portion is called the DVB-H IP-
Decapsulator. The overall DVB-H container format is shown
in Figure 3. The IP data container format for each layer
of DVB-H is shown in Figure 3, as an IP packet in the
MPE section and redundant data in the FEC section. After
Section format encapsulation, the MPE and FEC sections
are connected end to end according to the encapsulating
sequence to form a section data string. Then, it begins to
slice the first and all of the other 184 bytes of each section
data string. A 4-byte transmission stream header is added to
the front of the 184-byte data length in order to complete a
transmission stream encapsulation or MPEG2 transmission
stream packet. Its data length is 188 bytes, with two major
parts. The first is a data front-end header that occupies a 4-
byte length with the available information, including a Sync.
Byte = 47 hex for synchronizing the emitter and receiver,
error indications, and stream packet recognition. The second
part is the data transfer payload, which length is 184 bytes. In
Figure 3, above the IP packet is the User Datagram Protocol
(UDP) and the Real-time Transport Protocol (RTP). The top
layer is compressed video data, where IP and UDP packets
add their packet headers. The RTP packet is encapsulated and
used to bear the H.264 images and AAC compressed voice, as
RFC3984 specification.

2.2. Parallel Decoding. One ideal parallel process could
double the system processing efficiency; however, when
coding/decoding a picture, there exists a data dependency
problem [19–25]. As the video image format contained in the
DVB-H TV signal is an H.264 baseline format, this section



EURASIP Journal on Wireless Communications and Networking 3

DVB-H bearer

MPEG2-TS

MPEG2-section

MPE/MPE-FEC PSI SI

IP

UDP

H.264
video

AAC+
audio ESG EPG

DVB-H protocol stack

TV player

Figure 3: DVB-H Protocol.

I P1 P2 P3

Time

P1

I P2

P3

WaitingWaiting

Sequence decode

Parallel decode

Figure 4: Sequence/Parallel Video Decode.

introduces the H.264 image feature. In H.264 decoding,
pictures are divided into I frame, P frame, and B frame,
where P frame is decoded according to the I frame picture
data, and the B frame refers to the picture data of the I frame
and the P frame. Unless there is good parallel processing, data
collision will occur, as shown in Figure 4. When decoding
two interdependent pictures, even when both pictures are
simultaneously processed, the other picture must wait for a
decoded reference before decoding. Therefore, how to utilize
parallel processing to shorten the operation waiting time is
the focus of many studies. Parallel decoding is divided into
two orientations, a function partition, and a data partition,
detailed as follows.

2.2.1. Function Partition. The H.264 decoding process can
be roughly divided into entropy decoding (ED), inverse

Encoded
data Entropy

decoding IQ/IT Deblocking

Intra
prediction

MC
prediction

Buffer

Decoded
frame

Figure 5: Functional Partition Decode Workflow.

quantization and inverse transform (IQ/IT), intra- or inter-
prediction (PPC), and deblocking filter (DF). As shown in
Figure 5, the function partition divides the entire H.264
decoding process into independent tasks. The main purpose
is to use a balanced processing concept to configure the tasks
required by each processor so that each processor can share
the load, and processing can be accelerated. The advantage of
this mechanism is that it can easily and extensively eliminate
data dependency, while its disadvantage is that its task
division is subject to a number of processors.

2.2.2. Data Partition. Data partitioning divides decoding
data into partitions, which are computed by different pro-
cessors. Each processor performs the same data operations,
but process different data units. Previous literatures have
studied how to divide data while avoiding data dependency;
the partition includes groups of picture (GOP) levels, frame
levels, slice levels, and macroblock levels. Their features are
detailed below.

GOP level [21, 22]: it divides the video segments in
GOP, allocates each GOP to each processor to decode, as
each section of the GOP can independently run decoding.
Decoding in this manner can increase processing quantities
at linear speed [23]; however, applying this technique
requires large memory space to save the decoded GOP
fragments.

