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Channel estimation protocols for wireless two-hop networks with amplify-and-forward (AF) relays are compared. We consider
multiuser relaying networks, where the gain factors are chosen such that the signals from all relays add up coherently at the
destinations. While the destinations require channel knowledge in order to decode, our focus lies on the channel estimates that
are used to calculate the relay gains. Since knowledge of the compound two-hop channels is generally not sufficient to do this, the
protocols considered here measure all single-hop coefficients in the network. We start from the observation that the direction in
which the channels are measured determines (1) the number of channel uses required to estimate all coefficient and (2) the need
for global carrier phase reference. Four protocols are identified that differ in the direction in which the first-hop and the second-
hop channels are measured. We derive a sensible measure for the accuracy of the channel estimates in the presence of additive noise
and phase noise and compare the protocols based on this measure. Finally, we provide a quantitative performance comparison for
a simple single-user application example. It is important to note that the results can be used to compare the channel estimation
protocols for any two-hop network configuration and gain allocation scheme.

1. Introduction

Cooperative networks offer diversity, multiplexing, and array
gains as in MIMO systems but in a distributed fashion. The
spatial diversity, that is inherently available, can be exploited
by user cooperation to decrease the outage probability
for a given rate, thus making the communication more
robust against deep fades [1–5]. Furthermore, coherent
beamforming allows for a distributed spatial multiplexing
gain [6–9]. For interference networks comprising multiple
source-destination pairs, this involves allowing the users to
communicate concurrently on the same physical channel.

Note that the relays in these networks are usually not able
to decode all data streams due to the large amount of inter-
user interference. Instead, they assist the communication
by simply forwarding scaled and rotated versions of their
received signals, which corresponds to the multiplication
with complex-valued gain factors. We refer to this type of
forwarding protocol as multiuser AF relaying (e.g., [6]). The

relay gains are chosen such that all signals add up coherently
at the destination antennas. Global channel knowledge,
that is, knowledge of all first-hop and second-hop channel
coefficients, is usually required to calculate the gain factors
accordingly. It is important to stress that information about
the equivalent two-hop (source-relay-destination) channels
(treated e.g., in [10–12]) is generally not enough to explicitly
compute the relay gains. A gradient-based iterative scheme
is required to find the gain factors in this case (e.g., [13]).
Examples of papers discussing coherent cooperative gain
allocation schemes, where the relay gains are computed from
instantaneous, global CSI are [14–18].

Contribution. This work was triggered by the simple fact that
the relay gains in coherent AF networks are computed from
channel estimates. The quality of these estimates obviously
has an impact on the accuracy with which the gain factors
can be computed. This in turn determines the degree to
which the signals from the relays combine coherently at
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the destinations and thus immediately affect the system
performance. We furthermore observe that the direction in
which the channels in a wireless network are measured (The
source-relay (first-hop) and the relay-destination (second-
hop) channels can be measured either in “forward direction”,
that is, from sources/relays to relays/destinations, or in
“backward direction”, that is, from relays/destinations to
sources/relays.) (e.g., using training sequences [19]) deter-
mines (1) the number of channel uses required to estimate
all coefficients and (2) the need for a global phase reference
at a certain set of nodes [20]. In the presence of additive
noise and LO phase noise, both factors have an impact on the
quality of the channel estimates. In this work, we compare
four channel estimation protocols that differ in the direction
in which the single-hop channel matrices are measured. As a
result, the accuracy of the channel estimates obtained by the
protocols is different. For symmetry reasons we can constrain
ourselves to the discussion of only two of the four protocols.
We quantify the quality of the channel estimates and discuss
which protocol delivers the most accurate channel estimates
and thus allows for the best overall system performance.
It turns out that there are situations where one protocol
outperforms the other and vice versa.

The authors of [21] consider a very simple special
case of this problem. They investigate the accuracy of a
channel estimation protocol (corresponding to protocol B1
in this work) for a two-hop network with a single source-
destination pair and multiple AF relays. The gain factors are
to be computed from the channel estimates at the relays in
a way that all signals combine coherently at the destination
antenna. The authors neglect LO phase noise and implicitly
assume a perfect carrier phase synchronization between
all relays and the destination. In comparison to [21], this
work compares four different channel estimation protocols,
considers multiple source-destination pairs, takes LO phase
noise into account, and drops the assumption of perfect
phase synchronization.

Outline. The system model is presented in Section 2. We
derive the input/output relation in Section 2.1 and discuss
the impact of unknown and random LO phases on the
signaling in Section 2.2. Section 3 then motivates the usage
of the MSE of the estimated two-hop channels to judge
the quality of the channel estimates. The four previously
mentioned protocols are derived in Section 4. We will explain
how the effort to estimate all channel coefficients in a
distributed network depends on the direction in which the
channel are measured. A scheme that can provide the relays
with a global phase reference was originally presented in [22].
It is shortly revisited in Section 5. Section 6 then discusses the
impact of additive noise and relay phase noise on the quality
of the channel estimates delivered by the protocols. Finally,
we compare the quality of the channel estimates produced by
the protocols in Section 7.

Notation. We use bold uppercase and lowercase letters to
denote matrices and vectors, respectively. The operators (·)T,
(·)H, and (·)∗ are the matrix transpose, hermitian transpose,
and conjugate complex, respectively. We use � to denote

S1

SNSD

... HSR

R1

RNR

HRD
...

...

D1

DNSD

Figure 1: Two-hop system configuration with half-duplex relays.

a convolution and Ex[·] is the expectation with respect to
x. IN is the identity matrix of size N × N . The expression
diag(x) writes the elements of x into a diagonal matrix.
Finally, vectors with entries that are taken from a normal and
a complex normal distribution with mean 0 and variance
σ2 are denoted by x ∼ N (0, σ2I) and x ∼ CN (0, σ2I),
respectively.

