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Under interference constraint and energy consumption constraint, to maximize the channel utilization, an opportunistic spectrum
access (OSA) strategy for a slotted secondary user (SU) overlaying an unslotted ON/OFF continuous time Markov chain (CTMC)
modeled primary network is proposed. The OSA strategy is investigated via a cross-layer optimization approach, with joint
consideration of sensing period (related to PHY layer) and transmission time (related to MAC layer), which will affect both
interference and energy consumption. Two access policies are investigated in this paper; that is, SU transmits only in “OFF slots”
(i.e., the slots that the sensing results are OFF) and transmits in both “OFF slots” and “ON slots”. The allocation of sensing period
and transmission time for two access policies is investigated and analyzed by means of geometric methods. The closed form
solutions are derived, which show that SU should transmit in “OFF slots” as much as possible, and that the proposed OSA strategy
has low computational cost. Numerical results also show that with the proposed policies, SU can efficiently access the channel and
meanwhile consume less energy and time to sense.

1. Introduction

With the wide deployment of wireless communication
systems, the precious radio spectrum is becoming more and
more crowded. On the other hand, the report published
by Federal Communication Commission (FCC) shows that
the current spectrum management policy has resulted in an
underutilized spectrum [1].

Thus, cognitive radio (CR) [2] and opportunistic spec-
trum access (OSA) [3], as the means to deal with the
spectrum underutilization problem, are proposed. The basic
idea of OSA is to allow secondary users (SUs) to search for,
identify, and exploit instantaneous spectrum opportunities
while limiting the interference perceived by primary users
(PUs). The interference depends on SU’s access policy
(namely, when and how to access the spectrum and the
corresponding transmission time), power, rate, and so on.
And to solve the interference problem, there are many works
of the literature using all kinds of methods. In [4–6], the
authors propose power control strategies for different system

scenarios. In [7–9], the optimal access policies have been
studied. And in [10, 11], the authors consider the effect of
both power and rate.

On the other hand, in most practical situation, the SU is
a battery-powered device. Thus, the energy consumption, as
one of the most important problems that, affecting cognitive
radio networks, should also be considered. Unfortunately,
none of the former works take into account the energy
consumption, and to the best of our knowledge, there
are only a few work literature focus on this problem. In
[12], the authors consider the impact of transmit power
consumption, and the power consumption is integrated into
the objective function named power efficiency, which is
defined as throughput divided by power consumption. But,
the work in [12] does not take into consideration the sensing
energy consumption. In [13, 14], the authors take into
account both sensing and transmission energy consumption,
and within the framework of partially observable Markov
decision process (POMDP), the optimal MAC policies for
energy-constrained OSA have been studied. However, all
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of these works assume PU is time slotted. Under this
assumption, SU is required to have a knowledge of slot
time and synchronization of PU and SU is necessary. The
synchronization request will cause more overhead and the
time offset is fatal for the MAC policy. Therefore, we relax
this assumption, which means PU is not time slotted, and
part of this work has been presented in a previous paper
[15].

In this paper, to maximize the channel utilization, we
address an OSA strategy for a slotted SU overlaying an
unslotted primary network under interference constraint
(IC) and energy consumption constraint (ECC). We consider
the simplest cognitive radio system model which has only
one channel available for transmissions by a pair of PU
and SU. For the model of channel occupancy by the PU,
we assume that it is a not-time-slotted two-state ON/OFF
continuous time Markov chain (CTMC), which arise from
[7]. While for SU, a time slotted (periodic) communication
protocol is used. At the beginning of each slot, the SU senses
the channel and then a specified volume of transmission
time is allocated depends on the sensing results. Two access
policies are investigated in this paper; that is, SU transmits
only in “OFF slots” (i.e., the slots that the sensing results
are OFF) and transmits in both “OFF slots” and “ON
slots”.

Since the SU is periodic, thus the period will affect the
energy consumption and the identified result of channel
state, which will affect the spectrum utilization. For example,
smaller period will cause more energy consumption for
sensing but better identified results for more transmission,
and vice versa. Thus, suitable period should be chosen for
better spectrum utilization and energy consumption. Then,
we define the ECC as a function of the sensing period,
according to the idea of battery life. On the other hand, the
IC is modeled by the average temporal overlap between SU
and PU.

The allocation of sensing period and transmission time
for two access policies are investigated and analyzed by
means of geometric methods. The closed-form solutions
are derived, which show that SU should transmit in “OFF
slots” as much as possible. Numerical results show that with
the proposed policies, SU can efficiently access the channel,
and meanwhile consumes less energy and time to sense the
channel’s state than the reference policies.

The rest of the paper is organized as follows. After
introducing the system model and problem formulation
in Section 2, the mathematical model and its the optimal
allocation of sensing period and transmission time for two
different access policies are derived in Sections 3 and 4,
respectively. In Section 5, two reference access policies are
introduced in order to put the performance of our proposed
policies in perspective. And then, in Section 6, the simulation
results are present and discussed. Finally, conclusions are
stated in Section 7.

Throughout this paper, we use the following notation.
Pr(·) denotes the probability. W(·) denotes the Lambert
W function. (·)− denotes that (·) minus an infinitesimal.
min{a, b} and max{a, b} denote the minimal and maximal
value of a and b, respectively.
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Figure 1: Illustration of the time behavior of PU and SU under two
different access policies.

2. SystemModel and Problem Formulation

In this section, we first present the system model and the time
behaviors of PU and SU, and then introduce the interference
constraint and energy consumption constraint.

2.1. System Model. We consider the simplest cognitive radio
system model which has only one channel available for
transmissions by a pair of PU and SU. The time behavior
of both PU and SU is shown in Figure 1. We assume that
the PU exhibits nontime slotted ON/OFF behavior, while
the SU employs a time slotted communication protocol with
period T > 0 (e.g., Bluetooth). In each slot, the SU senses
the channel at the beginning of the slot, and then access this
channel according to the sensing results.

Besides, we assume perfect sensing, and the sensing time
is short enough to be ignored.

2.2. The Time Behavior of the PU. As mentioned above,
the behavior of the PU is not time slotted and switches
between ON and OFF states. Furthermore, we model the
time behavior of the PU by a two-state ON/OFF CTMC,
which arise from [7]. And this modeling approach has
been used in related publications [8, 16] and solidified by
a measurement-based analysis of WLAN traffic [17]. The
CTMC assumption strikes a good tradeoff between model
accuracy and the analytical tractability that is needed in the
subsequent sections.