Frame level: this parallel decoding method allocates each
single picture to a respective processor to operate, where
preanalysis sorting operations or a tournament algorithm is
adopted in order to process picture allocation. Primarily, two
pictures without data dependency are found and simultane-
ously operated. Flierl and Girod [24] proposed a B Frame
parallel decoding method, which is suitable for traditional
coding methods, and because the B frame is not referred to
by other picture, no data dependency will occur. B frame
is analyzed first and allocated to different processors for
decoding. However, regarding H.264 coding, B frame can be
a reference for other pictures, therefore, is not suitable here.

Slice level [25, 26]: in H.264, the Slice is the smallest
independent decoding unit, meaning that a single Slice can
independently run decoding. Therefore, similar to GOP
level partitioning, various Slices are allocated to various
processors for decoding. As compared with the GOP Level,
this parallel method is more favorable to memory utilization
without extra analysis sorting. However, its main disadvan-
tage is that, slice divisions can range from a macroblock to
one entire frame, where memory use, scalability, and balance



4 EURASIP Journal on Wireless Communications and Networking

Decoding
MB

Decoding
MB

Inter prediction

Intra
pred

Intra
pred

Intra
DF

Intra
DF

Figure 6: Macroblock Decoding References.

remain unsatisfied. Roitzsch [27] proposed a Slice-Balancing
algorithm, which can improve its scalability; however, it is for
the coder end and cannot be applied in the decoder end.

Macroblock level: a frame consists of many picture
macroblocks, and each macroblock is allocated to a variable
processor to operate. This scheme has the best scalability
and balance; however, it requires the most directions for
solutions, such as data dependency. As shown in Figure 6, in
H.264 decoding, each macroblock must refer to its neighbor-
ing macroblock to operate. The main concept of macroblock
level parallel decoding is to locate two macroblocks, which
are without data dependency in order to speed the rate
decode of decoding. Van der Tol et al. [28] proposed
an echelon sorting process to solve the data dependency
problem. Although this sorting method can improve the
speed of decoding, it is subject to a number of processors.
In cases of high resolution pictures, this algorithm requires
complex operations and several processors. Chong et al. [29]
proposed scheduling with parse, render, and filter, locating
the dependency relation of each macroblock prior to sorting.
Azevedo et al. [30] proposed a 3-D-Wavemethod to integrate
frame and macroblock levels in order to locate decodable
macroblocks across all frames, which solves scalability and
data dependency. However, the algorithm applied in a super
multicore algorithm remains difficult to implement.

Although many papers have addressed the parallel
decoding problem, few studies have focused on the power
consumption for DVB-H TV program. To this question, this
paper presents a novel architecture to obtain a front-end
buffer control mechanism and a parallel decoding model to
increase the speed of decoding TV program and reduce the
power consumption according to picture complexity.

3. System Architecture

Figure 7 shows the system architecture proposed in this
study. After accessing the system, DVB-H streaming data
are saved to an external memory; the main processor unit
(MPU) initializes and starts the digital signal processor
(DSP), and then, the streaming data is moved to the
internal memory of DSP to decode. The system waits
for completely compressed data before entropy decoding
(ED), and the H.264 baseline profile is similar to common
compression specifications, as per context-adaptive variable-
length coding (CAVLC). Inverse quantization and inverse

Front-end buffer

DVFS controller

DSP1

DSP2
...MPU

Parallel DVB-H
TV signal

Decoded
frame

Encoded data

Encoded data

Multi-core

Encoded
data

decode model

Figure 7: System Architecture.