2. SystemModel

Consider a distributed wireless network where NSD sources
and the same number of destinations communicate with
the help of NR linear AF relay nodes. Each source wants to
transmit data to a dedicated destination, together forming a
source-destination pair. Figure 1 shows the system configu-
ration. For the sake of simplicity, it is assumed that all nodes
in the network employ a single antenna only. The extension
of this work to multiantenna nodes is straightforward. It is
furthermore assumed that the relays are not able to transmit
and receive at the same time (half-duplex constraint; e.g.,
[4]). Consequently, a “transmission cycle” consists of two
phases: phase one comprises the “first-hop” transmission
from the sources to all relays and phase two the “second-hop”
transmission from the relays to the destinations.

The relays shift their received signals to complex base-
band, sample them, and store the samples until the end of the
first phase. In the second phase, they retransmit scaled and
rotated version of their received samples to the destinations.
This corresponds to the multiplication of the samples with
a complex-valued gain factor at each relay. As long as the
sampling theorem is fulfilled, the analog transmit signal can
be reconstructed perfectly from the stored samples.

Note that the direct link is not taken into account in this
work because it is independent of LO phases of the relays.
The quality of its estimates is therefore the same for all four
channel estimation protocols. Without going further into
details, we assume that the nodes are perfectly synchronized
in time.

2.1. Input/Output Relation. All channels are assumed to be
mutually independent and frequency flat. They are subject
to Rayleigh fading, that is, the channel coefficients are zero-
mean complex Gaussian random variables with variance σ2

h .
The matrices HSR ∈ CNR×NSD and HRD ∈ CNSD×NR are called
first-hop and second-hop channel matrix, respectively. The
propagation environment is quasistatic, that is, the channels
are constant during at least one transmission cycle while
different channel realizations are temporally uncorrelated
(block fading).
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The relays multiply the signals they receive from the
sources with complex-valued gains before retransmission.
All gain factors are collected in the diagonal gain matrix
G ∈ CNR×NR . Let s ∈ CNSD denote the vector comprising
the transmit symbols of all sources at a certain point in time.
They are transmitted over the first-hop matrix channel HSR

to the relays. Their received symbols are stacked in the vector

r = HSRs + nR, (1)

where the vector nR ∼ CN (0, σ2
nINR ) comprises AWGN

samples. Prior to retransmission, r is multiplied with the gain
matrix G. The transmit signals of the relays are then sent
over the second-hop matrix channel HRD to the destination
nodes. The vector of received symbols is

d = HRDGHSRs + HRDGnR + nD, (2)

where nD ∼ CN (0, σ2
nINR ) comprises the AWGN samples at

the destinations. The matrix HSRD := HRDGHSR comprises
the coefficients

HSRD[m, k] =
NR∑

l=1

(
hRlDm · gl · hSkRl

)
:= hSkRDm , (3)

where hSkRl is the channel coefficient from source k to relay l
and hRlDm the channel coefficient from relay l to destination
m.

2.2. Local Oscillator Phase Offsets. Consider two single-
antenna nodes A and B with independent LO. Let h denote
the complex-valued coefficient of the frequency-flat equiva-
lent low-pass channel between them. The LO phase offsets
of nodes A and B are denoted by ϕA and ϕB, respectively.
They introduce phase rotations to the signals during the
mixing operations, with positive sign when mixing from
baseband to passband and with negative sign when mixing
from passband to baseband (e.g., [23]). Consequently, the
equivalent complex baseband-to-baseband channels from A
to B and from B to A are

h̃AB = he j(ϕA−ϕB),

h̃BA = he j(ϕB−ϕA) = h̃ABe
2 j(ϕB−ϕA).

(4)

They are reciprocal, that is, h̃AB = h̃BA if A and B are phase
synchronous, that is, ϕA = ϕB (cf. [20]).

Each terminal in the system shown in Figure 1 employs
its own LO. It is thus sensible to assume that their LO
phases are mutually independent. Let ϕSk , ϕRl , and ϕDm

denote the LO phase offsets of source k, relay l, and
destination m, respectively. If the relay phases stay constant
for a transmission cycle, the “equivalent two-hop channel”

between source k and destination m is

h̃SkRDm = hSkRDme
j(ϕSk−ϕDm ), (5)

where hSkRDm is defined in (3). h̃SkRDm in (5) is independent
of the LO phases of the relays because their impact on the
signal during reception is compensated when the signal is
retransmitted ( If the relay phases change during the time
between reception and retransmission (e.g., due to phase
noise), they do not compensate. As a consequence, a phase
error is introduced to the signal [24].).

Note that the way the signals from the relays add up at
the destination antennas (constructively or destructively) is
independent of both the LO phases of the sources and of
the destinations. For this reason ϕSk and ϕDm do not have an
impact on the accuracy of the gain factors that are computed
from channel estimates. They can thus be chosen to be of any
value without changing the result of the analysis. In order
to keep the notation simple, we therefore set ϕSk and ϕDm to
zero, that is, ϕSk = ϕDm = 0 for all k,m ∈ {1, . . . ,NSD}. This

means that h̃SkRDm = hSkRDm (see (5)).

3. PerformanceMeasure

Coherent gain allocation schemes compute the relay gains in
a way that the signals from all relays combine coherently at
the destinations (e.g., [6]). In any practical network, the gain

factors are computed from the estimates ĥSkRl and ĥRlDm and

not h̃SkRl and h̃RlDm . This makes

ĥSkRDm =
NR∑

l=1

(
ĥRlDm · gl · ĥSkRl

)
(6)

the equivalent two-hop coefficients “anticipated” or
“desired” by the relays in contrast to the “actual” coefficients
hSkRDm experience by the data symbols. The idea behind

coherent relaying is that the relays can adjust ĥSkRDm (and in
particular its phase) by their choice of gl. In the presence of
channel estimation errors, we can write

hSkRDm = ĥSkRDm + δSkRDm , (7)

where the estimation error δSkRDm directly translates into an
SINR loss at destination m. A sensible performance measure
for the channel estimation protocols considered in this work

is consequently how well ĥSkRDm matches hSkRDm . This is well
reflected by the MSE

MSEm,k = E
[∣∣δSkRDm

∣∣2
]

, (8)

which will be used as a figure of merit.