Based on stochastic theory [18], the holding times in
both ON and OFF state are exponentially distributed with
parameters μ > 0 for the ON state and λ > 0 for the OFF
state, and the transition matrix is given by

P(τ) = 1
λ + μ

[
μ + λe−(λ+μ)τ λ− λe−(λ+μ)τ

μ− μe−(λ+μ)τ λ + μe−(λ+μ)τ

]
. (1)
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When the sensing result is in OFF state at time t0, then the
probability of PU being ON at time t0+τ is given by the upper
right entry in the transition matrix, that is, (1/(λ + μ)) (λ −
λe−(λ+μ)τ).

We assume the channel state information μ and λ are
known to SU.

2.3. SU’s Access Policies. The SU’s access policy, that is,
the allocation of transmission time, will affect the channel
utilization and the interference between PU and SU. For
example, more transmission time can improve the spectrum
usage, meanwhile may cause more interferences. Geirhofer
et al. [7] has proved that it is optimal to transmit at the
beginning (the end) of the slot if the sensing outcome is OFF
(ON). Based on this result, we consider two access policies.

(1) Policy π1: a ρ0 fraction of period T transmission time
is allocated at the beginning of the slot if and only if
the sensing result is OFF, as shown in Figure 1(a).

(2) Policy π2: if the sensing result is OFF (ON), a ρ0 (ρ1)
fraction of period T transmission time is allocated
at the beginning (the end) of the slot, as shown in
Figure 1(b).

The policy π1 is more intuitive, that is, it allows SU to
transmit in “OFF slots”, and the policy π2 allows SU to try to
utilize both “OFF slots” and “ON slots”. Since policy π1 can
be seen as a special case of policy π2 as ρ1 = 0, thus, policy π2

is no worse than policy π1.

2.4. Interference Constraint. The interference between PU
and SU is modeled by the average temporal overlap. Consider
the activity of the PU is given by the CTMC {X(ξ), ξ ≥ 0}
with parameters μ and λ. Based on the sensing result and
access policy, from [7], we can get that if the sensing result
is OFF, the expected time overlap φ0(ρ0,T) is given by

φ0
(
ρ0,T

) = 1
T

∫ ρ0T

0
Pr(X(ξ) = 1 | X(0) = 0)dξ

= 1
T

∫ ρ0T

0

1
λ + μ

(
λ− λe−(λ+μ)τ

)
dτ

= λ(
λ + μ

)
T

(
ρ0T +

1
λ + μ

(
e−(λ+μ)ρ0T − 1

))
,

(2)

and if the sensing result is ON, the expected time overlap
φ1(ρ1,T) is given by

φ1
(
ρ1,T

)

= λ(
λ + μ

)
T

(
ρ1T +

μ/λ

λ + μ
e−(λ+μ)T

(
e(λ+μ)ρ1T − 1

))
.

(3)

Now, let C ∈ [0, 1] be the maximum interference level
tolerable by PU, namely, the percentage of interference time
in the total time is no more than C. Then, the IC under policy
π1 can be written as

k × φ0
(
ρ0,T

) ≤ C (4)

and the IC under policy π2 can be written as

k × φ0
(
ρ0,T

)
+ (1− k)× φ1

(
ρ1,T

) ≤ C, (5)

where k = μ/(μ + λ), which is the probability of the sensing
result being OFF.

2.5. Energy Consumption Constraint. In most practical situa-
tions, the SU is a battery-powered device. Thus, the energy
consumption, as one of the most important problem that
affecting cognitive radio networks, should be considered. We
define the ECC according to the idea of battery life, which
means in per unit time, the sum of sensing and transmission
energy consumption is less than or equal to some threshold,
namely,

1
T

(
Q + ptβT

) ≤ P, (6)

where Q is the sensing energy consumption and pt is the
transmit power of SU, which is assumed to be constant in the
following discussion. P is the maximum energy consumption
per unit time tolerable by SU, and β is the channel utilization
ratio. For policy π1 and π2, β is given by

β = kρ0, (7)

β = kρ0 + (1− k)ρ1, (8)

respectively.

3. Optimal Allocation under Policy π1

In the previous section, the system model and two con-
cerned constraints (IC and ECC) have been established. In
this section, we study the tradeoff of sensing period and
transmission time under policy π1, which leads to a convex
problem. Since convex techniques could not get closed-form
solutions, thus, through investigating the properties of IC
and ECC, we transform this convex problem to a more
intuitive geometrical problem, which leads to a closed-form
solution. And we also given some intuitive explanations.

3.1. Problem Formulation. For policy π1, under interference
constraint (4) and energy consumption constraint (6), we try
to find the optimal sensing period T and transmission time
ρ0T to maximize the channel utilization (7).

Mathematically, this leads to the problem P1

max
ρ0,T

β = k × ρ0

s.t. k × φ0
(
ρ0,T

) ≤ C,

Q

T
+ k × pt × ρ0T

T
≤ P,

T > 0,

0 ≤ ρ0 ≤ 1.

(9)

This problem leads to a convex optimization problem,
thus convex optimization techniques can be used. However,
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Figure 2: Illustration of the relationship of IC and ECC under access policy π1. C1 and C2 are the curves when ECC and IC hold with
equality, respectively.

these techniques could not get closed-form solutions. We
study the properties of this model and transform it into a
geometrical problem, which is more intuitive. And based on
this geometrical model, we get its closed-form solutions.

Since k is constant for a given channel, maximizing the
goal k× ρ0 equals to maximizing ρ0. Thus, our goal equals to
finding the maximal ρ0.

3.2. Properties of IC and ECC. First, we recall the following
Lemma from [7].

Lemma 1. For any given T > 0, the expected time overlap
φ0(ρ0,T) is strictly increasing in ρ0.

This lemma is easy to understand, because more trans-
mission time causes more interference. Based on Lemma 1,
merely under the IC, for any given sensing period T1, one
has that

(1) the maximal ρIC
0 (T1) is obtained when the IC (4)

holds with equality, that is, k × φ0(ρ0,T1) = C,

(2) and when ρ0 ≤ ρIC
0 (T1), the IC is always satisfied.

Similarly, we have the following lemma.

Lemma 2. For any given T > 0, the energy consumption
(1/T)(Q + kptρ0T) is strictly increasing in ρ0.

Since it is obvious, one omits the proof of this Lemma.
Based on Lemma 2, one can obtain the same results that
merely under the ECC, for any given sensing period T1,

(1) the maximal ρECC
0 (T1) is obtained when the ECC (6)

holds with equality, that is, (1/T1)(Q+ kptρ0T1) = P,

(2) and when ρ0 ≤ ρECC
0 (T1), the ECC is always satisfied.

