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Model checking (MC) is a formal verification technique which has been known and still knows a resounding success in the
computer science community. Realizing that the distributed power control (PC) problem can be modeled by a timed game
between a given transmitter and its environment, the authors wanted to know whether this approach can be applied to distributed
PC. It turns out that it can be applied successfully and allows one to analyze realistic scenarios including the case of discrete
transmit powers and games with incomplete information. The proposed methodology is as follows. We state some objectives
a transmitter-receiver pair would like to reach. The network is modeled by a game where transmitters are considered as timed
automata interacting with each other. The objectives are then translated into timed alternating-time temporal logic formulae and
MC is exploited to know whether the desired properties are verified and determine a winning strategy.

1. Introduction

Power control (PC) is recognized as an important technical
problem in communication networks, especially in wireless
networks. With the advent of new communications concepts,
such as cognitive radio [1] and open spectrum access in
unlicensed bands (see, e.g., [2]), being capable of designing
PC algorithms in a distributed way has become particu-
larly important. When inspecting the literature related to
distributed PC, a dominant methodology arises from the
vast majority of existing works. The PC problem is generally
modeled by a game where the players are the transmitters, the
sets of strategies are the ranges for the transmit powers and
the utility/payoff functions of the players can be for example,
the transmission rate (see, e.g., [3–5]) or energy-efficiency
(see, e.g., [6–8]). As the terminals are assumed to be free,

selfish and rational decision-makers, one fundamental issue
is to know whether there is a solution to this conflict of
interests. In the literature of PC games the most used solution
concept is the Nash equilibrium (NE). An NE corresponds
to a game outcome/state effectively observed when every
player does the best for itself (rationality assumption), knows
the others do so (rationality is common knowledge), and
has a complete knowledge of the game played (complete
information assumption). One of the properties of such a
state is that it is stable to a single deviation, that is, if one
player deviates from the equilibrium unilaterally, it looses
in terms of utility. Therefore, a generic technical issue that
is treated in works on distributed PC is the existence issue
for an NE, which amounts to proving (mathematically) the
existence of a fixed point (see, e.g., [9] for the standard
approach of distributed power control).
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In this paper, a different point of view is adopted. The
main two differences between the existing game-theoretic
works and the work presented here is as follows. First, we
make a different behavioral assumption for the players. Each
transmitter does not assume that the others do the best
for themselves but rather that they can form a coalition
which can do the worst for the considered transmitter; a
strategy allowing a player to reach its objective under these
conditions is called a winning strategy. For instance, this
worst-case assumption can be very relevant to engineers who
want to design transmitters that have to reach a certain
quality of service independently of the design/strategy of
the other transmitters/manufacturers/operators. Second, we
do not want to prove mathematically the existence of an
NE or a network state having certain properties. Rather, we
formulate the PC problem as a timed game [10] between
the considered pair of nodes and its environment, and
prove the existence or nonexistence of such a (winning)
strategy by translating the objective into a temporal logic
formula [11] and exploiting the powerful technique of model
checking (MC; see, e.g., [12]). Although MC is not very
well-known from the communications community, it is a
concept of paramount importance in the computer science
community, as witnessed by its inventors winning the ACM
Turing Award in 2007. It aims at checking, automatically
exhaustively and formally (with a computer) if a system
(possibly involving several agents) verifies some properties
expressed in a given logical language. In our case, MC
provides the answer to whether a certain property can be
satisfied. Additionally, in the case where it is satisfied, the
model checker is able to compute a winning strategy (a
PC policy in our case). Our motivation for using model
checking (computational approach) instead of proving a
theorem (analytical approach) is essentially twofold: we do
not consider Nash equilibria (and therefore fixed-point solu-
tions); our study aims at considering the practical case where
transmit powers are discrete. Concerning the latter point,
note that, as mentioned recently [13], the vast majority
of works on distributed PC assume continuous transmit
powers while in many existing communications systems
it can only be discrete. All results based on compactness
and convexity of the strategy sets of the players are not
valid anymore. In particular, these results include existence,
uniqueness, convergence results for pure Nash equilibria in
noncooperative PC games. Therefore, the case of discrete
powers can become difficult and even impossible to solve
analytically.

This paper is structured as follows. First, we describe the
network model under investigation and justify the assump-
tions made (Section 2). Second, we state some properties
a given transmitter-receiver pair would like to be verified
and present the strategic form of the distributed PC game
viewed from a given transmitter (Section 3). In Section 4,
we reformulate this game into a timed game by using the
notion of timed automaton and propose a way of modeling
the timed game which is compatible with the model checker
used, namely, Uppaal-TiGA [14]. In Section 5, we translate
the desired properties into formulae expressed in a given
temporal logic and use Uppaal-TiGA to know whether the

network allows theses properties to be verified. At last, in
Section 6 concluding remarks and possible extensions are
provided.

2. Problem Statement

Here we present the assumed signal model but it is important
to keep in mind that the proposed approach is not inherent to
the assumed communication model and network topology,
and can be directly applied to other models just by changing
the expressions of the different signal-to-interference plus
noise ratios (SINRs). In this paper, we assume an interference
channel [15] with K transmitter-receiver pairs (Txi, Rxi),
i ∈ {1, . . . ,K}, as described in Figure 1. The baseband signal
received by Rxi, can be expressed by:

yi(t) =
K∑

j=1

hjix j(t) + zi(t), (1)

where ∀(i, j) ∈ {1, . . . ,K}2, hji represents the channel gain
of the link between nodes j and i; xj(t) represents the signal
transmitted by Tx j and is assumed to belong to a finite
alphabet (an element of this alphabet is called a symbol,
e.g., a quadrature amplitude modulation symbol), t being
a time index associated with a certain rate at which the
medium is used (symbol index, channel use index); zi(t) is
the additive white complex noise at receiver i, zi is assumed
to be distributed according to a zero-mean Gaussian random
variable with variance σ2

i . As we analyze a PC problem,
we make the same assumptions as in the related works
([6, 7], etc.), that is, the channel gains are assumed to be
constant over the whole duration of the transmission but
can be updated on a block-by-block basis; note that a block
is defined as a sequence of N consecutive symbols which
comprises a training sequence that is, a certain number of
consecutive symbols used to estimate the channel, the SINR,
and so forth. Usually, the PC problem consists in updating
the power of a given transmitter every block duration. Here,
with more generality, we assume that it can be updated
within a block duration. We will therefore assume a block
can be seen as N/n consecutive subblocks of n symbols each
and use a time index τ to indicate when, in a given block, the
transmit power of a given transmitter is updated. Using this
time or sub-block index, one can define within a given block
the instantaneous SINR for receiver i as follows:

∀τ ∈
{

1, . . . ,
N

n

}
, SINRi(τ) = |hii|2pi(τ)

σ2
i +

∑
j /= i

∣∣∣hji

∣∣∣
2
pj(τ)

(2)

with

pi(τ) = 1
n

n∑

t′=1

∣∣x(t′)
∣∣2, (3)

which means that the instantaneous power results from
averaging the power over n consecutive symbols. The vector
(p1(τ), . . . , pK (τ)) will be called the network state for sub-
block τ. We will call the time elapsed during n symbol
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Figure 1: Assumed communication model: a K-user interference
channel.

durations a time unit (TU). In addition to the assumptions
made so far, we will suppose the following

Assumption 1. The transmit power of each transmitter i ∈
{1, . . . ,K} is discrete, pi(τ)[dBm] ∈ Pi, Pi = {P0,P0 +
ΔP, . . . ,P0 + (M − 1)ΔP}, and can be increased or decreased
by at most one power increment ΔP every TU; w.l.o.g. M is
assumed to be an odd integer.

Assumption 2. Every arriving user starts transmitting at the
power pi(t = 0)[dBm] = Pwu = P0 + ((M − 1)/2)ΔP (“wu”
stands for wake up).

Assumption 3. Each transmitter can start/stop transmitting
at any time but has to remain at the ON or OFF state during
a minimum amount of time tON or tOFF.

Assumption 4. Each transmitter (say i) knows its SINR and
(hji) j perfectly.

Assumption 5. There is a maximum SINR, denoted by γmax,
above which no transmitter is allowed to operate.

Assumption 6. Each receiver Rxi knows the channel gain hii
only.

Assumption 7. The number of transmitters, that is, K can
possibly vary at any time, which means in particular that they
can be asynchronous (to the best to the authors’ knowledge
the models currently available in the literature of distributed
PC problems cannot account for this feature).

Let us give some motivations for these assumptions. First,
concerning Assumption 1, note that the transmit power
cannot vary arbitrarily over time, it can only be increased
or decreased by one power step every TU. This might
translate some physical limitations due to the transmitter
(e.g., because of the finite power amplifier slew rate). In
fact, for the model checker we exploit in Section 5, this
assumption implies a dramatic reduction of complexity for
the verification procedure. To conclude with Assumption 1,
note that the discrete power assumption ensures the existence
of a mixed NE in strategic-form non-cooperative PC games
with complete information and rational users. In this paper,
we do not want to exploit this result for at least three reasons:
it is demanding in terms of information assumptions; we

do not focus on the case of network states having the NE
property (namely, they are stable to a single deviation)
but look at states which can have different properties;
mixed strategies are not always relevant in communication
networks (e.g., for short transmissions, sporadic traffic with
nonstationary network parameters). Note that [13] also
addressed the case of discrete powers but the goal in [13] is
to study the existence and convergence issues towards a pure
or mixed NE by exploiting stochastic learning algorithm.
Assumption 2 is arbitrary but reasonable if the environment
is unknown before starting the transmission. Assumption 3
accounts for possible constraints from the network or used
technology. Assumption 4 is realistic in terms of knowledge
since in many communication systems, there is a feedback
mechanism allowing the transmitter to be informed with the
SINR. This information assumption is also not very strong
in comparison to the usual assumptions generally needed to
analyze Nash equilibria in PC games, especially games with
complete information. Assumption 5 indicates the existence
of a constraint on the SINR for every transmitter. For
instance, this constraint can be imposed by a regulator or
follow from an agreement between operators/manufacturers.
Note that this constraint is different from the one on the
maximum transmit power. It can be stronger in fact. Indeed,
if a transmitter, say i, is very close to its access point, it can
happen that transmitting at full power, that is, pi[dBm] =
Pmax[dBm] = P0 + (M − 1)ΔP does not meet the condition
SINRi ≤ SINRmax. Assumption 6 is a standard assumption,
which is necessary to ensure coherent communications.
Assumption 7 indicates that the proposed approach applies
to networks where transmitters are asynchronous and can
enter/leave the network at any time. This is a consequence
of our information assumptions: the individual SINR can be
known without knowing the instantaneous number of active
transmitters and the worst case assumption only requires
the knowledge of the maximum transmitters with which a
transmitter can interact (this number is necessarily limited
in wireless networks because of path loss effects and limited
user density). At last, the fact that the arrival/departure
instant of a transmitter is not a multiple of the sub-block
duration is known to be a negligible effect in real wireless
networks, which is what is assumed here.

3. Proposed Network Properties and Power
Control Game Definition

Our ultimate objective is to know if, in the network described
in the preceding section, every transmitter is satisfied. A
transmitter will be said to be satisfied if it can exchange a
certain volume of data and at the same time reach a transmis-
sion quality target. In fact, we assume that every transmitter
wants to reach this objective independently of what the other
transmitters do. As a consequence of this, the network can be
seen from the point of view of a given transmitter, say i, as a
game between itself and its environment. The environment
includes the other transmitters and the channel. The channel
consists of the matrix H whose entries are the channel gains
hi j . It is fixed for a given block of data. Therefore, transmitter
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i will be satisfied if there exists a winning strategy in the
game between itself and its environment, that is, the desired
properties will be verified whatever the environment does.
The existence of such a winning strategy will be proved
in Section 5 by using the Uppaal-TiGA model checker.
We consider the following properties. Let Δτ and tout be
two durations expressed in TUs and γmin, γ− be two SINR
thresholds with γmin ≥ γ−.

Property 1. The network satisfies Property 1 for player i if the
following three relations are verified:

∃τi, ∀τ ∈ {τi, τi + 1, . . . , τi + Δτ},

∀p−i(τ) ∈ P̃−i, SINRi(τ) ≥ γmin;
(4)

[∃(τ0, τ−),∀τ ∈ {τ0, τ0 + 1, . . . , τ0 + τ−},
γ− ≤ SINRi(τ) ≤ γmin

] =⇒ τ− ≤ tout;
(5)

∀τ ∈
{

1, . . . ,
N

n

}
, SINRi(τ) ≥ γ−. (6)

Property 2. The network satisfies Property 2 for player i if
Property 1 is satisfied in the special case γmin = γ− or
equivalently if tout = 0.

