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Abstract

The exact symbol error probability (SEP) performance of -ary cross quadrature amplitude modulation (QAM) 
in additive white Gaussian noise (AWGN) channel and fading channels, including Rayleigh, Nakagami-m, Rice, 
and Nakagami-q (Hoyt) channels, is analyzed. The obtained closed-form SEP expressions contain a finite 
(in proportion to ) sum of single integrals with finite limits and an integrand composed of 
elementary (exponential, trigonometric, and/or power) functions, thus readily enabling numerical 

evaluation. Particularly, Gaussian -function is a special case of these integrals and is included in the 
SEP expressions. Simple and very precise approximations, which contain only Gaussian -function for 
AWGN channel and contain three terms of the single integrals mentioned above for fading channels, 
respectively, are also given. The analytical expressions show excellent agreement with the simulation results, 
and numerical evaluation with the proposed expressions reveals that cross QAM can obtain at least 1.1 dB 
gain compared to rectangular QAM when SEP < 0.3 in all the considered channels.



1. Introduction
Quadrature amplitude modulation (QAM) has been widely used in digital communication systems due to its 
high bandwidth efficiency. When the number of bits per symbol is even, transmission can be implemented easily 
by using square QAM. However, if there is a requirement for the transmission of an odd number of bits per 
symbol, the rectangular QAM is not a good choice in terms of power efficiency. The issue was overcome by 
Smith who proposed cross-QAM constellation which is obtained from a square constellation by removing 
some outer point in each corner and is given the shape of a cross [1]. Smith shows that both the peak and 
average power can be reduced by using a cross-QAM constellation, and there is at least a 1-dB gain in the 
average signal-to-noise ratio.

Recently, cross-QAM has been found to be useful in adaptive modulation schemes wherein the constellation size 
is adjusted depending on the channel quality [2–6]. As the channel quality improves, the constellation size 
is expected to be increased by incrementing  to . If one were to use just square QAM, the 
increments should be from  to  (for instance, we need to go from 16 to 64 to 256-QAM ). Using 
cross-QAM, however, the increment is smoother (16-QAM to cross 32-QAM to 64-QAM ). The steps 
between consecutive squared constellations are too big, especially for small constellations [7]. An intermediate 
step (corresponding to odd powers of 2) will make the system to work with more granularity obtaining 
greater coverage for a determined data rate [2]. As a result, cross-QAMs have been adopted in many 
practical systems. For example, cross-QAMs with constellations from 5 bits to 15 bits have been used in ADSL 
and VDSL [8, 9], and cross 32-QAM and cross 128-QAM are adopted in DVB-C [10]. On the other hand, 
cross-QAMs have special application in blind equalization [11–14].

Despite the immense importance of cross-QAM, the implementation and the calculation of the average 
symbol error probability (SEP) of cross-QAM are more complicated compared to that of square and 
rectangular QAMs since the inphase and quadrature components of cross-QAMs cannot be 
demodulated independently. So, the calculation of SEP of cross-QAM cannot be reduced to a one-
dimensional problem by using the independence of the inphase and quadrature components, as can be done 
for square QAM and rectangular QAM. It can be found the upper bounds of the SEP of cross-QAM in [1] and 
[15, Chapter 5]. Recently, [16] derives the bit error probability (BEP) of cross-QAM constellations with Smith-
style Gray coding in additive white Gaussian noise (AWGN) and Rayleigh flat fading. However, the closed-



form solutions to BEP for AWGN and Raleigh flat fading channels in [16] are very complicated, not to mention 
that [16] does not consider the SEP of cross-QAM and that it is not straightforward to extend the result of [16] 
to SEP calculation. More recently, an exact closed-form SEP expression for 32 cross-QAMs in AWGN has 
been derived in the form of a finite sum of Gaussian -functions [17]. Note, however, that the decision regions 
of the corner points for other cross-QAM modulation are more complicated than 32-cross-QAM. In [18], an 
infinite double series of the products of Gaussian -functions for the SEP of 128-cross-QAM and 512-cross-QAM 
in AWGN is derived. The difficulty arises when one tries to find the closed-form exact SEP expression of arbitrary 

-ary cross-QAM in AWGN, which involves the calculation of the two-dimensional joint Gaussian -function.

In fading channels, on the other hand, the signal-to-noise ratio (SNR) of the received symbol becomes a 
random variable. As such, the usual method to find the average SEP in fading channels is to first get 
the conditional SEP as if in an AWGN channel (conditioned on SNR or channel realization) then average 
the conditional SEP over SNR or channel realization. This approach will, in many cases, result in an integral, 
usually being two-dimensional integral even three-dimensional integral, that cannot be integrated into a 
closed form and hence must be integrated numerically. By using the "preaveraging" technique [19], opposed to 
the customary and widely adopted "postaveraging" technique, the exact SEP of cross-QAM in Rayleigh 
fading channels has been derived in [20], where the closed-form SEP expression obtained contains only 
elemental functions (trigonometric). However, the "preaveraging" technique involves tedious calculations 
again, and it would only apply for Nakagami-  channels with integer parameter , not to mention whether it 
can be extended to encompass Rice and Hoyt fading. Perhaps, the best method to get SEP of digital 
modulation signaling over fading channels is given by Simom and Alouini [21]. They use the moment 
generating function- (MGF-) based approach to obtain SEP expressions for various digitally modulated signals 
over fading channels. Their basic technique is to rewrite the Gaussian -function into a preferred form of 
an integral with finite integration limits (many SEP expressions contain the Gaussian -function), so that the 
final average SEP expression can be numerically computed with more accuracy. In some special cases, the 
MGF-based method can even lead to an exact closed-form SEP without undone integrals.