Based on these lemmas, merely under IC or ECC, the
maximal ρ0 depends on T , which means given a sensing
period T , we can get a maximal ρ0, and for another T , we
have another one. Thus, we have a question directly: Which
T makes ρ0 achieve the global optimum?

To answer this question, we first introduce the following
two lemmas.

Lemma 3. ρIC
0 , the solution of k × φ0(ρ0,T) = C, is strictly

decreasing in T and the infimum of ρIC
0 is ρIC

0,c = C/k(1− k).

Proof. See Appendix A.

Lemma 4. ρECC
0 , the solution of (1/T)(Q + kptρ0T) = P, is

strictly increasing in T and the supremum of ρECC
0 is ρECC

0,p =
P/kpt .

Since it is obvious, we omit the proof of this lemma.

3.3. Optimal Allocation and Solution Structure. Based on
Lemma 3, when ρIC

0,c = C/k(1−k) ≥ 1 (i.e., C ≥ k(1−k)), for
all ρ0 ∈ [0, 1], the IC (4) is always satisfied, which means that
when the sensing result is OFF, for any T > 0, the maximum
interference level C is large enough for SU to transmit in the
whole period T . Thus, in this situation, the problem P1 only
consists of ECC, and is simplified to

max
ρ0,T

β = k × ρ0

s.t.
Q

T
+ k × pt × ρ0T

T
≤ P,

T > 0,

0 ≤ ρ0 ≤ 1.

(10)

Thus, based on Lemmas 2 and 4, the optimal solutions of P1
depend on the relationship of ρECC

0,p and 1.
Then, we focus on the situation of C < k(1 − k). Based

on Lemma 3, we can obtain that maximizing ρ0 is equal to
minimizing T , while based on Lemma 4, maximizing ρ0 is
equal to maximizing T . Thus, as shown in Figure 2, under
the IC and the ECC, the optimal ρ0 can be obtained by the
relationship of curves C1:

1
T

(
Q + kptρ0T

) = P (11)
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and C2:

k × φ0
(
ρ0,T

) = C. (12)

Therefore, considering the scope of C and P, we have
obtained the optimal solution.

(1) When C ≥ k(1 − k), C is large enough for SU to
transmit in the whole “OFF slots”. (since k is the
probability of the sensing result is OFF, and 1 − k
is the probability of PU being ON, thus k(1 − k)
can be interpreted as the average time overlap when
SU transmits in the whole “OFF slots”.) Thus, as we
discussed, the optimal solutions of P1 depend on the
relationship of ρECC

0,p and 1.

(a) When ρECC
0,p ≤ 1, each ρ0, which satisfies the

ECC, is less than 1. Similar to the situation of
Figure 2(b) without curve C2, the optimal ρ0,opt

is obtained when T = +∞. In practice, when
P ≥ 100Q/T , ρ0 is close to ρ0,opt, so we can
choose Topt ≈ 100Q/P.

(b) When ρECC
0,p > 1, similar to the situation of

Figure 2(c) without curve C2, we have that
ρ0,opt = 1 and Topt ≥ Tp.

(2) When C < k(1−k), the optimal solution is restrict by
both IC and ECC.

(a) When P is small, as shown in Figure 2(a), the
ECC plays a major role. Thus, the optimal ρ0 is
obtain when T = +∞.

(b) As P increases, both IC and ECC take effect, as
shown in Figure 2(b). Thus, the optimal ρ0 is
the intersection of C1 and C2.

(c) When the ECC is loose enough, the IC will play
a major role, as shown in Figure 2(c). Thus,
ρ0,opt = 1 and Topt ∈ [Tp,Tc].

Expressed in mathematical language, the optimal solu-
tion can be obtained in the following theorem.

Theorem 5. While C ≥ k(1 − k), the optimal solution of P1
is

ρ0,opt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
P

kpt

)−
, 0 < P ≤ kpt

1, P > kpt ,

Topt

⎧⎪⎨
⎪⎩
= +∞, 0 < P ≤ kpt

∈
[
Tp, +∞

)
, P > kpt.

(13)

While C < k(1− k), the optimal solution of P1 is

ρ0,opt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
P

kpt

)−
, 0 < P ≤ Cpt

1− k

PTopt −Q

kptTopt
,

Cpt
1− k

< P ≤ Q

Tc
+ kpt

1, P >
Q

Tc
+ kpt ,

Topt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= +∞, 0 < P ≤ Cpt
1− k

= −1
c
W
(
− c

a
e(ad−bc)/a

)
− b

a
,

Cpt
1− k

< P ≤ Q

Tc
+ kpt

∈
[
Tp,Tc

]
, P >

Q

Tc
+ kpt ,

(14)

where Tc = (1/(λ + μ))(W((1/m)e1/m)− 1/m), m = C/k(1−
k)− 1, Tp = Q/(P − kpt) (while ρECC

0,p = P/kpt > 1) and

a = λ + μ

k

(
C

1− k
− P

pt

)
,

b = 1 +

(
λ + μ

)
Q

kpt
,

c = −
(
λ + μ

)
P

kpt
,

d =
(
λ + μ

)
Q

kpt
.

(15)

Proof. See Appendix B.

4. Optimal Allocation under Policy π2

The previous section derived the optimal allocation under
policy π1. The policy only allows SU to access “OFF slots”,
which may lead to lower spectrum utilization.

According to Theorem 5, under policy π1, when the
thresholds P and C are large enough, the maximal ρ0,max =
1, and the maximal channel utilization ratio βmax = k.
Therefore, when the ECC and IC get looser, the chan-
nel utilization ratio β will not increase any more. In
an extreme instance, when C = 1 and P = +∞,
which means there are no interference constraint and
energy consumption constraint, the optimal access pol-
icy of the SU is transmitting all the time regardless of
the sensing result, and then the channel utilization ratio
β = 1. Thus, the access policy π1 is not suitable any
more.

The main reason is SU do not access the “ON slots”.
Therefore, in this section, we will study the policy π2,
which allows SU access of both “ON slots” and “OFF
slots”. However, this problem is a nonconvex one. Similar to
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what we have done in the previous section, we investigate
the properties of IC and ECC, and then transform this
nonconvex problem to a geometrical problem, and finally
obtain the closed-form solution.

4.1. Problem Formulation. Similar to the previous section, we
can get the mathematical model P2 of policy π2, namely,

max
ρ0,ρ1,T

β = k × ρ0 + (1− k)× ρ1

s.t. k × φ0
(
ρ0,T

)
+ (1− k)× φ1

(
ρ1,T

) ≤ C,

Q

T
+ ptβ ≤ P,

T > 0,

0 ≤ ρ0, ρ1 ≤ 1.