transform (IQ/IT) are done on compressed pictures, then
intraprediction or interprediction is made according to the
video format. Finally, a deblocking Filter (DF) is carried
out on the imaged pictures to eliminate boundary effects
and improve image quality. After decoding, if the picture is
referred to, then it is saved to internal memory. Otherwise,
the direct memory access unit (DMA) will move the data
to an external memory, and the MPU will transfer the
picture data to a frame buffer for displaying. As to H.264
specifications, it adopts the concept of a network abstraction
layer (NAL) to adapt to a progressive streaming application.
The NAL Unit is the streaming unit, which includes a header
and the contents of compressed video data or decoded
auxiliary information (e.g., resolution, display time, and
video information). The MPU locates the compressed video
data and decodes it according to the auxiliary information.
The streaming data are parallel sorted. Dynamic voltage
and frequency scaling (DVFS) system decoding prediction
is performed according to sorted video dependency and
video formats [31–33]. In most cases, the DSP system
codes/decodes videos through a heterogeneous multicore
platform. Therefore, this paper focuses on parallel decoding
of a single MPU, coupled with a multi-DSP-core platform.
The MPU controls parallel planning, DVFS prediction, and
settings of system. With the front-end processing design,
parallel processing of the DVFS system can be performed
without changing the DSP decoding process. The results of
the multicore platform could also be applied to a parallel
decoding design on another platform.

3.1. Front-End Buffer Control Mechanism

3.1.1. Group of Picture Unit of DVB-H Video Content. DVB-
H TV programming is composed of H.264 formatted images,
and eachH.264 stream consists of numerous group of picture
(GOP). Each GOP consists of I-frames, B-frames, and P-
frames, where I-frame is used for DCT-based compressed
digital video frame, and B-frame and P-frame are used
as backup frames to enhance compression ratio. Due to
picture interdependency, which comes from the motion
vectors of the I, P, and B frames in GOP and compensation
coding, when the DVB-H TV signal accesses a system to
decode, parallel decoding of DVB-H TV signal is performed
according to GOP features. Since H.264 GOP size is subjected
to the complexity of a picture in its content, this study



EURASIP Journal on Wireless Communications and Networking 5

Start
code

SPS

PPS

SEL

IDR

Get SPS
information

Get PPS
information

Get SEL
information

Get IDR
information

Yes

Yes

Yes

Yes

No

No

No

No

Read DVB-H TV
program bitstream

Yes

No

Figure 8: DVB-H TV Signal Reference Parse.

Select
scalability

Reference
parse

information

Select
coded
slice

GOP
DVB-H TV
program
bitstream

Figure 9: GOP Divide Workflow.

regulates the size of the front-end buffer according to the
information provided by each GOP header in order to save
power. First, an entire DVB-H bitstream is received from a
receiver, then the entire bitstream is analyzed according to its
streaming manner, and 00 00 00 01 is the start code of the
NAL unit, and then moves to next byte and determines the
NAL unit type. If the NAL unit type is SPS, PPS, or SEI, it
collects the sequence, start position, data size, instantaneous
decoder refresh (IDR) sequence, percentage of IDR sequence
over entire coded video sequence, and the start position. The
entire process is called reference parse, as shown in Figure 8.
According to the parse result, the size of each GOP and
its number of frames contained can be known. Then, the
IDR feature is used to select the proper number of intrakey
pictures, and each intrakey picture is converted into an IDR
picture, as required. This study adds IDR pictures for original
reference and changes its slice header syntax element, in case
of decompression failure or incomplete state as each GOP
unit changes its tunable combination (Figure 9).

3.1.2. Front-End Buffer Configuration. One ideal parallel pro-
cessing can increase the speed of system processing; however,
data dependency often occurs when coding/decoding mul-
timedia data. This study designs a simple parallel decoding
architecture that could solve data dependency, as shown in
Figure 10. The architecture utilizes a buffer mechanism to

P4I5

B6 B7

P8P8

I1

I1I1

P2

P3

P3

P4P4

P5

P5

P6

I5I1

P7

P P

P P

P P

P P P8

B2 B3

B6 B7B2 B3

Parallel model

P8

P7P6P2P4

DVB-H TV program bitstream

Figure 10: Parallel Decoding Architecture.

store stream data and then waits for the next independent
picture before decoding together. A buffer must be set for
GOP to be decoded, and the buffer size is also a focus of
smooth TV programming, as excessive buffers may occupy
too much system memory, and insufficient buffers may have
too few fragments leading to image delay.