Property 3. The network satisfies Property 3 for player i if
Property 2 is satisfied in the special case Δτ = 0, that is, the
target SINR γmin can be reached during at least one sub-block
index (namely τi).

In (4), p−i(τ) is the (K − 1)-uplet
(p1(τ), . . . , pi−1(τ), pi+1(τ), . . . , pK (τ)). This (K − 1)-
dimensional vector lies in general in the product space
P1×· · ·×Pi−1×Pi+1 · · ·×PK . But here, we have used the
notation P̃−i to clearly indicate that we assume that the PC
policy implemented by every transmitter cannot be arbitrary
but has to verify Assumption 5

P̃i =
{
pi ∈ Pi, SINRi ≤ γmax

}
. (7)

We therefore see that, for a fixed channel, transmitter i
assumes the worst case in terms of environment, that is, in
terms of behavior for the other transmitters. Said otherwise,
a given transmitter is free to do what is best for itself but
assumes that the other transmitters can form a coalition
aiming at decreasing its chances to reach its objective.
The drawback for this assumption is that the obtained
results will be pessimistic and the desired property will be
met more often than expected. But, we have to keep in
mind that one of our goals was to relax the rationality
assumption (every transmitter does the best for itself and
this is common knowledge to every transmitter). We can see
that in the proposed framework it is effectively not needed.
This framework can be very useful in some scenarios.
For example, it can happen that, over a certain period of
time, Tx2 wants to maximize its transmission rate (high-
speed uploading) while later on, for a second phase, it
wants to save its energy. From the point of view of Tx1,
assuming that it always wants to save its energy, Tx2 will

not behave rationally over the first phase. In brief, the
rationality assumption can be very questionable, especially
in heterogeneous networks (with different manufacturers,
operators, services, technologies, etc.). Therefore, if Property
q ∈ {1, 2, 3} is verified for transmitter i, it means that the
latter can reach its objective in the worst environment.

Now, let us comment on the proposed properties sep-
arately. Property 3 allows a transmitter to be sure that for
a fixed channel state, there will be a moment at which the
packet it wants to send can be received reliably, indepen-
dently of the power dynamics of the other transmitters.
This occurs when a short message has to be transmitted.
Property 2 allows, this time, the transmitter to be ensured
to transmit a certain volume of data (D × Δτ bits where D is
the data rate in bit/s) reliably within a time interval equal to
the channel coherence time, that is, the interval over which
the channel state can be considered to be fixed. As tout = 0,
the property also imposes that connectivity is never lost.
Property 1, like Property 2, guarantees that a certain volume
of data can be exchanged reliably but is more tolerant than
Property 2. Indeed, it allows the receiver to operate below the
minimum required SINR for ensuring a certain transmission
quality target for a certain duration (tout TUs). For example,
this allows one to account for interesting scenarios such as
the case where a new transmitter enters the network. When
a new user arrives, it can happen that the minimum SINR
target of player i, that is, γmin is not met for a short interval
only and operating at a lower SINR γ− can suffice to maintain
connectivity. We will comment more on this scenario below.
Another scenario where considering this property is relevant
is an application or a service where two levels of quality are
admitted for the transmission. To conclude on Property 1 we
make some comments on the physical feasibility of such a
property: (4) translates the existence of a time windows over
which the medium is sufficiently good, which happens, for
example, when the link hii is good enough some transmitters
stop emitting or the other transmitters are far enough from
transmitter i; (5) translates the nonexistence of a too wide
windows over which the channel conditions are bad in the
sense that the system is not robust to a network change over
this time windows; (6) ensures that over the whole block or
packet duration connectivity is not lost.

Here, we justify in a more detailed manner why we
use two SINR thresholds (namely, γmin and γ−) instead of
one as it is usually the case for the standard formulation
of the PC problem (see, e.g., [16]). Indeed, in [16] and
related papers the goal is to minimize the transmit power
under the constraint SINRi ≥ γ− with tout → +∞; this
policy allows one to reach the minimum transmission quality
target and save energy. Here, by allowing the SINR target
to be different from the minimum SINR target we ensure a
certain degree of robustness against networks changes like
the arrival of a new user. Therefore, the value of γ− has
to be chosen in accordance with desired robustness degree.
To be more concrete, let us consider an example. Assume
a network comprising 2 pairs of nodes at time τ and 3
pairs of nodes at time τ + 1 and the existence of a steady
state for the network with two users, that is, pi(τ) = pi.
Without loss of generality, consider transmitter 1. Under
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typical assumptions, the probability that SINR1 at time τ + 1
is less than γ− given that it equals γmin at time τ can be
checked to be (see Appendix A)

Pr
[
SINR1(τ + 1) ≤ γ− | SINR1(τ) = γmin

]

= Pr

[
|h31|2 ≥ α

(
γmin

γ−
− 1

)]
,

(8)

where α = (σ2
1 + |h21|2p2)/Pwu. Additionally, if |h31|2

is exponentially distributed (case of Rayleigh fading) we
have that the probability of loosing connectivity (outage
probability), which we call Pout, is given by

Pout = exp

[
−σ2

1 + |h21|2p2

Pwu

(
γmin

γ−
− 1

)]
. (9)

Therefore, by fixing a desired target for Pout we find the
appropriate value for γmin to be used in the PC algorithm. As
a consequence, for a given channel state, Properties 3–1 will
be verified or not but γmin allows one to tune the probability
of verifying the latter. The price to be paid for a certain
robustness against the arrival of a new user is a higher energy
consumption w.r.t. the standard assumption γmin = γ−.

At this point we have all the elements to define the PC
game under investigation properly. As already mentioned,
the game has to be defined from a given transmitter’s point
of view. Consider transmitter i.

Players. There are two players in the game. Transmitter i is
the first player (protagonist) and the rest of the transmitters
(−i) constitutes the second player (antagonist).

Strategies. A pure strategy for transmitter i consists of a
sequence of causal functions (pτi )τ∈{1,...,N/n} with

pτi :

∣∣∣∣∣∣
H (τ)

i −→ P̃i,

(SINRi(1), . . . , SINRi(τ − 1)) -−→ pi(τ),
(10)

where H (τ)
i is the set of private histories for the SINR of

transmitter i, each possible history verifying Assumptions
1 to 7. Note that the choice of these functions does not
depend on a particular action (vector of transmit powers)
of the opponent (called a move in game theory) but only
depends on the knowledge of the considered transmitter on
the game. In particular, it depends on what it believes about
its opponent and its objective.