4. Channel Estimation Protocols

In this section, the anticipated equivalent two-hop channel
coefficients are derived for four different channel estimation
protocols. They differ in the direction in which the single-

hop channels h̃SkRl and h̃RlDm are measured and can be
compared based on two observations.
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(1) Number of required channel uses: the effort required
to estimate all first-hop and second-hop channel
coefficients depends on the direction in which they
are measured. In the following, we assume that
it takes one channel use to estimate one channel
coefficient.

(2) Need for global phase reference: it turns out that for
two of the protocols, the gain factors can only be
computed correctly if the relays possess a global phase
reference.

The channel coefficients in the two-hop network shown in
Figure 1 can be measured (e.g., using training sequences
or pilot symbols) either in forward direction, that is, from
sources/relays to relays/destinations, or in backward direc-
tion, that is, from relays/destinations to sources/relays. In
order to highlight the impact of the LO phases of the relays,
estimation noise is omitted in this section. Measuring the
first-hop and second-hop channels in forward direction con-

sequently yields knowledge of the coefficients h̃SkRl and h̃RlDm .
In contrast to that, estimating the channels in backward

direction yields knowledge of h̃SkRl e
2 jϕRl and h̃RlDme

−2 jϕRl (see
(4)). There are altogether four combinations of directions in
which the first-hop and second-hop channel matrices can be
measured. The four corresponding protocols are as follows.

Protocol A1. All channels are measured in forward direction.
The anticipated equivalent two-hop channels are in this case
given by

ĥ(A1)
SkRDm

=
NR∑

l=1

h̃RlDmglh̃SkRl = hSkRDm . (9)

Protocol A2. All channels are measured in backward direc-
tion. The anticipated equivalent two-hop channels are now

ĥ(A2)
SkRDm

=
NR∑

l=1

h̃RlDme
−2 jϕRl · gl · h̃SkRl e

2 jϕRl = hSkRDm , (10)

which is the same as for protocol A1.

Protocol B1. For protocol B1 all channel coefficients are
measured at the relays. The anticipated equivalent two-hop
channels are in this case

ĥ(B1)
SkRDm

=
NR∑

l=1

(
h̃RlDme

−2 jϕRl · gl · h̃SkRl

)
. (11)

If the LO phases of the relays are different, we generally have

ĥ(B1)
SkRDm /=hSkRDm . The gain factors can consequently not be

computed correctly from h̃SkRl and h̃RlDme
−2 jϕRl . In this case,

the relays require a global phase reference. This means that
their LO phases have to be equal, that is, ϕRl = ϕ, for all

Table 1: Direction of measurement and required number of
channel uses to estimate all first-hop and second-hop channel
coefficients.

First-hop
channel

Second-hop
channel

Required
number of

channel uses

Protocol A1 Forward
direction

Forward
direction

NSD + NR

Protocol A2 Backward
direction

Backward
direction

NSD + NR

Protocol B1 Forward
direction

Backward
direction

2NSD

Protocol B2 Backward
direction

Forward
direction

NR

l ∈ {1, . . . ,NR}. Equation (11) then becomes

ĥ(B1)
SkRDm

= e−2 jϕhSkRDm . (12)

The phase ϕ that enters ĥ(B1)
SkRDm

may be random and
unknown. As long as it is the same for all relays (due to
a global phase reference), it has no impact on the way the
signals add up at the destination antennas. Since |e−2 jϕ|2 =
1, (12) implies that the anticipated SINR at destination m

(which is based on ĥ(B1)
SkRDm

) is equal to the actual one.

Protocol B2. For protocol B2, all channels are measured at
the sources and destinations. The anticipated equivalent two-
hop channels are

ĥ(B2)
SkRDm

=
NR∑

l=1

(
hRlDm · gl · hSkRl e

2 jϕRl

)
. (13)

Again, the relays require a global phase reference. Otherwise,
the gain factors cannot be computed correctly (cf. Protocol
B1). For protocol B2, we get in this case

ĥ(B2)
SkRDm

= e2 jϕhSkRDm . (14)

We have seen that the relays require a global phase
reference if the channels are estimated with protocols B1
and B2. This means that an additional effort is necessary
compared to A1 and A2. However, it turns out that protocols
A1 and A2 require more channel uses in order to estimate all
first-hop and second-hop channel coefficients than B1 and
B2 if NR > NSD (see Table 1). The total effort to estimate
all channel coefficients in a two-hop network depends on
the number of sources, relays, and destinations. Figure 2
shows the required number of channel uses (to estimate all
channel coefficients) for all four protocols versus the number
of source-destination pairs for NR = N2

SD − NSD + 1. This
value of NR has been shown to be the minimum number
of relays that can orthogonalize NSD source-destination pairs
[6]. All values in the plot can take only integer numbers. The
connecting lines between the points are simply for the sake
of a better visualization. It can be seen that protocols B1 and
B2 require less channel uses than protocols A1 and A2. In
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Figure 2: Number of channel uses required to estimate all channel
coefficients for the four protocols if NR = N2

SD −NSD + 1.

particular, the effort for B1 is by far the least of all protocols
if the number of relays is large.

Apart from the effort to measure all channel coefficients,
the four protocols differ in the quality of the channel
estimates they deliver in the presence of noise. In Section 6,
we will discuss impact of additive noise and relay phase
noise on the quality of the channel estimates. Since the
anticipated equivalent two-hop channels are the same for
protocols A1 and A2, (see (9) and (10)), it suffices to
consider only one of them. Furthermore, (12) and (14) reveal

that |ĥ(B1)
SkRDm

|2 = |ĥ(B2)
SkRDm

|2. Consequently, the MSE of the
anticipated equivalent two-hop channels is the same for
protocols B1 and B2. In the following, we will thus confine
ourselves to the discussion of protocols A1 and B1. The
results then also hold for A2 and B2.