However, in a prolonged dependent video format, this
may cause latency and buffer size problems. It is because
prolonged latency is unacceptable to the streaming process,
and buffer size is subject to hardware size, which influences
power consumption. Thus, this study designs a dynamic
allocation mechanism and defines a front-end buffer (FEB),
which is used to store streaming data for parallel processing.
Since FEB is not overflowed, independent parallel decoding
is adopted when the system locates the next independent pic-
ture. However, when streaming data overflows FEB and no
independent picture appears, dependent parallel decoding
is used to meet data streaming features, and the frame and
macroblock level for the integrated parallel decoding concept
are applied to synchronize decoding. This decoding method
is performed by the transfer of a synchronous signal.

The steps for choosing FEB to satisfy a streaming system
are defined as follows: Suppose that Tacp denotes a time
coefficient acceptable to the end user, then, the time spent
on the entire computing process is

T = FEB
S

+ Tproc +D, (1)

where, Tproc denotes the DVB-H data streaming speed, andD
denotes the FEB derived latency. To comply with a streaming
system, the following equations must be satisfied:

Tacp =
FEBacp

S
+ Tproc +D > T , (2)

FEBacp =
(
Tacp − Tproc −D

)

S
. (3)

As the system is a frame-based case, suppose that Tproc

denotes the processing time required for a picture, hence,
FEBacp is the preset size.



6 EURASIP Journal on Wireless Communications and Networking

DSP coreDSP core

SD0 SD1 SD2 SD0 SD1 SD2

Reference

frame

buffer

DVB-H TV

program

bitstream

Reorder

bitstream

0

Reorder

bitstream

1

DDR

DSP2DSP1

MPU

DVFS

table

AXI

AXI

12
3

4

5

6

7

7

DDR

5

4
6

Local memoryLocal memory

Figure 11: Data Parallel Architecture.

3.2. Parallel DVB-H TV Signal Decoding Model. As to a mul-
timedia decoding system, the two most important methods
for reducing energy consumption are (1) elimination of time
slack, (2) prediction of processing quantity required for the
next picture and preseting the voltage/frequency. To achieve
these two objectives, this study uses a simple, yet practical,
concept of using front end and back end buffers to construct
the entire DVFS architecture, realize the parallel mechanism,
and eliminate the time slack. The constant decoding time
of each picture is defined as a deadline. However, rather
than changing a deadline schedule, a power approximation
method is used to predict system voltage and frequency and
corrects the system voltage and frequency according to the
weight of each task in the decoding program.

The power consumed by a processor during the CMOS
manufacturing process is defined as

P = Ceff ∗Vdd
2 ∗ f , (4)

where, Ceff denotes an effective switch capacitance, Vdd

denotes working voltage, and F denotes working frequency,
and the frequency versus voltage relation can be expressed by
the following:

f = K
(Vdd −Vt)

a

Vdd
, (5)

where, K is a constant, Vt denotes the threshold voltage, and
a = 1.2 ∼ 2 denotes the electron coefficient [25]. The time
spent in executing a task is called the workload and is defined
as TProc, which can be calculated from the following:

TProc = C

f
, (6)

where, C is the number of cycles required for this task during
system computing, and by substituting (2) for (3), we can
obtain

TProc = C

F
= C

Vdd

K∗(Vdd −Vt)
a , (7)

according to the energy formula

E = P ∗ TProc. (8)