Utilities. If a given Property is satisfied (resp., not satisfied)
for transmitter i, transmitter i gets +1 (resp., −1) and the
environment −i (i.e., the antagonist) gets −1 (resp., +1). If
a player has several winning strategies (providing him with
+1), he chooses the one minimizing the consumed energy or
equivalently the quantity

∑N
t=0 |xi(t)|2.

Proving the existence of a winning strategy for player i
in the stated zero-sum game appears to be nontrivial. We
note that one of the problems here is the dynamic aspect of
the game, which is not present in the conventional approach

of the distributed PC problem (e.g., [16]). Indeed, the other
transmitters can start/stop emitting whenever they want to
and also choose any feasible sequence of actions (pi(τ))τ .
Additionally, the game is with incomplete information since
a transmitter (say i) does not know all the game; for instance
the channel gains of the others are not known (hjk, k /= i).
A possible way of tackling the considered problem is to
reformulate the game as a timed game, for which MC can
be applied. This is the purpose of the next section.

4. Translating the Distributed PC Problem into
a Timed Game

We have presented the assumed network model in Section 2
and the properties we would like it to verify in Section 3.
In order to know whether these properties are verified
or not we want to exploit the concept of MC and more
specifically the Uppaal-TiGA model checker, which is the
purpose of Section 5. To this end, we need to translate the
network model into a timed automaton model, and express
the desired properties in a formal language named TATL
(for timed alternating-time temporal logic). This is done in
Section 4.2. In order to make this paper sufficiently self-
contained and the corresponding methodology applicable
to other communication scenarios, we first review, in
Section 4.1, some important notions on timed automata
[17] and timed games [10]. More details are provided in
Appendices B and C.

4.1. Review of Basic Notions

4.1.1. Timed Automata. Roughly speaking, a timed automa-
ton is a finite automaton enriched with clocks, which are
real-valued variables used to measure the time elapsed
between different events of the automaton. All clocks evolve
at the same rate, but their values can be reset when firing
transitions. The values of the clocks can be used to enable or
disable some of the transitions. A state (or configuration) of a
timed automaton is a pair (�, v) where � is a location of the
timed automaton and v is a valuation assigning to each clock
of the automaton its nonnegative real value. There are two
types of moves in timed automata.

Delay Transition. They consist in staying at the same location
and letting time elapse. The automaton then goes from some
configuration (�, v) to another configuration (�, v+ t), where
t ∈ R+ and v + t : x -→ v(x) + t (all the clocks evolve at the
same rate).

Discrete Transitions. They consist in firing a transition of

the timed automaton. A transition �
g;a;r−−→ �′ of the timed

automaton comprises the following elements:

(i) the source and target locations � and �′;

(ii) a guard g, which is a constraint on clocks (for
instance, “x ≥ 1”, requiring that clock x must have
a value greater than or equal to 1 for being allowed to
fire this transition);
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(iii) a label a on the transition, representing the corre-
sponding event;

(iv) the set r of clocks to be reset (e.g., “x := 0”).

Firing this transition from a state (�, v) is only allowed
if the guard is satisfied. We then switch to state (�′, v′), with
v′(x) = 0 if x ∈ r, and v′(x) = v(x) otherwise.

Timed automata are thus a finite representation of an
infinite-state automaton. Still, the underlying infinite-state
automaton is quite “regular”, and this regularity allows one
to have several problems decidable (for instance, “is there
an execution of the automaton reaching a given state?”
(reachability) or “do all executions avoid a given bad state?”
(safety)). The algorithms generally rely on a finite-state
automaton, called the region automaton [17], which roughly
exhibits the same behaviors as the infinite-state automaton
it abstracts. More precise definitions for timed automata are
provided in Appendix B.

4.1.2. Timed Games. Timed games [10] are timed automata
in which some transitions can be uncontrollable, in the sense
that a player cannot neither prevent them from occurring
nor force them to occur. In this setting, a given state is said
to be reachable if there exists a strategy which, if consis-
tently applied, and whichever uncontrollable transitions are
applied, ensures that the goal state will be reached. In order
to illustrate these notions let us consider a simple example of
timed game. Consider a transmission game with two players
(the transmitters). Assume that each transmitter has two
possible actions: either transmits at full power (called High
mode) or at low power (called Low mode). The transmission
constraints are as follows. The transmitter has to stay for a
minimum amount of time in each mode, and cannot stay
there forever: precisely, transmitter i has to stay between mLi

and MLi (resp., mHi and MHi) TUs in the Low (resp., High)
mode. We also assume the existence of a state for which
the system (or network) is blocked if both transmitters stay
at the same time in the High mode for too long, say T
TUs; the clock associated with the overall system or network
will be denoted by y. Does a given user have a way of
controlling its power in order to ensure that the network will
not reach the blocking state, whatever the other transmitter
will do? This situation can be modeled by a timed game (see
Figure 2 where some choices for the values for the guards
and invariants have been made. Locations �0 to �3 model
the different modes of the two transmitters and location �4

is the blocking location. We have considered the point of
view of transmitter 1. We see that user 1 acts as a controller
(playing with solid transitions) and the second user acts as
the environment (controlling dashed transitions). One can
show that the controller has no strategy to avoid reaching
the blocking location �4. Even in this simple example, the
non-existence problem of a winning strategy is not trivial.
The more general problem of PC is more complex than
this problem, which is one of the reasons why automated
techniques (such as MC) are used to answer this type of
questions. For the interested reader, more precise definitions
for timed games are provided in Appendix C.

4.2. Timed Power Control Game Modeling. In this section,
we propose a model for the general PC game presented in
Section 2, taking into account the features of the model
checker Uppaal-TiGA. We proceed in three steps. With
each of the first two steps a figure representing the timed
automaton effectively implemented is associated. In the first
and second steps, for clarity, we restrict our attention to the
case of two transmitter-receiver pairs.