It is important to realize that in a distributed network,
each node can only estimate the channels to itself. For
example, using protocol B1, relay l can only estimate the lth
row of the first-hop channel matrix and the lth column of
the second-hop channel matrix. We call this kind of channel
knowledge “local CSI”. In contrast to that, “global CSI” refers
to the knowledge of all channel coefficients. In the two-hop
network shown in Figure 1, this means knowledge of the
complete first-hop and second-hop channel matrices, that is,
HSR and HRD.

There exists no channel estimation protocol that yields
global CSI at an individual node in a distributed network.
In order to obtain global CSI at the relays in Figure 1 (so
that they can compute their gain factors locally), all locally
estimated channel coefficients have to be disseminated.
Since the number of channel coefficients that have to be
disseminated is identical for all protocols, the effort is the
same in all cases. It has thus no impact on the comparison
presented in this work and is omitted in the following
considerations.

5. Distributed Phase Synchronization Scheme

In the previous section, we have seen that the gain factors
can only be computed correctly from channel estimates
obtained with protocols B1 or B2 if the relays are phase
synchronous. Two approaches to provide the relays with
a global phase reference have been presented in [22] and
[25, 26]. The scheme presented in [22] will be used for
channel estimation protocol B1 in Section 6 and is therefore
shortly revisited in this section. Please refer to [22] for a
more detailed description and a comparison to the scheme
presented [25, 26]. We again focus on LO phase offsets and
omit estimation noise in this section. Furthermore, the LO
phases of all relays are assumed to be constant during a
transmission cycle.

A single node (source, relay, or destination) in the
network is assigned “master” M while all relays are “slaves”.
Each relay transmits a training sequence to the master
node, which in turn retransmits conjugate-complex and
time-inverted versions of its received sequences back to the
relays. From their received signals, the relays can now obtain
knowledge of

ϕRlM = −2ϕRl + 2ϕM, (15)

where ϕRl and ϕM are the current LO phases of relay l and
the master node, respectively. The phase error introduced to

ĥ(B1)
SkRDm

by the LO phases of the relays can be compensated

with knowledge of ϕRlM. Instead of disseminating h̃DmRl , each
relay l has to disseminate

ĥRlDm = e− jϕRlM · h̃DmRl = e− jϕRlM · h̃RlDme
−2 jϕRl ,

m = 1, . . . ,NSD,
(16)

to all other relays. Together with h̃SkRl , the anticipated
equivalent two-hop channel becomes (cf. (11))

ĥ(B1)
SkRDm

=
NR∑

l=1

(
e−2 jϕM · h̃RlDmglh̃SkRl

)
= e−2 jϕMhSkRDm . (17)

It has the same form as (12), where ϕ = ϕM, and is
independent of the LO phases of the relays. Note that
knowledge of ϕRlM is used to compensate the phase error

introduced to ĥ(B1)
SkRDm

by the channel estimates. This means
that the phase synchronization scheme only has to be
performed when the channel estimates are updated (and
ϕRlM has become outdated due to phase noise).

In the following, we shortly assess the effort required to
perform this phase synchronization scheme. Assume to this
end that all relays transmit on orthogonal channels to the
master node, which again transmits on orthogonal channels
back to the relays. This results in a total of 2NR orthogonal
channel uses if none of the relay nodes acts as a master
node (If a relay acts as master, the number of orthogonal
channel uses reduces to 2(NR − 1). In the following, we will,
however, assume that no relay acts as master node.). It yields
the most accurate phase synchronization results (because
there is no interference) but also requires the biggest effort.
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Figure 3: Number of timeslots required to estimate all channel
coefficients and perform phase synchronization (for protocols B1
and B2) for the case that NR = N2

SD −NSD + 1.

If the transmissions from relays to master node and back
are orthogonalized in time, this corresponds to a total of
2NR timeslots. For a wideband system, orthogonality can
instead be achieved in frequency domain, which then only
requires a total of 2 timeslots. In the following, we will denote
the number of channel uses required to perform the phase
synchronization scheme by 2τ.

The fact that protocols B1 and B2 require a global
phase reference at the relays while A1 and A2 do not has
to be taken into account when comparing their respective
effort. Figure 3 shows the number of timeslots necessary to
estimate all channel coefficients and to perform the phase
synchronization scheme (for protocols B1 and B2). We plot
the two extreme cases τ = NR and τ = 1 and see that they
lead to extremely different results for B2 and B1. This will be
taken into account in the following by using τ as a parameter
for the comparison.

6. Impact of Noise

Up to now, phase noise and additive noise perturbing the
channel estimates have been neglected. Both will, however,
degrade the quality of the channel estimates and therefore the
performance of any coherent gain allocation scheme. While
the impact of estimation noise on all protocols of Section 4
is the same, the impact of phase noise is not. In this section,
the impact of relay phase noise and estimation noise on the
quality of the channel estimates produced by protocols A1
and B1 is investigated. The result allows for a comparison
that states which protocol delivers better channel estimates
under which circumstances.

All relays are assumed to employ free running LO.
Wiener phase noise is in this case an appropriate model
that describes the LO phase fluctuations as sampled Wiener

Table 2: Timeslots at which the nodes transmit their training
sequences for channel estimation protocol A1.

Timeslot 1 · · · NSD NSD + 1 · · · NSD + NR

Transmitting node S1 · · · SNSD R1 · · · RNR

process (e.g., [27]). The severity of the unknown and
random phase changes is then a linear function of time.
Consequently, the protocols requiring more channel uses to
estimate all coefficients suffer more from phase noise than
those requiring less channel uses. In order to assess the
impact of relay phase noise on the quality of the channel
estimates, the notion of “block phase noise” is introduced:
the LO phases of the relays stay constant for a single channel
use and change randomly afterwards (similar to a block
fading channel model). In the Wiener phase noise model,
the phase changes are mutually independent, zero-mean
Gaussian random variables. Their variance is in the following
denoted by σ2

pn. It is assumed to be the same for all relays.
In addition to phase noise, additive signal noise perturbs

the measurement signal and thus has a degrading impact on
the estimates. Let

ĥ = c(h + n) (18)

denote the MMSE estimate of a channel coefficient h ∼
CN (0, σ2

h), where n ∼ CN (0, σ2
n) is additive noise and

c ∈ R+ a scaling factor. The estimation error is given by

e = h − ĥ. By the property of the MMSE estimation, ĥ
and e are uncorrelated and e ∼ CN (0, σ2

e ), where σ2
e =

E[|h|2] − E[|ĥ|2] (e.g., [28]). If σ2
h and σ2

n are known to the
receiver, it can choose

c =
√√√√ σ2

h

σ2
h + σ2

n
. (19)

ĥ has then the same variance as h and thus σ2
e = 0. For a given

estimation SNR (denoted by SNRest), the noise variance is
given by

σ2
n =

σ2
h

SNRest
. (20)

In the following, we derive expressions for the perturbed
single-hop channel estimates obtained by protocols A1 or B1.
These are then used as basis for the subsequent performance
comparison of both protocols.