The architecture of data parallel implementation is shown in
Figure 11. In this architecture, MPU analyzes the complexity
of TV bit streams firstly, sets voltage and frequency for
each TV bit stream according to the materials of DVFS
Table, and then transfers TV bit streams to DSP core
for decoding. After decoding TV bit streams, the decoded
data is delivered to Reference Frame Buffer for playing
TV programs. We can reduce the power consumption
via DVFS adjustments. Different from a program-oriented
parallel architecture, which evenly allocates one identical
picture to various DSPs to decode, the data-oriented parallel
architecture sends a picture to different DSP for separate
decoding. Therefore, when a primary data stream arrives,
the MPU analyzes its information, sorts, reallocates the
pictures, then sends it to the DSP for decoding. The DVFS
mechanism adopts a frame-based direct mechanism in order
to dynamically tune the DSP voltage and frequency, as
per the ratio of picture data size/decoding seconds. The
difference is dynamic tuning performed during the workload
period. The tuning equations are expressed by (7) and
(8). Data-oriented parallel processing has another problem,
when simultaneously decoded pictures are dependent, and
then there is data synchronization problem. This study
adopts a picture coordinate synchronizing method, where
a macroblock coordinate of the picture being decoded is



EURASIP Journal on Wireless Communications and Networking 7

DVFS controller

Parallel DVB-H TV signal decode model

DVFS
database

DVFS
manager

DVFS
event

(N) frame size
decoded time
DVFS value

(N) frame size
decoded time
DVFS value

(N) frame size
decoded time
DVFS value

Figure 12: Prediction Mechanism for DVFS.

Table 1: Testing Sample.

Frame number

Resolution

Type

Name

Frame type

300

1I3P6B
(IPBBPBB)

QCIF

(176× 144)

QVGA

(320× 240)

VGA

(640× 480)

QCIF

(176× 144)

QVGA

(320× 240)

VGA

(640× 480)

Motion

Mobile Foreman Highway Football Speaker

Silent Motion Silent

Silent

Video

Motion Silent

300

1I3P6B
(IPBBPBB)

300

1I3P6B
(IPBBPBB)

300

1I3P6B
(IPBBPBB)

1I3P6B
(IPBBPBB)

300

1I3P6B
(IPBBPBB)

300

(Xcur,Ycur), and the coordinate of its reference picture is
((Xref,Yref), then, their relation formula is as follows:

Yref ≥ Ycur +Nmac | Yref, Ycur ≤ YMax,

Xref ≥ Xcur +Nmac | Xref, Xcur ≤ XMax,
(9)

where, XMax and YMax denote the numbers of boundaries
of the divided picture, and Nsub denotes the number of
macroblock referenced by the macroblock.

3.2.1. Prediction of System Cycle Number C. In this paper, an
offline come online mechanism is adopted in order to lower
the prediction error rate. The method is shown in Figure 12.

DVFS is divided into two parts in order to implement
the entire design architecture, and the offline mechanism
is implemented on the MPU. On the DSP, the online
mechanism is realized through the dynamic tuning of voltage
and frequency the decoding process. Prior to a system
decoding process, the DVFS Model determines the initial
voltage and frequency, set according to the picture format,
previously decoded picture size, and decoding time. In the

decoding process, the DSP end decides the dynamic tuning
of voltage and frequency, set according to time spent and the
dependency data of each function in the decoding process.

Without knowing the exact cycles consumed by the next
decoding picture, this study first predicts through offline
statistics and builds a database in the MPU part, which
records time, type, voltage, and frequency required for
analyzing a video. Based on the analysis data of the previous
picture of the same type, this study defines two formats: (1)
the averaged cycles, Cavg; (2) the cycles of a reference picture,
Cprev and video content variation rate, α

α =
∣∣∣Cj − Cj−1

∣∣∣
Cj

. (10)

The predicted cycles vary with the type of picture in
the variable format. In a more static neighboring video,
prediction by the previous format would be better. In
a dynamic video, the average prediction would be more
accurate. Therefore, different prediction effects are designed
for each picture format. As shown in (11), as I frame is an



8 EURASIP Journal on Wireless Communications and Networking

Figure 13: Experimental Environment.