Step 1. Figure 3 represents our model of a transmitter. Each
transmitter has its own two clocks, denoted by x and y,
and can be either ON or OFF. Clock y is used to force the
transmitter to stay at least tON (resp., tOFF) TUs in the ON
(resp., OFF) state. In the figure, which corresponds to the
exact model implemented in Uppaal-TiGA, the quantities
tON and tOFF are renamed on delay and off delay, and
switching between ON and OFF is represented by the three-
state loop in the upper part of Figure 3. Let us comment
on the other three loops. The one on the left represents
the transmitter increasing its power. This can only happen
if enough time has elapsed since the last change (i.e., if
x ≥ delay where delay is some positive amount of time)
and if the floor SINR target is not reached yet (this last
condition is encoded by the constraint A0p1 < m1(B0 +
C0 · p2), where A0, B0, C0 and m1 are chosen, so that this
equation represents the required condition on the SINR).
The loop on the right is the opposite case, which corresponds
to the situation where the transmitter decreases its power.
The loop in the middle, represented by a dashed transition,
is uncontrollable for the transmitter: the transmitter cannot
prevent this transition from occurring (as soon as the guards
are true). As a consequence, any winning strategy for the
transmitter must in particular be able to handle the case
where this transition is fired. This is a “coding trick” we
use to model the fact that the transmitter has to decrease
its power when it is too high, in the sense that it forces the
transmitter to take this case into account: the transmitter has
a winning strategy only if the latter is able to handle the case
where this transition is fired as soon as it is enabled. In a real
communication system, the constraint SINRi ≤ γmax could
be imposed to the transmitter (even if it is a free decision
maker), for example, by a regulator or the receiver itself (if
the latter breaks the communication). Finally, let us stress on
the fact that the transmitter depicted on Figure 3 will “play”
against a similar opponent that is, having similar constraints
for increasing or decreasing its power but implementing any
feasible PC policies.

Step 2. An important feature we want the network to have
is that the communication is broken if the SINR goes
below a certain threshold. The objective of transmitter 1
will be to establish and maintain a communication on
this network. To easily represent this objective, we add an
observer automaton. (Observer here means that it plays
no role in the evolution of the system, but changes states
according to the values of the SINR. There is only one copy
of this automaton in our system, which is used to keep track
of whether transmitter 1 manages to establish and maintain
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L1,L2

x1 ≤ 200, x2 ≤ 100 c, x1 ≥ 10
H1,L2

x1 ≤ 50, x2 ≤ 100

�0

x1: = 0

c, x1 ≤ 10
�1

u, x2 ≥ 5
x2: = 0

x1: = 0

u, x2 ≥ 15
x2: = 0

c, x1 ≥ 10

u, x2 ≥ 5
x2: = 0

u, x2 ≥ 15
x2, y: = 0

�2

x1, y: = 0

c, x1 ≥ 10
�3

y ≥ 9
�4

L1,H2

x1 ≤ 200, x2 ≤ 20
x1: = 0 H1,H2

x1 ≤ 50, x2 ≤ 20
Block

Figure 2: Timed game example: each xi is the clock
for player i; (mL1 ,ML1 ,mH1 ,MH1 ) = (10, 200, 10, 50) and
(mL2 ,ML2 ,mH2 ,MH2 ) = (15, 100, 5, 20); y is the clock for the
network; T = 9.

a communication.) This is what Figure 4 represents. This
automaton has three states. State Emit represents the target
state of transmitter 1, where it can emit with an SINR larger
than γmin. Thus, player 1 can go to this state if the SINR
is high enough, encoded by the condition A0p1 ≥ H(B0 +
C0p2). Then, state Emit2 is a degraded operating mode, in
which the SINR can be below a given threshold (γ−). Again,
we make the transition to Emit2 uncontrollable to “force”
the system to go to this state when the guard holds true. Two
cases can occur in Emit2: either the transmitter manages to
have its SINR back to a reasonable value, in which case it
will be allowed to go back to the Emit state; or it does not
manage to do so within timeout TUs (corresponding to
tout), in which case the system will be taken to the Stop state,
representing the fact that the connection is broken.

Step 3. In order to model a system with more than two
transmitter-receiver pairs, the only things to be changed in
Steps 1 and 2 are the expressions of the SINRs and the
corresponding constraints. For example, the condition from
Emit to Emit2 in the observer becomes A0p1 < m1(B0 +∑

i /= 1 C
i
0pi).

5. Model Checking and Uppaal-TiGA

Now we have translated the PC problem under investigation
into a timed game. We will check if the corresponding game
satisfies the required properties, which will be expressed
as temporal logic formulas. In order to make this paper
self-contained, we first briefly review the concept of MC.
Then, as the last step of our methodology, we express the
desired properties in TATL and use Uppaal-TiGA to check
these properties are verified by the timed game modeling the
network of interest.

5.1. Model Checking. Formal verification is a field of com-
puter science where the aim is to check that the behavior
of an automated system satisfies some given properties. It
relies on a mathematical basis, involving logical reasoning.
Model checking is one of the existing formal-verification

techniques: in this setting, the considered automated system
is modeled by a finite-state automaton (or by exploiting
a related formalism, depending on the properties under
consideration). Model checking aims at automatically and
exhaustively verifying that all the executions of this automa-
ton satisfies the properties we want to check for the original
system. Those properties can be expressed in various ways:
basic properties such as reachability or safety can be checked,
but richer properties can be handled thanks to temporal
logics. Those logics extend classical propositional logics with
temporal modalities. For instance, ♦Goal expresses that
“eventually, property Goal will hold true”, and �¬Error
expresses that “always (in the future), Error will not
hold” (i.e., an error will never occur). Combining them,
we can write �(Request ⇒ ♦Grant) for expressing that
any request is eventually granted. Original model-checking
algorithms have been developed to handle timed automata
and quantitative properties, such as “every request is granted
within 10 time units”. Temporal logics have been extended
accordingly, so that the above property can be written
�(Request ⇒ ♦≤10Grant). They have also been extended
to deal with open systems (games and timed games). In this
setting, MC aims at verifying controllability properties: “does
there exist a strategy for restricting the behavior of the system in
order to enforce the given property”. Temporal logics have been
extended in order to express this kind of properties.

In the following, we use the Uppaal-TiGA model-
checker, which is a model-checker for timed controllability
properties. The three properties stated in Section 3 are then
encoded by the following three temporal logic formulae (we
use the syntax of Uppaal-TiGA here):

control:A <> (Observer.Emit)

control:A <> (Observer.Emit &&

Observer.y > Δτ)

control:A[]((Observer.Emit||

Observer.Emit2)||

Observer.y ≤ Δτ)

The first sentence means that there is a strategy
(control) under which all executions (A) eventually
reach (<>) location Observer.Emit. The second sentence
expresses that there is a strategy to make the system reach
location Observer.Emit and stay there for at least Δτ time
units there (because clock Observer.y is reset when we
enter this location, so that being in Observer.Emit with
Observer.Emit> Δτ is equivalent to staying in that location
for Δτ time units). Finally, the third statement requires the
existence of a strategy whose outcomes satisfy the following
property: it is always ([]) true that the observer is either in
Emit of Emit2, except possibly at the very beginning, when y
is small enough. This precisely encodes Property 1.