6.1. Single-Hop Channel Estimates: Protocol A1. Channel
estimation protocol A1 starts with the sources transmitting
their training sequences sequentially so that the relays can
estimate their local first-hop channels. Afterwards, the relays
sequentially transmit their training sequences so that the
destinations can estimate their local second-hop channels.
The timeslots at which the nodes transmit their training
sequences are given in Table 2. After all channel coefficients
are measured, the relays and destinations disseminate their
local estimates to all relays so that they can locally compute
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their respective gain factors. In the following, we derive
expressions for the channel estimates as a function of the
actual channels and the perturbations (additive estimation
noise and phase noise).

(1) First-Hop Channels. Let ϕRl denote the phase offset of
relay l in timeslot 1. Furthermore, the phase change between
timeslots k − 1 and k is denoted by ΔψSkRl , 2 ≤ k ≤ NSD.
Consequently, the phase offset of relay l in timeslot k, that is,
while source k is transmitting its training sequence, is given
by

φSkRl = ϕRl +
k∑

p=1

ΔψSpRl := ϕRl + ψSkRl , (21)

where ΔψS1Rl = 0. Since all ΔψSpRl are mutually independent
(a property of the Wiener phase noise model), their sum is
zero-mean Gaussian with variance (k− 1)σ2

pn. The estimated
channel coefficient between source k and relay l is then given
by

ĥSkRl = c
(
h̃SkRl e

− jψSkRl + nSkRl

)
, (22)

where c is given in (19) and nSk ,Rl ∼ N (0, σ2
n) is AWGN (cf.

(18)).
(2) Second-Hop Channels. From timeslot NSD + 1 until

timeslot NSD + NR, the relays transmit training sequences to
the destinations. Let ψSNSD Rl be defined as in (21) for k = NSD.
Then the estimated channel coefficients are

ĥRlDm = c
(
h̃RlDme

jψRlDm + nRlDm

)
, (23)

where nRl ,Dm ∼ N (0, σ2
n) is AWGN and

ψRlDm = ψSNSD Rl + ΔψRlDm . (24)

The phase changes ΔψRlDm are zero-mean Gaussian with
variance lσ2

pn. Furthermore, the scaling factor c is assumed
to be the same as for the estimation of the first-hop
channel coefficients because the channel coefficients and
noise samples have the same statistics.

6.2. Single-Hop Channel Estimates: Protocol B1. Protocol B1
starts in the same way as A1. The sources sequentially
transmit their training sequences so that the relays can
estimate their local first-hop channels. Afterwards, phase
synchronization as described in Section 5 is performed to
provide the required phase reference at the relays. This
scheme requires 2τ timeslots, where 1 ≤ τ ≤ NR. Finally, the
destinations sequentially transmit their training sequences so
that the relays can estimate the local second-hop channels
in backward direction. The timeslots at which the nodes
transmit their training sequences are given in Table 3. For
the phase synchronization, all relays transmit their training
sequences in timeslots NSD + 1 to NSD + τ. The master node
M then transmits in timeslots NSD + τ + 1 until NSD + 2τ.

(1) First-Hop Channels: the estimated first-hop channel
coefficients are the same as for protocol A1. They are given in
(22).

(2) Phase Synchronization: at timeslot NSD + 1, the relays
start to transmit their training symbols sl on orthogonal

channels to the master node M. The phase offset of relay l
at this time is denoted by

ϕ(tx)
Rl
= φSNSD Rl + Δϕ(tx)

Rl
, (25)

where φSNSD Rl is the phase offset at timeslot NSD (cf. (21) for
k = NSD) and

Δϕ(tx)
Rl
∼ N

(
0, σ2

pn

)
(26)

is the phase change between timeslots NSD and NSD + 1 due
to phase noise. For the phase synchronization scheme, we
assume that the average accuracy is equal for all relays. This
is realized by the assumption the relay phases stay constant
not only for a single channel use, but for τ channel uses.
Thus, they remain unchanged for the time it takes all relays
to transmit their training sequences to M. Afterwards, the
phases change and remain unchanged again for the time
the master node retransmits to the relays. The signal that is
received at M from relay l can then be written as

r(rx)
M,l = hRlMsl · e j(ϕ

(tx)
Rl
−ϕM) + nM,l, (27)

where hRlM is the respective channel coefficient and nM,l

additive noise at the master node. The transmission from
relays to the master node takes τ timeslots. At timeslot NSD +
τ + 1, the master node starts retransmitting

r(tx)
M,l = h∗RlMs∗l · e− j(ϕ(tx)

Rl
−ϕM) + n∗M,l, (28)

which is the conjugate complex of its received symbol r(rx)
M,l . At

this time, the LO phase offset of relay l is ϕ(rx)
Rl
= ϕ(tx)

Rl
+Δϕ(rx)

Rl
,

where

Δϕ(rx)
Rl
∼ N

(
0, τσ2

pn

)
(29)

is the phase change due to phase noise. Consequently, relay l
receives

r(rx)
Rl

= ∣∣hRlM
∣∣2
s∗l · e j(2ϕM−ϕ(tx)

Rl
−ϕ(rx)

Rl
)

+ hRlMn∗M,l · e j(ϕM−ϕ(rx)
Rl

) + nRl .