(16)

It can be proved that problem P2 is not a convex
optimization problem, due to the fact that IC (5) of problem
P2 is not convex in T . Thus, for this nonconvex problem,
we study its properties and transform it into a geometrical
problem, and obtain the closed-form solution as we have
done in the former section.

4.2. Properties of IC and ECC. First, we give some notation;
Δρ0 and Δρ1 are the increments of ρ0 and ρ1, respectively.
And we define that

Δφ0 = φ0
(
ρ0 + Δρ0,T

)− φ0
(
ρ0,T

)
,

Δφ1 = φ1
(
ρ1 + Δρ1,T

)− φ1
(
ρ1,T

)
.

(17)

We recall the following lemma from [7].

Lemma 6. For any given T > 0, the expected time overlap
φ1(ρ1,T) is strictly increasing in ρ1.

Based on Lemmas 1 and 6, increasing ρ0 and ρ1 will both
increase the interference. On the other hand, increasing ρ0

and ρ1 can also raise the channel utilization ratio. However,
from the following Lemma, one can know that the effect of
increasing interference and channel utilization via increasing
ρ0 or ρ1 is different.

Lemma 7. For any given T , to generate the same interference,
that is, kΔφ0 = (1 − k)Δφ1, increasing ρ0 can always make
more channel utilization increment than increasing ρ1, that is,
kΔρ0 > (1 − k)Δρ1. And when ρ0 /= 0, ρ1 /= 1 and T → +∞,
the effect of increasing ρ0 or ρ1 are almost the same.

Proof. See Appendix C.

Based on Lemma 7, we know that increasing ρ0 is always
better than increasing ρ1. In other words, SU should transmit
in the “OFF slot”, and if the transmission time could not
increase, that is, ρ0 = 1, then SU transmit in the “ON slot”.
Thus, we can obtain this following lemma directly.

Lemma 8. ρ1 is greater than 0 if and only if ρ0 = 1.

Based on Lemma 8, we can infer what follows.

(i) When ρ0 < 1, ρ1 = 0, and the optimal solution of P2
can be obtained by P1.

(ii) When ρ0 = 1, ρ1 > 0, P2 change into the following
optimization problem P3, namely,

max
ρ1,T

β = k + (1− k)× ρ1

s.t. k × φ0(1,T) + (1− k)× φ1
(
ρ1,T

) ≤ C,

Q

T
+ ptβ ≤ P,

T > 0,

0 ≤ ρ0 ≤ 1.

(18)

Furthermore, based on Lemma 8, if the IC or ECC is
loose enough such that ρ0 = 1, ρ1 can be obtained by

k × φ0(1,T) + (1− k)× φ1
(
ρ1,T

) ≤ C. (19)

Since 1 − k = λ/(λ + μ) is the probability of PU being
ON, thus, if C ≥ 1 − k, for all ρ0, ρ1 ∈ [0, 1], the IC (5) is
always satisfied. Then, we focus on the situation of C < 1−k.
Based on Lemma 6, the maximal ρ1 is obtained when (19)
holds with equality. And similar to Lemma 3, we can reach
the conclusion.

Lemma 9. When C < 1− k, ρIC
1 , the solution of k×φ0(1,T) +

(1−k)×φ1(ρ1,T) = C, is strictly decreasing in T . The infimum
of ρIC

1 is ρIC
1,c = limT→+∞ρ1 = (C − k(1 − k))/(1− k)2 and

limT→ 0ρ
IC
1 = C/(1− k).

Proof. See Appendix D.

4.3. Optimal Allocation and Solution Structure. Based on
Lemmas 3, 9, and 8, we can infer that under IC, the maximal
channel utilization ratio β decreases as T increases. On the
other hand, under ECC (6), the maximal β increases as T
increases. Thus, similar to the form section, we can obtain
the optimal solution of P2 through the relationship of IC (5)
and ECC (6), as shown in Figure 3.

(1) When C ≥ 1 − k (Figure 3(a)), the IC is always
satisfied for any ρ0 and ρ1. From the ECC (6), we can
obtain that β ≤ P/pt − Q/ptT < P/pt , therefore the
optimal β of P2 depends on the relationship between
P/pt and 1.

(a) When P/pt ≤ 1, the optimal β is obtained when
T = +∞. And furthermore, based on Lemma 8,
if P/pt ≤ k, the optimal ρ0 < 1 and ρ1 = 0;
otherwise, ρ0 = 1 and ρ1 > 0.

(b) When P/pt > 1, we have that β = 1 and Topt ≥
Tp.
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(2) When k(1 − k) ≤ C < 1 − k (Figure 3(b)), C is large
enough for SU transmits in all “OFF slots”, that is,
ρ0 ≡ 1.

(a) When P/pt ≤ C/(1− k), the optimal β is obtain
when T = +∞.

(b) When P/pt > C/(1 − k), the optimal β is the
intersection of βIC and βECC.

(3) When C < k(1− k) (Figure 3(c)), the optimal ρ0 can
be obtained according to Theorem 5 (Figure 2(c)),
and the optimal ρ1 > 0 if and only if T < Tc. Similarly,
we have that

(a) When P/pt ≤ C/(1− k), the optimal β is obtain
when T = +∞.

(b) When P/pt > C/(1 − k), the optimal β is the
intersection of βIC and βECC.

Mathematically, this leads to the following theorem.

Theorem 10. While C ≥ 1− k, the optimal solution of P2 is

ρ0,opt =

⎧⎪⎪⎨
⎪⎪⎩

min

{(
P

kpt

)−
, 1

}
, 0 < P ≤ pt,

1, P > pt,

ρ1,opt =

⎧⎪⎪⎨
⎪⎪⎩

max

{(
P − kpt

(1− k)pt

)−
, 0

}
, 0 < P ≤ pt,

1, P > pt,

Topt

⎧⎪⎨
⎪⎩
= +∞, 0 < P ≤ pt,

∈
[
Tp, +∞

)
, P > pt.

(20)

While k(1− k) ≤ C < 1− k, the optimal solution of P2 is

ρ0,opt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min

{(
P

kpt

)−
, 1

}
, 0 < P ≤ Cpt

1− k
,

1, P >
Cpt

1− k
,

ρ1,opt =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max

{(
P − kpt

(1− k)pt

)−
, 0

}
, 0 < P ≤ Cpt

1− k
,

(
P − kpt

)
Topt −Q

(1− k)ptTopt
, P >

Cpt
1− k

,

Topt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞, 0 < P ≤ Cpt
1− k

,

−1
g
W
(
−g

a
e(ah−bg)/a

)
− b

a
, P >

Cpt
1− k

, P /= pt,

eh − b

a
, P = pt.