5.2. Verification Results Obtained by Using Uppaal-TiGA. We
now provide some results we have obtained when running
the Uppaal-TiGA model-checker for our models and the
properties we are interested in. All the quantities used (reals)
by Uppaal-TiGA have been approximated by rationals having
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y ≥ on delay
y: = 0
pi: = 0

y ≥ off delay
Off

x: = 0
y := 0

pi: = Pwu

pi = 0

On

Increase (p1)
x:= 0

x ≥ delay∧
pi < Pmax∧

A0p1 < m1 · (B0 + C0p2)

pi ≤ Pmax

Decrease (p1)
x: = 0

x ≥ delay∧
pi > 0∧

A0p1 > M1 · (B0 + C0p2)∧
A0(p1 − 1) > m1(B0 + C0p2)

Decrease (p1)x: = 0
x ≥ delay∧ pi > 0 · ∧

A0p1 > M1 · (B0 + C0p2)

Figure 3: Our model of a transmitter. Equations in blue are guards of the closest transition, while updates are in green.

A0p1 ≥ H(B0 + C0p2)

A0p1 ≥ L(B0 + C0p2)

z ≥ timeout A0p1 < L(B0 + C0p2)

y: = 0

z: = 0

Stop

Emit2

Emit

Figure 4: The observer implementing whether or not the connec-
tion can be established or maintained.

8 significant numbers. We have assumed a scenario with two
transmitter-receiver pairs. Figure 5 represents the topology
of the network considered. We assume that three terminals
have fixed positions and one terminal can move. Depending
on the location of the mobile terminal (e.g., a laptop), the
channel gains hi j have different values and the question is
precisely to know if the three properties stated in Section 3
are verified in a given point. The channel gains are assumed
to follow the following path loss model:

∣∣∣hi j
∣∣∣

2 = β

⎛
⎝ d0√

d2
i j + h2

⎞
⎠
λ

, (11)

where β = 0.01, d0 is a reference distance taken to be equal
to 0.1 m, di j the distance between nodes i and j and λ the
path loss exponent, taken to be equal to 3. The distance
h = 0.5 m is used to avoid the divergence of the path loss

5 m 5 m

Tx2 (fixed
computer)

Tx1

(mobile laptop)
Rx1

(fixed acces point)

Rx2 (fixed
acces point)

5 m

Figure 5: Assumed scenario. The network comprises one mobile
laptop (Tx1), one fixed computer (Tx2), and two fixed access points
(Rx1) and (Rx2).

in di j = 0. The transmit power of Txi is such that Pi[dBm] ∈
{11, 14, 17, 20, 23, 26, 29}. The noise power σ2

i is −90 dBm.
Also γ−[dB] = 5, γmin[dB] = 10 and γmax[dB] = 13.

As mentioned just above only Tx1 can move. Its coor-
dinates (in meters) are denoted by (a, b) with a = i ∗ Δa,
b = j ∗ Δb, so that (a, b) = (5, 10) if Tx1 and Tx2 are
colocated, (a, b) = (10, 5) if Tx1 and Rx1 are co-located,
and so forth. With these conventions, the distance between
Tx1 and Rx1 is expressed as d2

11 = (10 − a)2 + (5 −
b)2. With the set of all possible positions for Tx1 one can
associate an image which is labeled by I(i,q) and defined as
follows: a white pixel indicates that Property q ∈ {1, 2, 3} is
satisfied for transmitter i ∈ {1, 2} at the considered point,
a gray pixel indicates that Property q is not satisfied at the
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Tx2 Rx2

Rx1

y

x

10

5

0
0 5 10 15 20

Figure 6: I(1,3): verification of Property 1 for transmitter 1 with
(Δa,Δb) = (0.125 m, 0.125 m).

considered point and a black pixel indicates the positions of
the fixed terminals. Here are some results we obtained by
using Uppaal-TiGA.

5.2.1. Image I(1,3). Here we consider a simple scenario, which
allows us to validate the model implemented with Uppaal-
TiGA. Figure 6 shows the area in which Property 1 is
satisfied for transmitter 1 for Δt = 1 TUs, tout = 3 TUs,
tON = 5 TUs, tOFF = 5 TUs. This area is a disk centered
in the position of receiver 1, which can be explained by
a simple calculation on the path loss effect. What is more
surprising is the presence of the gray ring, which shows that
connectivity can be lost as d11 increases and then recovered
while d11 still increases. This non-trivial effect has been
observed in many other scenarios. Our interpretation is
that this effect is due to the discrete nature of the transmit
power. Uppaal-TiGA allowed us to partly confirm this
interpretation. Indeed, Uppaal-TiGA allows us to synthesize
the corresponding strategies and play against it: we could
not explore all possible plays, but the existence of the ring
appearing in the figure seems to be linked to the fact that
the transmitter has to decrease its power one more time
by moving from the closest inner adjacent white circle
to the gray ring. Figure 7 shows a zoom on a part of
this area when the power increment is 1 dBm (instead of
3 dBm in the case of Figure 6). The results provided here
are useful not only because they can help assessing the
coverage area of a receiver (important for an operator or
network owner) but also because they show the importance
of having a transmit power quantized more accurately for
the highest values. Indeed, using different quantization steps
(nonuniform quantization) for the transmit power (always
in dB) should help removing the intermediate dead zones
appearing in Figure 7.