(30)

Multiplication with s and phase estimation yields

ϕ̂RlM = 2ϕM − ϕ(tx)
Rl
− ϕ(rx)

Rl
− ψ(sn)

RlM := ϕRlM − ψRlM, (31)

where ϕRlM = 2ϕM−2ϕRl and ψRlM = ψ
(pn)
RlM +ψ(sn)

RlM. The phase
offset

ψ
(pn)
RlM = 2ψSNSD Rl + 2Δϕ(tx)

Rl
+ Δϕ(rx)

Rl
(32)

is due to phase noise and ψ(sn)
RlM is due to the additive noise

components in (30). In [29] it was shown that for large

SNR, ψ(sn)
RlM is approximately Gaussian. For the following

considerations, this assumption is made and we have ψ
(pn)
RlM ∼

N (0, (2NSD + 1)σ2
pn) and ψ(sn)

RlM ∼ N (0, σ2
sn).
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Table 3: Timeslots at which the nodes transmit their training sequences for channel estimation protocol B1.

Timeslot 1 · · · NSD NSD + 1 NSD + τ + 1 NSD + 2τ + 1 · · · 2NSD + 2τ

Transmitting node S1 · · · SNSD Rl M D1 · · · DNSD

(3) Second-Hop Channels: for the estimation of the
second-hop channel coefficients, the relay phases stay con-
stant for a single channel use and change independently
afterwards. In contrast to protocol A1, the second-hop
channels are now estimated in backward direction. This
means that the channel coefficients are measured at the
relays. Their estimates are given by

ĥDmRl = c
(
h̃DmRl e

− jψDmRl + nDmRl

)
. (33)

The respective relay phases ψDmRl are

ψDmRl = ψSNSD Rl + Δϕ(tx)
Rl

+ Δϕ(rx)
Rl

+
m∑

q=1

ΔψDqRl , (34)

where the phase changes Δϕ(tx)
Rl

and Δϕ(rx)
Rl

are given in (26)
and (29), respectively. Furthermore, ΔψD1Rl ∼ N (0, τσ2

pn)
and ΔψDqRl ∼ N (0, σ2

pn) for q ≥ 2. The variance of ΔψD1Rl

is larger than the variance of ΔψDqRl for q ≥ 2 because it
took the master τ timeslots to transmit to all relays during
the phase synchronization procedure.

(4) Disseminated Channel Coefficients: after the first-hop
and second-hop channel coefficients have been measured,
the estimates have to be disseminated to all relays. The
disseminated first-hop and second-hop channel estimates are

ĥSkRl as given in (22) and

ĥRlDm = ĥDmRl e
− jϕ̂RlM , (35)

respectively (cf. (16)). The phase correction term ϕ̂RlM is the
result of the phase synchronization scheme. It is given in (31).

6.3. Channel Estimation Error: Equivalent Two-Hop Channels.
A sensible performance measure for the channel estimation
schemes was found to be how well the anticipated equivalent
two-hop channels match the actual ones. In this section,
we derive MSEm,k defined in (8) for protocols A1 and B1,
respectively. The main results are (41) and (48).

(1) Protocol A1: for channel estimation protocol A1,
the estimates of the first-hop and second-hop channel
coefficients are given in (22) and (23), respectively. The
anticipated and the actual equivalent two-hop channel
coefficients between source k and destination m are in this
case

ĥSkRDm =
NR∑

l=1

ĥRlDmglĥSkRl =
NR∑

l=1

ĥSkRlDm , (36)

hSkRDm =
NR∑

l=1

h̃RlDmglh̃SkRl , (37)

respectively, where ĥSkRlDm = ĥRlDmglĥSkRl . Note that the
gain factors gl in (36) and (37) are the same. The channel

estimation error δSkRDm = hSkRDm − ĥSkRDm is defined in
(7). In order to compute the MSE given in (8) by averaging
over the perturbing noise (additive estimation noise and
phase noise), the dependence of the gain factors on the
channel estimates has to be known explicitly. Since we want
to compare the channel estimation protocols independently
from a specific gain allocation scheme, we instead fix the
channel estimates (and therefore also gl) and average over all
channel realizations that might have led to these estimates.
Let

H̃ =
{
h̃SkR1 , . . . , h̃SkRNR

, h̃R1Dm , . . . , h̃RNR Dm

}
,

Ĥ =
{
ĥSkR1 , . . . , ĥSkRNR

, ĥR1Dm , . . . , ĥRNR Dm

} (38)

denote the sets of actual and estimated channel coefficients
between source k and all relays and between all relays and
destination m. The MSE of the estimated equivalent two-hop
channels is then given by

e(A1)
SkRDm

= EH̃

[∣∣δSkRDm

∣∣2
]
=
∫

H̃

∣∣δSkRDm

∣∣2
p
(
H̃ | Ĥ

)
dH̃ ,

(39)

where

p
(
H̃ | Ĥ

)
=

NR∏

l=1
p
(
h̃SkRl | ĥSkRl

)
p
(
h̃RlDm | ĥRlDm

)
(40)

because all channel coefficients are mutually independent. It
can be shown that

e(A1)
SkRDm

=
NR∑

l=1

(∣∣gl
∣∣2
(
σ2

n +
1
c2

∣∣∣ĥRlDm

∣∣∣
2
)(

σ2
n +

1
c2

∣∣∣ĥSkRl

∣∣∣
2
)

+
(

1− 2
c2
e−(1/2)(NSD−k+l)σ2

pn

)∣∣∣ĥSkRlDm

∣∣∣
2
)

+
NR∑

p=1

NR∑

q=1
q /= p

(
1
c2
e−(1/2)(NSD−k+p)σ2

pn − 1
)
ĥSkRpDm

×
(

1
c2
e−(1/2)(NSD−k+q)σ2

pn − 1
)
ĥ∗SkRqDm

,

(41)

where ĥSkRlDm is defined in (36). The proof is included in
[30] but is omitted in this work due to space limitation.
The gradient of the MSE with respect to the gain factors is

(∂/∂g∗)e(A1)
SkRDm

, where g is the vector comprising all gl. It can
easily be derived from (41) and is useful for gradient-based
gain allocations that optimize the relay gains for robustness
against channel estimation errors.