(21)

While C < k(1− k), the optimal solution of P2 is

ρ0,opt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
P

kpt

)−
, 0 < P ≤ Cpt

1− k
,

PTopt −Q

kptTopt
,

Cpt
1− k

< P ≤ Q

Tc
+ kpt ,

1, P >
Q

Tc
+ kpt ,

ρ1,opt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 < P ≤ Cpt
1− k

,

0,
Cpt

1− k
< P ≤ Q

Tc
+ kpt,

(
P − kpt

)
Topt −Q

(1− k)ptTopt
, P >

Q

Tc
+ kpt,

Topt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞, 0 < P ≤ Cpt
1− k

,

−1
c
W
(
− c

a
e(ad−bc)/a

)
− b

a
,

Cpt
1−k < P ≤ Q

Tc
+kpt,

−1
g
W
(
−g

a
e(ah−bg)/a

)
− b

a
, P >

Q

Tc
+ kpt,

P /= pt,

eh − b

a
, P = pt,

(22)

where Tc = (1/(λ + μ))(W((1/m)e1/m)− 1/m), m = C/k(1−
k)− 1, Tp = Q/(P − kpt) (while ρECC

0,p = P/kpt > 1) and

a = λ + μ

k

(
C

1− k
− P

pt

)
,

b = 1 +

(
λ + μ

)
Q

kpt
,

c = −
(
λ + μ

)
P

kpt
,

d =
(
λ + μ

)
Q

kpt
,

g =
(
λ + μ

)(
P − pt

)
(1− k)pt

,

h = −
(
λ + μ

)
Q

(1− k)pt
.

(23)

Proof. See Appendix E.

5. Reference Policies

In this section, in order to put the performance of our
proposed policies in perspective, we will introduce two
suboptimal reference access policies.
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5.1. Probabilistic Access Policy πPA. Here, we consider a
probabilistic access policy πPA, with which SU will either
choose to access each slot entirely with certain probability
or maintain silence. Specifically, in each slot, if the sensing
result is OFF, then SU will access this slot with the probability
p0; and if the sensing result is ON, then SU will access this
slot with the probability p1. It is apparent that greedy access
policy (namely, in each slot, SU will access the whole slot as
long as the sensing result is OFF, or stay silence if the sensing
result is ON) is a special case of the probabilistic access policy
when p0 = 1 and p1 = 0.

Thus, we have the mathematical model of policy πPA

max
p0,p1,T

β = k × p0 + (1− k)× p1

s.t. kp0φ0(1,T) + (1− k)p1φ1(1,T) ≤ C,

Q

T
+ ptβ ≤ P,

T > 0,

0 ≤ p0, p1 ≤ 1.

(24)

Since φ0(1,T) < φ1(1,T), thus similar to Lemmas 7 and
8, we can obtain the following properties.

(1) For any given T , to generate the same interference,
increasing p0 can always make more channel utiliza-
tion increment than increasing p1.

(2) p1 is greater than 0 if and only if p0 = 1.

Therefore, similar to Theorem 10, we can obtain the
optimal p0 by the relationship of curves p0 = C/kφ0(1,T)
and p0 = (1/kpt)(P −Q/T), namely,

p0 = max
T>0

{
min

{
C

kφ0(1,T)
,
PT −Q

kptT

}}
. (25)

Thus, according to (25), we can obtain the maximal p∗0 and
the corresponding T∗ by linear search algorithm.

If 0 < p∗0 < 1, then the optimal solution is p0,opt =
p∗0 , p1,opt = 0 and Topt = T∗. And if p∗0 ≥ 1, the optimal
solution p0,opt = 1, and p1,opt, Topt can also be obtained by
linear search algorithm, according to the following equation:

p1 = max
T>0

{
min

{
C − kφ0(1,T)

(1− k)φ1(1,T)
,
PT − kptT −Q

(1− k)ptT

}}
.

(26)

5.2. No Sensing Access Policy πNSA. We consider an access
policy, with which SU does not carry out the sensing event
before its transmission. Specifically, in each slot, SU will
transmit a ρ fraction of period T without sensing the

channel. Thus, we have the mathematical model of policy
πNSA

max
ρ,T

β = ρ

s.t. (1− k)ρ ≤ C,

ptρ ≤ P,

T > 0,

0 ≤ ρ ≤ 1.

(27)

Thus, the maximal channel utilization is

β = ρopt = min

{
min

{
C

1− k
,
P

pt

}
, 1

}
(28)

and Topt > 0.

6. Numerical Results

In this section, we will present three numerical simulations:
one on the performance of policy π1, the second on the
performance of policy π2, and the third on the comparison
of policy π2 and reference policies.

6.1. Optimal Allocation under Policy π1. In this subsection,
the simulation results for access policy π1 are presented. We
will illustrate the optimal allocations for different channel
states, namely, holding times, and different IC threshold C.
Furthermore, We assume that Q = 0.1, pt = 3 and P varies
from 1 to 1.5, which guarantee P ∈ ((Cpt/(1 − k)),Q/Tc +
kpt] for any chosen C, λ, and μ in the following simulation.

Figures 4 and 5 show the optimal solutions for different
holding times λ and μ, while C = 10%. For any given λ and
μ, as P increases; that is, the ECC gets looser, the optimal
solution ρ0,opt increases, and Topt decreases, which means
that the channel utilization increases with increasing P. For
any given P, as the holding times λ−1 and μ−1 increase, ρ0,opt

and Topt increase. Thus, the channel utilization increases
with increasing holding times.

Figures 6 and 7 show the optimal solutions for different
C, while λ = μ = 0.1. For any given C, as P increases, the
optimal solution ρ0,opt increases and Topt decreases. Thus,
the channel utilization increases as P increases. For any
given P, as C increases; that is, the IC gets looser, ρ0,opt and
Topt increase. Thus, the channel utilization increases as C
increases.

Furthermore, comparing Figures 4 and 6, it is observed
that ρ0,opt increases near linearly with increase of P. Thus,
due to ρ0,opt = (1/kpt)(P−Q/Topt), we can obtain that 1/Topt

is a near linear equation of P.

6.2. Optimal Allocation under Policy π2. In this subsection,
the simulation results for access policy π2 are presented. We
will illustrate the optimal allocations for different channel
states, namely, k and holding times, and different IC
threshold C. We also assume that Q = 0.1, pt = 3.
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Figure 3: Illustration of the relationship of IC and ECC under access policy π2.βECC is the maximal β under ECC. βIC is the maximal β under
IC and ρIC

0 , ρIC
1 are its corresponding transmission allocation.
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Figure 4: The optimal ρ0,opt versus P for different holding times.