0

1

2

3

4

5

6

Mobile Foreman Highway Silent Football Speaker

Po
w
er

cu
m
su
n
ti
on

(J
)

Sequence
Sequence with DVFS

Parallel
Parallel with DVFS

Figure 14: Power Cumsuntion.

independent picture without a reference picture, the average
prediction mode is adopted. In B frame, the picture refers
to both a previous and a next picture, thus, the cycles of
the B frame are estimated from the average of the reference
pictures. As to P frame, the average forecast or reference
picture forecast is adopted according to α:

Cest =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cavg, for I frame

Cavg, for P frame && α � 15%

Cref , for P frame && α < 15%
∑

N Cref

N
, for B frame.

(11)

4. Experiment and Result

The experimental environment is shown in Figure 13. This
study uses Fluke 8846A to measure the power consumed
by each DSP during decoding and displays the data on a
computer through FlukeView software. First, for dynamic
or static variable resolution TV program in Table 1, the
common DVB-H TV signal decoding and parallel DVB-
H TV signal decoding methods are used to measure the
consumed power. The results are shown in Figure 14, where

0
Mobile Foreman Highway Silent Football Speaker

Sequence
Sequence with DVFS

Parallel
Parallel with DVFS

1

2

3

4

5

6

7

D
ea
dl
in
e
m
is
s
(%

)

Figure 15: Deadline Miss.

0
Mobile Foreman Highway Silent Football Speaker

Sequence
Sequence with DVFS

Parallel
Parallel with DVFS

1

2

3

4

5

6

7

8

9

E
rr
or

ra
te
(m

s/
fr
am

e)

Figure 16: Error Rate.

39% of the total power loss is saved. This parallel DVFS
architecture shows that a Data parallel architecture can
perform better for power control of a dynamic picture. After
decoding, this study lists the decoding seconds, data size, and
error occurrence of each picture, and calculates its error rate
according to following formula:

errrate =
√∑

(Test − Tdec)
2

Numframe
, (12)

errmiss = Nummiss

Numframe
∗ 100%, (13)

where,Test denotes the estimated decoding time,Tdec denotes
the actual decoding time, Numframe denotes the number
of pictures, and Nummiss denotes the number of pictures
with missed deadlines. The statistical results are shown as
Figures 14 and 15. When decoding a dynamic or high
resolution picture, the use of the data parallel architecture
has a high error rate, presumably because the data parallel



EURASIP Journal on Wireless Communications and Networking 9

architecture does not forecast at regular periods. Upon a
missed deadline, continuous deadline misses will occur due
to data dependency.

5. Conclusions

This study proposed a power-aware DVB-H mobile TV
system on a heterogeneous multicore platform and estab-
lished a front-end buffer control mechanism and a parallel
DVB-H TV signal decoding model. Applying a parallel
architecture could increase the speed for the decoding of a
DVB-H TV program. Dependent on picture complexity, the
DVFS system can be used for dynamic tuning of the system
voltage and frequency to lower power consumption. The
experimental results confirmed that applying a DVFS system
could save as much as 39% power, which could increase the
service time of some mobile TV devices. If coupled with a
receiving scheduler mechanism at the Receiver, even more
energy could be saved. When decoding dynamic or high
resolution pictures, a high error rate is occurred in the data
parallel architecture, since the data parallel architecture is
not forecasted at regular periods probably. Upon a missed
deadline, continuous deadline misses will occur due to data
dependency. Those issues are interesting challenges in the
parallel video decoding architecture.

Acknowledgment

This paper was supported by the Sustainable Growth Project
(S) (98WFA0900277) of the Department of Engineering
and Application Science, National Science Council (NSC),
Taiwan.

References

[1] S. Parkvall, E. Englund, M. Lundevall, and J. Torsner, “Evolv-
ing 3G mobile systems: broadband and broadcast services in
WCDMA,” IEEE Communications Magazine, vol. 44, no. 2, pp.
68–74, 2006.