(2) Protocol B1: for channel estimation protocol B1,
the estimates of the first-hop and second-hop channel
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coefficients are given in (22) and (35), respectively. They can
be written as

ĥSkRl = c
(
h̃SkRl e

− jψSkRl + nSkRl

)
, (42)

ĥRlDm = c
(
h̃RlDme

j(ψRlM−ψDmRl ) + n′DmRl

)
e−2 jϕM . (43)

For (43) we used (35), (31), (33), and h̃DmRl = h̃RlDme
−2 jϕRl

(cf. (4)). Furthermore, n′DmRl
= e2 jϕRl · nDmRl has the

same statistics as nDmRl . The anticipated and the actual
equivalent two-hop channel coefficients between source k
and destination m are given in (36) and (37), respectively.

For a noiseless estimation, that is, ĥSkRl = h̃SkRl and ĥRlDm =
h̃DmRl e

− jϕRlM (cf. (35)), (36) becomes

ĥSkRDm = e−2 jϕM

NR∑

l=1

h̃RlDmglh̃SkRl . (44)

Again, we fix the channel estimates (and therefore also gl)
and average the channel estimation error δSkRDm over all
channel realizations that might have led to these estimates.
The phase difference −2ϕM between (37) and (44) has to be
taken into account when computing δSkRDm . It is in this case
given by

δSkRDm = h̃SkRDm − ĥSkRDme
2 jϕM = h̃SkRDm − ĥ′SkRDm

, (45)

where

ĥ′SkRDm
=

NR∑

l=1

c
(
h̃RlDme

j(ψRlM−ψDmRl ) + n′DmRl

)
glĥSkRl

=
NR∑

l=1

ĥ′RlDm
glĥSkRl .

(46)

Comparing (46) with (36) and (45) with (7) reveals that
the MSE of the estimated equivalent two-hop channel
coefficients for protocol B1 can easily be derived from (41).
Since

ψRlM − ψDmRl ∼ N
(

0, (NSD + τ + m− 1)σ2
pn + σ2

sn

)
, (47)

the resulting MSE is found by replacing (NSD − 1 + l)σ2
pn in

(41) by (NSD + τ + m− 1)σ2
pn + σ2

sn:

e(B1)
SkRDm

=
NR∑

l=1

(∣∣gl
∣∣2
(
σ2

n +
1
c2

∣∣∣ĥRlDm

∣∣∣
2
)(

σ2
n +

1
c2

∣∣∣ĥSkRl

∣∣∣
2
)

+
(

1− 2
c2
e−(1/2)((NSD−k+τ+m)σ2

pn+σ2
sn)
)∣∣∣ĥSkRlDm

∣∣∣
2
)

+
(

1
c2
e−(1/2)((NSD−k+τ+m)σ2

pn+σ2
sn) − 1

)2

·
NR∑

p=1

NR∑

q=1
q /= p

(
ĥSkRpDm · ĥ∗SkRqDm

)
,

(48)

where ĥSkRlDm is defined in (36). The gradient (∂/∂g∗)e(B1)
SkRDm

can be easily computed from (48).

6.4. Channel Estimation Error: Single-Hop Channels. Instead
of averaging over all channel and noise realizations, the MSEs
in the previous section have been computed for fixed channel
estimates. It is not clear how well the actual quality of the
estimates is reflected in this measure. In this section, we
investigate an alternative measure that is very simple. Since
both protocols deliver the same estimates for the first-hop
channels, we compare them based on the quality of the
second-hop channel estimates.

For protocol A1, the estimated channel coefficient
between relay l and destination m is given in (23). The MSE
of the second-hop channel estimate is then

e(A1)
RlDm

= Eh,ψ,n

[∣∣∣h̃RlDm − ĥRlDm

∣∣∣
2
]

= σ2
h ·
(

1− 2c · e−(1/2)(NSD−1+l)σ2
pn + c2

)
+ c2σ2

n .

(49)

For protocol B1, the estimate of the second hop channel
between relay l and destination m is given in (35). The MSE
with respect to the noiseless case is thus

e(B1)
RlDm

= Eh,ψ,n

[∣∣∣e− jϕRlM h̃DmRl − e− jϕ̂RlM ĥDmRl

∣∣∣
2
]

, (50)

where ĥDmRl is given in (33) and ϕ̂RlM in (31). Equation (50)
can be written as

e(B1)
RlDm

= Eh

[∣∣∣h̃DmRl

∣∣∣
2
]
· Eψ

[∣∣∣1− ce− j(ψDmRl−ψRlM)
∣∣∣

2
]

+ En

[∣∣cnDmRl

∣∣2
]

= σ2
h · Eψ

[(
1− 2c · cos

(
ψDmRl − ψRlM

)
+ c2)] + c2σ2

n,
(51)

where ψRlM = ψ
(pn)
RlM + ψ(sn)

RlM and ψDmRl is given in (34),
respectively. Taking their mutual dependency into account,
we finally get

e(B1)
RlDm

= σ2
h ·
(

1− 2c · e−(1/2)((NSD+τ+m−1)σ2
pn+σ2

sn) + c2
)

+ c2σ2
n .

(52)

Note that e(B1)
RlDm

is independent of l and we denote e(B1)
RlDm

=
e(B1)

RDm
, for all l ∈ {1, . . . ,NR}.