Figures 8 and 9 show the optimal solutions for different
k. We assume the holding times μ−1 = 2, 2.5, 3, and λ−1 =
3, 2.5, 2, which make k = 0.4, 0.5 and 0.6, respectively.
Besides, we assume C = 10%, corresponding to the situation
of Figure 3(c). For any given k, the optimal spectrum
utilization β increases as P increases and tends to C+k. From
Figure 3(c), we can know that when P is small, the problem
P2 can be regard as being only restricted by ECC, which make
the maximal β = P/pt. As P increases, both IC and ECC take
effect. Then, the optimal β, the intersection of βIC and βECC ,
increases as P increases. Based on Lemma 9 and Figure 3(c),
we can obtain that limP→∞β = k× 1 + (1− k)×C/(1− k) =
C + k. Furthermore, Figure 8 shows that ρ1 > 0 if and only
if ρ0 = 1, and β increases as k increases. Figure 9 shows that
sensing period T decreases as P increases, due to the fact that
the intersection of βIC and βECC moves left as P increases. And
we can also observe that T decreases as k decreases.
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Figure 5: The optimal Topt versus P for different holding times.

Figures 10 and 11 show the optimal solutions for different
holding times μ−1 and λ−1. We assume C = 10% and μ =
λ = 0.2, 1, 5, which make k the same. Figure 10 shows
that β increases as P increases. This is because based on
Theorem 10, when C < k(1 − k), both ρ0 and ρ1 increase as
P increases. Figure 10 also shows that β increases as holding
time increases. Since Figure 11 shows that sensing period T
increases as holding time increases, and Theorem 10 shows
that when C < k(1 − k), both ρ0 and ρ1 increases as T
increases, thus, β increases as holding time increases.

Figures 12 and 13 show the optimal solutions for different
C. In Figure 12, we assume C = 10%, 40%, 60%, corre-
sponding to the different situations as shown in Figure 3.
From Figure 12, we can know that β increases as P increases
and increases as C increases, which means when IC or
ECC get looser, the spectrum utilization increases. From
Figure 13, we can observe that the sensing period T increases
as C increases.
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Figures 14 and 15 show the optimal solutions for different
Q, that is, Q = 0.1, 1, 3. We assume that C = 10% and
μ = λ = 0.2. Figure 14 shows that the spectrum utilization
β increases as Q decreases, but the limit value is the same,
which has nothing to do with Q. Figure 15 shows that the
sensing period T increases as Q increases.

6.3. Comparison of Access Policy π2 and Reference Policies.
Since policy π1 is a special case of policy π2, thus, in this
subsection, we will compare the performance of policy π2

with policy πPA and πNSA for different holding times, namely,
μ = 1, 10, 30 and λ = 1, 10, 30. We also assume that
Q = 0.1, pt = 3 and C = 10%.
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Figure 16 illustrates the maximal channel utilization
under three different access policies. From this figure, we can
obtain that when P is small, the channel utilization under
three access policies are the same. This is because the ECC
plays a major role and the ECC models for these three access
policies is the same. Furthermore, we can obtain that when
P is small; that is, the ECC is tight, SU need not sense the
channel, since the performance of policy πNSA is the same as
policy π2. When P > Cpt/(1− k), both IC and ECC will take
effect. At that moment, the channel utilization under policy
π2 is much larger than πNSA, especially when the channel’s
state switches slowly (namely, μ and λ are small), and is
always larger than πPA, especially when the channel’s state
switches fast.

Figure 17 illustrates the optimal sensing period under
policies π2 and πPA. From this figure, we can obtain that the
optimal sensing period under policy π2 is always larger than
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Figure 13: The optimal Topt under policy π2 for different C.
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Figure 14: The optimal ρ0, ρ1,β under policy π2 for different Q.

the one under policy πPA, which means SU can consume less
energy and time to sense the channel while adopting our
proposed policy π2. Furthermore, comparing Figure 16 with
Figure 17, we can find that when the holding time is large
(i.e., μ and λ is small), although the channel utilization under
policy π2 is slightly larger than policy πPA, the sensing period
of policy π2 is much larger than policy πPA.

Therefore, we can obtain that both PA and NSA policies
are sub-optimal, and with our proposed policy π2, SU can
efficiently access the channel, and meanwhile consumes less
energy and time to sense the channel’s state.

7. Conclusion

In this paper, we propose an OSA strategy for a slotted SU
overlaying an unslotted ON/OFF CTMC modeled primary
network under IC and ECC, where IC is modeled by the
average temporal overlap and the ECC is defined by the
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idea of battery life. Based on the sensing results, two access
policies are investigated in this paper; that is, SU transmits
only in “OFF slots” (i.e., the slots that the sensing results are
OFF) and transmits in both “OFF slots” and “ON slots”.

The optimal allocation of sensing period and trans-
mission time for two access policies are formulated and
the closed-form solutions are derived, which show that SU
should transmit in “OFF slots” as much as possible. Numer-
ical results also show that with the proposed policies, SU
can efficiently access the channel, and meanwhile consumes
less energy and time to sense the channel’s state than the
reference policies, namely, probabilistic access policy and no
sensing access policy.

In terms of further work, we will intend to extend our
work to more general case of multiple PUs and SUs. We will
also consider the effect of imperfect sensing.
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Figure 17: The optimal Topt under access policy π2 and πPA.

Appendices

A. Proof of Lemma 3

Here, instead of ρIC
0 , we use the notation ρ0 for convenience.

Let h(ρ0,T) = kφ0(ρ0,T)− C. Because

h
(
ρ0 + dρ0,T + dT

)

= h
(
ρ0,T

)
+
∂h
(
ρ0,T

)
∂ρ0

dρ0 +
∂h
(
ρ0,T

)
∂T

dT
(A.1)

and h(ρ0,T) ≡ 0, therefore we have

∂h
(
ρ0,T

)
∂ρ0

dρ0 +
∂h
(
ρ0,T

)
∂T

dT = 0. (A.2)

Substituting (2) into h(ρ0,T) gives

h
(
ρ0,T

) = λμ(
λ + μ

)2

(
ρ0 +

e−(λ+μ)ρ0T − 1(
λ + μ

)
T

)
− C. (A.3)

Then, we have

∂h
(
ρ0,T

)
∂ρ0

= λμ(
λ + μ

)2

(
1− e−(λ+μ)ρ0T

)
, (A.4)

∂h
(
ρ0,T

)
∂T

= λμ(
λ + μ

)3

×
−(λ + μ

)
ρ0Te−(λ+μ)ρ0T −

(
e−(λ+μ)ρ0T − 1

)
T2

= λμ(
λ + μ

)3

1− (1 +
(
λ + μ

)
ρ0T

)
e−(λ+μ)ρ0T

T2

= λμ(
λ + μ

)3

e(λ+μ)ρ0T − (1 +
(
λ + μ

)
ρ0T

)
T2 × e(λ+μ)ρ0T

.