5.2.2. Image I(2,1). This time we consider the point of view
of transmitter 2 vis-a-vis the position of transmitter 1, where
the noise power σ2

i is −92.2 dBm. Not surprisingly Figure 8
shows that when transmitter 1 is too close to receiver 2
Property 3 cannot be verified for transmitter 2. This explains
the gray area and the white area on the left. Here again, an
a priori non-trivial effect appears. There is a small white

Rx1

y

x

4

3

2

1

0
5 6 7 8 9

Figure 7: I(1,3): showing the influence of the discrete nature of
transmit power on connectivity between Tx1 and Rx1 in the sense
of Property 1; (Δa,Δb) = (0.0625 m, 0.0625 m).

area mixed with the gray area in which Property 3 is true.
Our interpretation is as follows. When Tx1 is close to Rx1,
Tx1 becomes less aggressive in terms of transmit power since
its objective can be easily reached, which means that Rx2

receives less interference. But only half of the “disk” is white
because in the other half, Tx1 seems to be too close to Rx2

to allow Tx2 and Rx2 to be connected. The existence of such
an area is interesting since it shows that designing sensing
algorithms based on the distance only can have undesirable
effects. Indeed, if Tx2 implements such an algorithm based
on the distance between itself and Tx1, it appears that the
influence of Tx1 is stronger when it is close to Rx1 than
what it is when it is close to Tx2. This shows the type of
implications of our results in terms of design. Note that
this type of algorithms is implicitly assumed in the wireless
game theory literature using best-response or learning-type
algorithms.

Finally, Figure 9 shows how players interact with each
other by choosing their transmit power over time. In this
example, transmitter Tx1 tries to establish and maintain a
communication with its receiver Rx1, while Tx2 initiates
short communications. In this example, Tx2 is rather far
from its receiver, so that it is allowed to turn its power to
its maximal value. In order to maintain the communication,
Tx1 also has to increase its power. This goes smoothly for the
first communication initiated by Tx2, but communication of
Tx1 is broken at the second time, because Tx1, that is close to
its receiver, had set its power to its minimal value and could
not “react” in time to set its SINR back to a reasonable value.
This both illustrates the sequence of actions associated with
the winning strategies of the transmitters and shows that the
proposed setup allows one to accommodate asynchronous
transmitters.
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Figure 8: I(2,1): Influence of the position of Tx1 on connectivity
between Tx2 and Rx2 in the sense of Property 3.
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Figure 9: Transmit power versus time for the two users.

5.3. Towards an Implementable Distributed Power Control
Algorithm. A natural and relevant issue is to assess the gap
between the power control procedure and an algorithm
implementable in a real terminal (a laptop, a mobile phone,
a robot, a sensor, etc.). Here we do not pretend that the
proposed procedure is ready to be implemented in a real
terminal but we still want to provide some elements towards
reaching this objective. Consider transmitter i. There are two
steps. The first step is performed off-line by a computation
center (which can be different from the transmitter but not
necessarily). The second one is always performed online at
the transmitter.

First Step. Define a off-line function for which the output is

(i) either a positive answer (yes or 1) associated with a
nonzero sequence of functions (as defined in (10)),

(ii) or a negative answer (no or 0) associated with the zero
sequence (connection failure),

and the inputs are the (quantized) channel gains (|hi j|) j /= i),

the (quantized) noise level σ2
i , the maximum number of

transmitters Kmax (already discrete), the sets of transmit
powers P j , j ∈ {1, . . . ,Kmax (already discrete), and Fq the
logic formulae (written with the syntax of Uppaal-TiGA),
where q ∈ {1, 2, . . . ,Q} is the formula index (Q = 3 in
our case), translating the properties to be verified. For every
possible 5-tuple ((|hi j|) j , σ2

i ,Kmax, (P j) j , (Fq)q) the model

checker is used to provide the value of the output of the
function. The corresponding lookup table is stored in the
transmitter memory.

Second Step. Define an on-line function for which the output
is a sequence of functions and the inputs are the channel
gains (|hi j|) j /= i. Every block duration, this function is run

(processing) and the look-up table (memory) gives the
terminal the sequence of power control functions to be
used (see (10)). Within a block, the transmitter plays its
actions (transmit power levels) according to this sequence of
functions.

6. Summarizing and Concluding Remarks

In comparison with existing works on distributed power
control, we have made two key choices, leading to a different
methodology to analyze the problem. Instead of assuming
that every transmitter does what is best for itself we assume
that, from a given transmitter point of view, the other
transmitter can form a coalition aiming at choosing the worst
environment for the considered transmitter. This worst-case
assumption allows one to cope with some assumptions on
the behavior of the other transmitters, which can be invalid
in certain scenarios like in heterogeneous networks or when
transmitters does not act rationally. Although pessimistic,
it also allows the engineer to design a transmitter-receiver
pair able to operate successfully under any feasible network
configuration. The second important choice made in this
paper is that the existence of the desired network state
(namely verifying some properties for each transmitter) is
not proved mathematically as it usually the case for Nash
equilibria; one of the motivations for this is that this problem
was non-trivial especially because we have considered the
practical assumption of discrete transmit power and consid-
ered the dynamic aspect of the problem. Rather, we propose
another approach. This approach consists in modeling the
problem as a timed game between a given transmitter and
its environment and ask a model checker for a rigorous
answer to whether or not there exists a winning strategy
(in the sense of certain desired properties for this player).
Note that model checkers not only provide the answer to
this question but also a winning strategy when it exists. In a
concrete manner, this shows that it is possible to implement
a certain mapping between a set of possible channel states
and a set of winning strategies. At last, we have illustrated
our approach by exploiting the Uppaal-TiGA model checker
and shown how non-trivial verification results could be
obtained.
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In view of the obtained results, the proposed approach
is quite general and seems to be promising. By general, we
mean that it does not only apply to interference channels
but also to any multiuser channel. Of course, the authors
made some assumptions which can be discussed and which
opens the possibility of extending the present work. For
example, in addition to the extensions proposed previously:
(a) one could try to remove the assumption of the worst
behavior assumption for the environment. Indeed the price
to be paid for removing the rationality assumption is that
the influence of the other transmitters is overestimated.
In a non-cooperative network, the transmitters will not
always be able to form a coalition to fight against a given
transmitter. In particular, this means that if the Nash
equilibrium is effectively the most appropriate solution
concept, the proposed approach can be adapted to prove
the existence and uniqueness of an NE when proving
a fixed-point theorem leads to a failure. The extension
of our work to the Nash equilibrium solution concept
would be an interesting and non-trivial extension since
the protagonist-antagonist approach used in Uppaal-TiGA
does not hold anymore; (b) the framework of timed games
allows one to deal with real-time applications while we have
focused here on the case of delay-tolerant applications; (c)
since one can treat the case of dynamic games, it would
be very interesting to compare the utilities obtained by
Uppaal-TiGA and compare with individually rational levels
allowed by equilibria in repeated games; (d) considering
a constraint on the average transmit power and a finite
energy constraint would also be a very practical feature
to be included. The energy constraint should change the
transmitters’ behaviors, which is a priori not that easy to be
predicted.