[2] S. Buchinger, S. Kriglstein, and H. Hlavacs, “A compre-
hensive view on user studies: survey and open issues for
mobile TV,” in Proceedings of the 7th European Conference on
European Interactive Television Conference, Leuven, Belgium,
2009.

[3] E. Kaasinen, M. Kulju, T. Kivinen, and V. Oksman, “User
acceptance of mobile TV services,” in Proceedings of the
11th International Conference on Human-Computer Inter-
action with Mobile Devices and Services (MobileHCI ’09),
September 2009.

[4] H. Fuchs and N. Färber, “Optimizing channel change time in
IPTV applications,” in Proceedings of IEEE International Sym-
posium on Broadband Multimedia Systems and Broadcasting
(BMSB ’08), April 2008.

[5] S. Lee, J. Koo, and K. Chung, “Content-aware rate control
to improve the energy efficiency in mobile IPTV services,”
IJCSNS International Journal of Computer Science and Network
Security, vol. 10, no. 5, pp. 52–58, 2010.

[6] Y. Solomon, “The Economics ofMobile Broadcast TV,”Mobile
DTV Alliance Whitepaper, January 2007.

[7] J. Valerdi, A. González, and F. J. Garrido, “Automatic testing
and measurement of QoE in IPTV using image and video
comparison,” in Proceedings of 4th International Conference on
Digital Telecommunications, Colmar, France, 2009.

[8] S. Yaldiz, A. Demir, and S. Tasiran, “Stochastic modeling and
optimization for energy management in multicore systems: a
video decoding case study,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 27, no. 7,
pp. 1264–1277, 2008.

[9] P. Francesco, P. Antonio, B. Davide, B. Luca, and M. Poletc,
“Energy-E cient multiprocessor systems-on-chip for embed-
ded computing: exploring programming models and their
architectural support,” IEEE Transactions on Computers, vol.
56, no. 5, pp. 606–621, 2007.

[10] M. Hefeeda and C.-H. Hsu, “On burst transmission schedul-
ing in mobile TV broadcast networks,” IEEE/ACM Transac-
tions on Networking, vol. 18, no. 2, pp. 610–623, 2010.

[11] M. Rezaei, I. Bouazizi, and M. Gabbouj, “Joint video coding
and statistical multiplexing for broadcasting over DVB-H
channels,” IEEE Transactions on Multimedia, vol. 10, no. 8, pp.
1455–1464, 2008.

[12] M. Kornfeld and G.May, “DVB-H and IP datacast—broadcast
to handheld devices,” IEEE Transactions on Broadcasting, vol.
53, no. 1, pp. 161–170, 2007.

[13] ETSI EN 302 304, “Digital Video Broadcasting (DVB): trans-
mission system for handheld terminals (DVB-H),” European
Standard, v.1.1.1, 2004.

[14] ETSI TR 102 377 v1.3.1, “Digital Video Broadcasting (DVB);
DVB-H Implementation Guidelines,” May 2007.

[15] ETSI TS 102 472 v1.2.1, “IP Datacast over DVB-H: Content
Delivery Protocols,” December 2006.

[16] “Digital Video Broadcasting - Handheld (DVB-H) home
page,” 2008, http://www.dvb-h.org/.

[17] D. Gómez-Barquero and A. Bria, “Forward error correction
for file delivery in DVB-H,” in Proceedings of IEEE Vehicular
Technology Conference, pp. 2951–2955, Dublin, Ireland, April
2007.

[18] M. Kornfeld and G. May, “DVB-H and IP datacast - Broadcast
to handheld devices,” IEEE Transactions on Broadcasting, vol.
53, no. 1, pp. 161–170, 2007.

[19] C. Meenderinck, A. Azevedo, B. Juurlink, M. Alvarez Mesa,
and A. Ramirez, “Parallel scalability of video decoders,”
Journal of Signal Processing Systems, pp. 1–22, 2008.