(A.5)
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Because for any x > 0, ex > 1 + x and e−x ∈ (0, 1), thus, for
any ρ0 ≥ 0 and T > 0, we can obtain ∂h(ρ0,T)/∂T > 0 and
∂h(ρ0,T)/∂ρ0 > 0, therefore

dρ0

dT
= −

(
∂h
(
ρ0,T

)
/∂T

)
(
∂h
(
ρ0,T

)
/∂ρ0

) < 0. (A.6)

Thus, ρ0 is strictly decreasing in T .
Because limT→+∞h(ρ0,T) = k(1−k)ρ0−C = 0, thus, the

infimum of ρ0 is ρIC
0,c = C/k(1− k).

B. Proof of Theorem 5

First, we will discuss the situation of C < k(1− k).
As shown in Figure 2, the optimal solution of P1 depends

on the relationship between curves C1 and C2. Because the
curve C1 is a branch of hyperbola (ρ0 = P/kpt − (Q/kpt) ×
(1/T),T > 0), thus, as P increases, the relationship between
curves C1 and C2 will change from not intersecting to
intersecting. We will discuss this issue in different situations.

(A-1) When ρECC
0,p ≤ ρIC

0,c, that is, 0 < P ≤ Cpt/(1 − k),
based on Lemmas 3 and 4, the curves C1 and C2 have no
intersection, as illustrated in Figure 2(a). Then, when the
ECC (6) satisfies, the IC (4) will always satisfy. Thus, the
optimal solution of P1 is ρ0,opt = (ρECC

0,p )
− = (P/kpt)

− and
Topt = +∞.

(A-2) As P increases, the curves C1 and C2 will have
one intersection (T∗, ρ∗0 ) in the first quadrant, as illustrated
in Figure 2(b). If ρ∗0 ≤ 1, based on Lemmas 3 and
4, the intersection (T∗, ρ∗0 ) will be the optimal solution
(Topt, ρ0,opt).

Let (T , ρ0) = (Tc, 1) be the point on the curve C2 when
ρ0 = 1. Substituting (Tc, 1) into (12), we have

k(1− k)

(
1 +

1(
λ + μ

)
Tc

(
e−(λ+μ)Tc − 1

))
= C. (B.1)

Let m = C/k(1− k)− 1 /= 0 and x = (λ + μ)Tc, we have

mx = e−x − 1,

mxex = 1− ex,
(
x +

1
m

)
ex = 1

m
,

(
x +

1
m

)
ex+1/m = 1

m
e1/m.

(B.2)

Thus,

Tc = x

λ + μ
= 1

λ + μ

(
W
(

1
m
e1/m

)
− 1

m

)
. (B.3)

Substituting Tc into (11), we have ρ0, C1 = (1/kpt)(P−Q/Tc).
Thus, ρ∗0 ≤ 1 is equal to ρ0, C1 ≤ 1, that is, P ≤ Q/Tc + kpt.

Thus, when Cpt/(1− k) < P ≤ Q/Tc + kpt , the curves C1
and C2 have one intersection, which is the optimal solution
(Topt, ρ0,opt). By solving (11), we have

ρ0,opt = 1
kpt

(
P − Q

Topt

)
. (B.4)

Substituting ρ0,opt into (12) leads to

aT + b = ecT+d, (B.5)

where a, b, c,d are given in (15). And when Cpt/(1 − k) <
P ≤ Q/Tc + kpt, we can prove a /= 0 and c /= 0. Thus, using
the similar approach to finding Tc, we can obtain that

Topt = −1
c
W
(
− c

a
e(ad−bc)/a

)
− b

a
. (B.6)

(A-3) As P increases, ρ∗0 will be greater than 1. Further-
more, let (T , ρ0) = (Tp, 1) be the point on the curve C1
when ρ0 = 1. By solving (11), we have Tp = Q/(P − kpt).
Thus, when P > (Q/Tc) + kpt, the optimal solution is Topt ∈
[Tp,Tc] and ρ0,opt = 1, as illustrated in Figure 2(c).

Second, when C ≥ k(1−k), the optimal solution depends
on the relationship of ρECC

0,p and 1.
When ρECC

0,p ≤ 1, that is, 0 < P ≤ kpt, which is similar to
the situation of (A-1), the optimal solution of P1 is ρ0,opt =
(ρECC

0,p )
− = (P/kpt)

− and Topt = +∞.
When ρECC

0,p > 1, that is, P > kpt, which is similar to
the situation of (A-3), the optimal solution of P1 is Topt ∈
[Tp, +∞) and ρ0,opt = 1.

C. Proof of Lemma 7

To prove this lemma equals to prove

∂φ0
(
ρ0,T

)
∂ρ0

<
∂φ1

(
ρ1,T

)
∂ρ1

. (C.1)

Substituting (2) and (3) into ∂φ0(ρ0,T)/∂ρ0 and
∂φ1(ρ1,T)/∂ρ1, we can obtain that

∂φ0
(
ρ0,T

)
∂ρ0

= (1− k)
(

1− e−(μ+λ)ρ0T
)

,

∂φ1
(
ρ1,T

)
∂ρ1

= 1− k + ke−(μ+λ)(1−ρ1)T .

(C.2)

Thus,

∂φ0
(
ρ0,T

)
/∂ρ0

∂φ1
(
ρ1,T

)
/∂ρ1

=
(1− k)

(
1− e−(μ+λ)ρ0T

)
1− k + ke−(μ+λ)(1−ρ1)T <

1− k

1− k
= 1.

(C.3)

And when ρ0 /= 0 and ρ1 /= 1,

lim
T→+∞

∂φ0
(
ρ0,T

)
/∂ρ0

∂φ1
(
ρ1,T

)
/∂ρ1

= lim
T→+∞

(1− k)
(

1− e−(μ+λ)ρ0T
)

1− k + ke−(μ+λ)(1−ρ1)T

= 1− k

1− k
= 1.

(C.4)

Therefore, when ρ0 /= 0, ρ1 /= 1 and T → +∞, the effect
of increasing ρ0 or ρ1 are almost the same.
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D. Proof of Lemma 9

Here, instead of ρIC
1 , we use the notation ρ1 for convenience.