Appendices

A. Derivation of the Outage Probability

The SINR of user 1 at time τ is given by

SINR1(τ) = γ1(τ) = |h11|2p1

σ2
1 + |h21|2p2

. (A.1)

At time τ + 1 one new transmitter arrives, transmitter 1
observes its new SINR but is only able to react at time τ + 2.
We precisely want that at least at time τ+1, while transmitter
1 is “surprised”, its communication is not broken that is, its
SINR does not go below a certain threshold, say γ−. At time
τ + 1 the SINR of user 1 is

SINR1(τ + 1) = γ1(τ + 1) = |h11|2p1

σ2
1 + |h21|2p2 + |h31|2p3(τ + 1)

.

(A.2)

The probability that SINR of player 1 falls, at time τ+1, below
γ− given that it was equal to γmin at time τ is expressed by

Pr
[
SINR1(τ + 1) ≤ γ− | SINR1(τ) = γmin

]

= Pr

[ |h11|2p1

σ2
1 + |h21|2p2 + |h31|2Pwu

≤ γ− | γ1(τ) = γmin

]

= Pr

⎡
⎣γ1(τ)

1

1 + |h31|2Pwu/
(
σ2

1 + |h21|2p2

)

≤ γ− | γ1(τ) = γmin

⎤
⎦

= Pr

⎡
⎣γmin

1

1 + |h31|2Pwu/
(
σ2

1 + |h21|2p2

) ≤ γ−

⎤
⎦

= Pr

[
|h31|2 ≥ α

(
γmin

γ−
− 1

)]
,

(A.3)

where α = (σ2
1 + |h21|2p2)/Pwu. Here we implicitly assumed

that randomness comes from the channel gain between
transmitter 3 and the corresponding receiver.

B. Timed Automata

Definition 1. A timed automaton A = (L,X ,Σ,E,I,L) has
the following components: (i) L is a finite set of locations,
(ii) X is a finite set of clocks, (iii) Σ is a finite set of actions,
(iv) E ⊆ L×Σ×G×2X×L is a finite set of edges, (v) I : L → G
assigns an invariant to each location, and (vi)L : L → 2AP is
the labeling function.

The semantics of a timed automaton A is given by a
labeled transition system TA. A state of A is a pair q = (l, ν)
such that l ∈ L and ν � I (l). We let Q denote the set of all
states.

We distinguish two kinds of transitions: time transitions
and switch-transitions:

(i) Given q = (l, ν) and q′ = (l′, ν′) two states of A, there
is a time-transition in A between q and q′ if there
exists τ ∈ R+ such that l = l′, ν′ = ν + τ and ν + τ′ �
I(l) for any τ′, 0 ≤ τ′ ≤ τ. We denote this transition
by q

τ−→ q′.

(ii) Given q = (l, ν) and q′ = (l′, ν′) two states of A, there
is a switch transition in A between q and q′ if there
exists e = (l, a, g,Y , l′) ∈ E such that ν � g and ν′ is
given by

ν′i =
⎧
⎨
⎩

0, if xi ∈ Y ,

νi, if xi /∈Y.
(B.1)

We denote this switch-transition by q
e−→ q′. To emphasize

on the action a, we also use notation q
a−→ q′ in this case, we

use the notation Action(e) = a.
We now define the (labeled) transition system TA.
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Definition 2. Given a timed automaton A, the (labeled)
transition system associated with A is given by TA =
(Q,Σ∪+, → ) where the transition relation is given by

−→ =
⋃

τ∈R+

τ−→ ∪
⋃

e∈E

e−→ . (B.2)

Let A = (L,X ,Σ,E,I,L) be a timed automaton, q1, q2

and q3 be three states of A. If q1
τ−→ q2, for some τ ∈ R+,

and q2
e−→ q3, for some e ∈ E, we shortly denote q1

τ·e−−→
this sequence of two transitions. A finite or infinite run ρ is
sequence of alternating transitions of the form

ρ = q1
τ1·e1−−−→ q2

τ2·e2−−−→ · · · τk·ek−−−→ qk+1 · · · . (B.3)

We denote by RunA (resp., Run
f
A) the set of runs (resp.,

finite runs) of A.

C. Timed Games

Definition 1. Let A = (L,X ,Σ,E,I) be a timed automaton.
We say that A is a timed game, if the set of action Σ contains
a particular action denoted u.

In this context, the transitions labeled with u are called
the uncontrollable transitions. They represent the set of
actions available to the environment. The other ones are
called the controlled transitions. We denote by Σc the set of
actions Σ \ {u}.

Before giving the semantics of timed games, let us first
explain it intuitively.

Let A = (L,X ,Σ,E,I) be a timed game. The game is
played by two players, Player 1 (the controller) and Player 2
(the environment). At any state q, Player 1 picks a time τ and
an action a ∈ Σc such that there is a transition q

τ·e−−→ q′ with
Action(e) = a. Player 2 has two choices:

(i) either he can decide to wait for time τ and execute a
transition q

τ·e−−→ q′ proposed by Player 1,

(ii) or he can wait for time τ′, 0 ≤ τ′ ≤ τ, and execute a

transition q
τ′·e′−−→ q′′ with Action(e′) = u.

The game then evolves to a new state (according to the choice
of Player 2) and the two players proceed to play as before.

Notice that, in the definition of a timed game, it is
implicitly supposed that Player 1 can always formulate a
choice (τ, a) in any reachable state q of the game.

We will now formalize the semantics through the concept
of strategy.

Definition 2. A (Player 1) strategy is a function

λ : Run
f
A -−→ R+ × Σc. (C.1)

Before defining the notion of a winning strategy, we need to
define several other notions. We say that a run ρ is maximal
if it is either infinite or ending in a deadlock. An objective
Ω of a timed game is a subset of the runs of A. Let ρ be a

run of the form q1
τ1·e1−−−→ q2

τ2·e2−−−→ · · · τk·ek−−−→ qk+1 · · · , we

denote by ρi the prefix of ρ ending in qi. Given a strategy λ
and a run ρ, we say that ρ is played according to λ for every
i, if λ(ρi) = (τ′i , ai), then either τi = τ′i and Action(ei) = ai,
or τi ≤ τ′i and Action(ei) = u. We denote by Outcome(ρ, λ)
the set of maximal runs extending ρ and played according
to λ. Given a state q, a strategy λ and an objective Ω, we
say that the strategy λ is winning for the objective Ω from q
if Outcome(q, λ) ⊆ Ω.
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