[20] A. Azevedo, C.Meenderinck, B. Juurlink, et al., “Parallel H.264
decoding on an embeddedmulticore processor,” in Proceedings
of the 4th International Conference on High Performance and
Embedded Architectures and Compilers, pp. 404–418, January
2009.

[21] T. Olivares, F. J. Quiles, P. Cuenca, L. Orozco-Barbosa, and
I. Ahmad, “Study of data distribution techniques for the
implementation of an MPEG-2 video encoder,” in Proceedings
of Parallel and Distributed Computing Systems, pp. 537–542,
November 1999.

[22] A. Bilas, J. Fritts, and J. P. Singh, “Real-time parallel MPEG-2
decoding in software,” in Proceedings of the 11th International
Parallel Processing Symposium (IPPS ’97), pp. 197–203, April
1997.

[23] D. Farin, N. Mache, and H. N. Peter, “SAMPEG, a scene
adaptive parallel MPEG-2 software encoder,” in Visual Com-
munications and Image Processing, vol. 4310 of Proceedings of
SPIE, pp. 272–283, San Jose, Calif, USA, January 2001.



10 EURASIP Journal on Wireless Communications and Networking

[24] M. Flierl and B. Girod, “Generalized B pictures and the draft
H.264/AVC video-compression standard,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 13, no. 7, pp.
587–597, 2003.

[25] A. Rodriguez, A. Gonzalez, and M. P. Malumbres, “Hier-
archical parallelization of an h.264/AVC video encoder,” in
Proceedings of International Symposium on Parallel Computing
in Electrical Engineering, pp. 363–368, September 2006.

[26] Z. Zhao and P. Liang, “Data partition for wavefront paral-
lelization of H.264 video encoder,” in Proceedings of IEEE
International Symposium on Circuits and Systems (ISCAS ’06),
pp. 2669–2672, May 2006.

[27] M. Roitzsch, “Slice-balancing H.264 video encoding for
improved scalability of multicore decoding,” in Proceedings of
the 7th ACM and IEEE international conference on Embedded
software, pp. 269–278, September 2006.

[28] E. B. van der Tol, E. G. T. Jaspers, and R. H. Gelderblom,
“Mapping of H.264 decoding on a multiprocessor architec-
ture,” in Proceedings of the 6th International Conference on
Advances in Mobile Computing and Multimedia, pp. 40–49,
November 2008.

[29] J. Chong, N. Satish, B. Catanzaro, K. Ravindran, and K.
Keutzer, “Efficient parallelization of H.264 decoding with
macro block level scheduling,” in Proceedings of IEEE Inter-
national Conference onMultimedia and Expo (ICME ’07), pp.
1874–1877, July 2007.

[30] A. Azevedo, C. Meenderinck, B. Juurlink, A. Terechko, et
al., “Parallel H.264 decoding on an embedded multicore
processor,” in Proceedings of the 4th International Conference on
High Performance and Embedded Architectures and Compilers,
pp. 404–418, January 2009.

[31] W. Lee, K. Patel, andM. Pedram, “GOP-level dynamic thermal
management inMPEG-2 decoding,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 16, no. 6, pp. 662–
672, 2008.

[32] I. Yeo, H. K. Lee, E. J. Kim, and K. H. Yum, “Effective dynamic
thermal management for MPEG-4 decoding,” in Proceedings
of IEEE International Conference on Computer Design (ICCD
’07), pp. 623–628, October 2007.

[33] M. Mehendale, “Socs for portable video applications: archi-
tecture level considerations,” in Proceedings of IEEE Electronic
Design Processes Workshop, pp. 213–217, April 2007.


	1. Introduction
	2. Related Work
	3. System Architecture
	3.1. Front-End Buffer Control Mechanism

	4. Experiment and Result
	5. Conclusions
	Acknowledgment
	References