7. Performance Comparison

In this section, the quality of the channel estimates produced
by protocols A1 and B1 is compared quantitatively. To this
end, a simple network is used as an application example.
It comprises a single source-destination pair and NR relays,
where the gain allocation is distributed MRC, that is, the relay
gain factors are

ĝl = γ · ĥ∗RlDĥ
∗
SRl

, l ∈ {1, . . . ,NR}. (53)

The scaling factor γ ensures that an average transmit power
constraint is met. Since the gain factors are explicit functions
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of the channel estimates, we can furthermore assess the
accuracy with which the approximations in Sections 6.3 and
6.4 judge the performance of the protocols: averaging the
squared estimation error over the perturbations (estimation
noise and phase noise) delivers reference MSE of the
anticipated equivalent two-hop channels in closed-form.
They are denoted by ẽ(A1)

S1RD1
and ẽ(B1)

S1RD1
for protocols A1 and

B1, respectively.
We compare the quality of the channel estimates by

computing the ratio of MSE. The reference ẽ(A1)
S1RD1

/ẽ(B1)
S1RD1

will be denoted by “Two-hop MSE (reference)”. A value
larger than one means that the estimates produced by B1 are
more accurate than those produced by A1, a value smaller
than one means that B1 delivers more accurate estimates than
A1. Note that the number of source-destination pairs and
relays in the network has an impact on the quality of the
channel estimates. While the estimated first-hop channels are
equal for protocols A1 and B1, the MSEs of the second-hop
estimates are not. Their MSEs (and thus the quality of their
estimates) are equal if lσ2

pn = (τ + m)σ2
pn + σ2

sn (cf. (49) and
(52)). Although being independent of NSD, this point is a
function of the destination index m. Increasing the NSD while
keeping NR constant is therefore in favor of protocol A1. If
the number of relays increases, the relation between l and τ
determines which protocol delivers the better estimates of the
second-hop channel coefficients.

The performance comparison in this section is based on
the above-mentioned application example but the results in
Sections 6.3 and 6.4 can be used to compare the channel
estimation protocols for any two-hop network configuration
(e.g., multiuser networks) and gain allocation. We use the
ratio of MSE to compare the quality of the estimates obtained
by protocols A1 and B1. The ratios of MSE used for
performance comparison are as follows.

(1) Section 6.3: in order to compare the quality of the
estimates produced by A1 and B1 based on (41) and

(48), we average e(A1)
S1RD1

and e(B1)
S1RD1

over all channel

estimates in Ĥ for the case that the gain factors are

given in (53). The ratio EĤ [e(A1)
S1RD1

]/EĤ [e(B1)
S1RD1

] is then
denoted by “Fixed estimate MSE”.

(2) Section 6.4: since (49) depends on the order in
which the relays transmit their training sequences, we
perform an averaging over all relays and define

e(A1)
RD1

= 1
NR

NR∑

l=1

e(A1)
RlD1

. (54)

The ratio e(A1)
RD1

/e(B1)
RD1

is then denoted by “Second-hop

MSE”, where e(A1)
RlD1

and e(B1)
RD1

are given in (49) and (52),
respectively.

The dashed, horizontal line in Figures 4–7 indicates the
points where the performance of protocols A1 and B1 is
equal. The estimation SNR is defined in (20), where σ2

h = 1.
It is assumed to be the same for both the first-hop and the
second-hop channel estimates. In Figure 4, the MSE ratios
are plotted versus NR. For small number of relays, Protocol
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Figure 4: MSE ratios (see page 23) versus NR for τ = 1, SNRest =
20 dB, and σ2

pn = 10−2.
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Figure 5: MSE ratios (see page 23) versus τ for NR = 10, SNRest =
20 dB, and σ2

pn = 10−2.

A1 delivers the more accurate channel estimates. Protocol
B1 outperforms A1 in terms of estimation accuracy for large
NR because the number of channel uses required by A1 to
estimate all coefficients increases with NR whereas B1 is unaf-
fected (see Table 1). Figure 5 shows the MSE ratios versus
τ. Increasing the number of timeslots required by the phase
synchronization scheme leads to a decreasing quality of the
channel estimates obtained by protocol B1. Since protocol A1
does not require phase synchronization, its performance is
unaffected. In Figure 6, the MSE ratio is depicted versus σ2

pn.
Phase noise degrades the estimates obtained by protocol A1
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more than those obtained by B1. The reason for this behavior
is that in the present configuration A1 requires more channel
uses to estimate all channel coefficients than B1. For large
σ2

pn, the performance of both protocols converges because
the phases of the channel estimates will asymptotically
be uniformly distributed. Furthermore, it can be observed
that the comparison based on the results from Section 6.4
slightly overestimates the performance of protocol A1 for
large σ2

pn. The MSE ratios are shown versus the estimation
SNR in Figure 7. The quality of the estimates produced
by protocol B1 suffers more from decreasing SNRest than

A1. The reason for this behavior is that, apart from the
channel coefficients, the phase values have to be estimated
for the phase synchronization scheme. This is an additional
source of error that degrades performance. However, for
large SNRest, the impact of additive noise becomes negligible
and the fact that protocol A1 suffers more from phase noise
than B1 dominates. Protocol B1 thus outperforms A1 at high
SNRest.

Comparing the curves to the respective references
(“Two-hop MSE (reference)”) shows that the measure in
Section 6.3 is very accurate for high-estimation SNR (from
about 15 dB). Furthermore, the measure in Section 6.4 is
very accurate in medium estimation SNR (5 dB ≤ SNRest ≤
20 dB) and low-phase noise (σ2

pn ≤ 10−2). In the respective
range of parameters, both measures are able to judge the
performance of both channel estimation protocols very well.

8. Conclusions

In this work, we investigated different channel estimation
protocols for two-hop AF relaying networks (single-user and
multiuser) in the presence of additive estimation noise and
relay phase noise. They differ in the direction in which
the single-hop links are measured and thus the required
effort to estimate all channel coefficients in the network.
We used the MSE of the channel estimates as an indicator
for the performance of the protocols. This is a sensible
measure because computing the gain factors from more
accurate channel estimates will on the average lead to better
system performance. It was possible to draw conclusions
independently of the gain allocation by comparing the MSE
of the second-hop estimates only. Finally, we compared
the protocols quantitatively for a single-user application
example. It is important to note that the results can as well
be used to assess the channel estimation protocols for any
two-hop network configuration and gain allocation.
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