Substituting (2) and (3) into

k × φ0(1,T) + (1− k)× φ1
(
ρ1,T

) = C, (D.1)

and through simplifying, we have

−(1− k)
(
1− ρ1

)
x + ke−(1−ρ1)x =

(
C

1− k
− 1
)
x + k,

(D.2)

where x = (μ + λ)T .
Let y = −(1−ρ1)x, A = 1−k and B = C/(1−k)−1)x+k,

then we have

key = B − Ax,

k

A
ey = B

A
− y,

k

A
eB/A =

(
B

A
− y

)
eB/A−y.

(D.3)

Thus,

y = B

A
−W

(
k

A
eB/A

)
. (D.4)

Thus,

ρ1 = 1 +
y

x

= 1 +
1
x

(
B

A
−W

(
k

A
eB/A

))

= 1 +
1
x

(
k

1− k
−W

(
k

1− k
eB/(1−k)

))
+
C − (1− k)

(1− k)2 .

(D.5)

Since C < 1 − k, when T increases, x increases and B
decreases and B < k.

Let z = (k/(1 − k))eB/(1−k). Due to z > 0, thus, W(z)
decreases as B decreases andW(z) < W((k/(1−k))ek/(1−k)) =
k/(1−k). Thus, as x increases, k/(1−k)−W(z) increases and
k/(1− k)−W(z) > 0. However, from the following equation
we can obtain that as T increases, k/(1− k)−W(z) increases
slowly than x

d
dx

(
k

1− k
−W(z)

)
= − d

dz
(W(z))

dz
dx

= − W(z)
z(1 + W(z))

× z × C − (1− k)

(1− k)2

= W(z)
(1 + W(z))

× (1− k)− C

(1− k)2

<
1

(1− k)
< 1.

(D.6)

Therefore, when C < 1 − k, ρ1, the solution of k ×
φ0(1,T) + (1 − k) × φ1(ρ1,T) = C, is strictly decreasing in
T .

Taking the limit of (D.1), we have

lim
T→+∞

(
k × φ0(1,T) + (1− k)× φ1

(
ρ1,T

)) = C,

k(1− k) + (1− k)2 × ρ1 = C.
(D.7)

Thus,

lim
T→+∞

ρ1 = C − k(1− k)

(1− k)2 . (D.8)

Similarly, we have that

lim
T→ 0

(
k × φ0(1,T) + (1− k)× φ1

(
ρ1,T

)) = C,

k(1− k)

(
1− λ + μ

λ + μ

)
+ (1− k)2 ×

(
ρ1 +

μ

λ
ρ1

)
= C,

(1− k)ρ1 = C.
(D.9)

Thus,

lim
T→ 0

ρ1 =
C

1− k
. (D.10)

E. Proof of Theorem 10

Since when C ≥ 1 − k, the IC is looser enough for SU to
transmit all the time regardless of the sensing results, namely,
for all ρ0, ρ1 ∈ [0, 1], the IC (5) is always satisfied. Thus, the
problem P2 is only constrained by ECC. From (6), we can
obtain that

β ≤ P

pt
− Q

ptT
<

P

pt
. (E.1)

Thus, considering the scope of β, we can easily get the
optimal solution of P2, as shown in Figure 3(a).

(1) When 0 < P/pt ≤ 1, that is, 0 < P ≤ pt, based on
Lemma 8, when β ≤ k, ρ0,opt ≤ 1 and ρ0,opt = 0, and
on the other hand, when k < β < 1, ρ0,opt = 1 and
ρ0,opt > 0. Thus,

ρ0,opt = min

{(
P

kpt

)−
, 1

}
,

ρ1,opt = max

{(
P − kpt

(1− k)pt

)−
, 0

}
,

Topt = +∞.

(E.2)
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(2) When P/pt > 1, that is, P > pt,

ρ0,opt = 1,

ρ1,opt = 1,

Topt ∈
[

Q

P − pt
, +∞

)
.

(E.3)

When k(1− k) ≤ C < 1− k, as shown in Figure 3(b), the
IC is looser enough for SU to transmit all the time when the
sensing result is OFF.

Based on Lemmas 3, 9, and 8, we can infer that under
IC, the maximal channel utilization ratio βIC decreases as T
increases, and its infimum is

lim
T→+∞

βIC = k × 1 + (1− k)× C − k(1− k)

(1− k)2 = C

1− k
.

(E.4)

Furthermore, based on Theorem 5, we can obtain the
following.

(1) When 0 < P/pt ≤ k, that is, 0 < P ≤ kpt , ρ0,opt < 1,

ρ0,opt =
(

P

kpt

)−
,

ρ1,opt = 0,

Topt = +∞.

(E.5)

(2) When k < P/pt ≤ C/(1 − k), that is, kpt < P ≤
Cpt/(1− k),

ρ0,opt = 1,

ρ1,opt =
(
P/pt

)− − k

1− k
=
(

P − kpt
(1− k)pt

)−
,

Topt = +∞.

(E.6)

(3) When P/pt > C/(1 − k), that is, P > Cpt/(1 − k),
ρ0,opt = 1 and the optimal Topt, ρ1,opt can be obtained
by solving P3. In other words, Topt and ρ1,opt satisfy

kφ0

(
1,Topt

)
+ (1− k)φ1

(
ρ1,opt,Topt

)
= C,

Q

Topt
+ pt

(
k + (1− k)ρ1,opt

)
= P.

(E.7)

Thus, ρ1,opt = (P − kpt)Topt − Q/(1 − k)ptTopt, and
Topt satisfies

aT + b = egT+h, (E.8)

where a, b, g,h are given in (23). Due to g /= 0, thus
when g /= 0, that is, P /= pt, using the similar method
to solve (B.5), we can directly get that

Topt = −1
g
W
(
−g

a
e(ah−bg)/a

)
− b

a
. (E.9)

When P = pt, the optimal Topt = (eh − b)/a.

When C < k(1 − k), based on Theorem 5, we know that
ρ0,opt = 1 and ρ0,opt > 0 if and only if P > Q/Tc + kpt , as
shown in Figure 3(c). Otherwise, ρ0,opt and Topt are given by
Theorem 5 and ρ0,opt = 0.

Therefore, when P > Q/Tc + kpt , Topt and ρ1,opt can be
obtained by solving P3. Thus, similar to the situation of k(1−
k) ≤ C < 1 − k and P/pt > C/(1 − k), we have that ρ1,opt =
((P − kpt)Topt −Q)/(1− k)ptTopt and

Topt =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

eh − b

a
, P = pt

−1
g
W
(
−g

a
e(ah−bg)/a

)
− b

a
, P /= pt,

(E.10)

where a, b, g,h are given in (23).
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