In this paper, using the alternate representation of the two-dimensional joint Gaussian -function and the 
MGF-based method, the exact SEP expressions of arbitrary -ary cross-QAM in AWGN and fading 
channels, including Rayleigh, Nakagami-m, Rice, and Nakagami-q (Hoyt) channels, have been derived. The 
closed-form SEP expressions obtained contain Gaussian -functions and a finite (in proportion to ) sum of 
single integrals with finite limits and an integrand composed of elementary (exponential, trigonometric, and 
power) functions, thus readily enabling numerical evaluation.

The remainder of this paper is organized as follows. First, Section 2 briefly introduces the problem 
background. Next, Sections 3 and 4 derive the average SEP expressions for cross-QAM in AWGN channels 
and fading channels, respectively. And then, Section 5 gives the simulation and numerical results. Finally, Section 
6 concludes the contributions of this work.

2. Background



2.1. Construction of Cross-QAM
Since we deal with cross-QAMs in this paper, we define  with , that is, . 
As mentioned in [1], by introducing "block" parameter 

 
(1)

cross-QAM constellation can be constructed by a  square block array with the 4 corner blocks deleted, 
each block with  uniform distributed points, as shown in Figure 1. 

Figure 1  Block structure of XQAM. A  square block array with the 4 corner blocks deleted, each block 
with  uniform distributed points. Especially, cross 128-QAM ( ) is shown here as an example.
 

2.2. Decision Boundaries for Symbols in Cross-QAM
Since the quadrature components of cross-QAM are not independent as in square QAM, the optimal 
decision regions are not all rectangular. As shown in Figure 2, where the dots represent signal points while 
the lines indicate decision boundaries, there are three types of points: interior symbols, edge symbols, and 



corner symbols. The decision regions of interior symbols and edge symbols are closed square and semi-
infinite rectangular, respectively. But that of the corner symbols are slightly complicated and can be represented 
by a combination of vertical, horizontal, and  lines. According to the symmetry, it is enough to consider 
the symbols in one quadrant of the cross-QAM constellation. The numbers of the three types of points in 
one quadrant of the constellation are, respectively, given as 

 

(2)

Figure 2  Decision boundaries for symbols in cross-QAM. The black points, hollow points, and slash 
points represent the interior symbols, edge symbols, and corner symbols, respectively. In particular, only 
one quadrant of the cross 128-QAM constellation ( ) is shown here as an example.
 



2.3. System Parameters for -ary Cross-QAM
We will define some parameters in order to make our expressions simpler and compact. Let  denote half of 
the minimum Euclidean distance between adjacent symbols in the constellation, and let  denote the two-
sided power spectral density of the zero-mean AWGN (i.e., its variance ). Especially, the exact 
SEP expressions will be written in terms of the Gaussian -function 

 
(3)

and a well-known integral function related to the alternate representation of one- and two-dimensional 
joint Gaussian -functions [21–24] 

 
(4)

In particular,  [22, equation ] and  [23, equation ], both 
for .

Note that, in addition to the advantage of having finite integration limits, the form in (4) has the argument 
 contained in the integrand rather than in the integration limits as is the case in (3), and it also has an 

integrand that is exponential in the argument , so that it can be numerically evaluated with more 
accuracy. Moreover, the form in (4) has some interesting implications with regard to simplifying the evaluation 
of performance results related to communication problems, for example, as seen later to the SEP 
performance evaluation over fading channels, wherein the argument of the -function is dependent on 
random system parameters and, thus, requires averaging over the statistics of these parameters.



To simplify the mathematical expressions, in the following derivation the argument  of the above two functions 
(3) and (4) sometimes will be expressed as a multiple of 

 
(5)

which denotes the normalized least distance (in noise standard deviation) from a signal point to a 
decision boundary.

Assuming that the signal points are equally probable and according to the symmetry of the constellation, it can 
be easily shown that the average symbol energy for cross -QAM constellation is given by 

 
(6)

where 

 
(7)

Since the symbol's signal-to-noise ratio (SNR) can be written as 

 
(8)

thus, 

 
(9)

So, we can also leave the SEP expression in terms of  as mentioned above.

2.4. Overview of SEP Approximations in AWGN



For nonrectangular -ary QAM signal constellations, Proakis has given an obvious upper bound in [15, page 
279] as 

 

(10)

where  is the minimum Euclidean distance between signal points, and  for uniform cross-QAM. 
This bound may be loose when  is large. In such a case, Proakis suggested replacing  by , the 

largest number of neighboring points that are at distance  from any constellation point. Obviously, for 
cross-QAM, . So, (10) can be reproduced for cross-QAM as 

 
(11)

Alternately, Gilbert approximation [1, equation (1)] to the SEP for any -ary QAM can also be used for cross-
QAM, and it is given as 

 
(12)

where  is the average number of nearest neighbors for a symbol in the constellation, 
and  for cross-QAM (In [1], the expression for  appears erroneously 
as  [16].) when . Note that, as  increases,  increases and approaches . In fact, 
the principle behind the above two approximate expressions is very intuitive since they can be interpreted as 
the sum of the probabilities that a given point is mistaken for its neighbors. At the same time, since the sum 
has recalculate some error regions, both the above two expressions overestimate the actual SEP as shown later.

3. Symbol Error Probability in AWGN Channel
While the SEP expressions for the interior symbols and edge symbols can be deduced easily from the 
SEP expressions for square QAM in [15, pages 265 and 278], the SEP of corner symbols needs to be 
derived separately.



The SEP of any interior symbol and edge symbol can be written, respectively, as 

 

(13)

For the corner symbols, from the left to right or from the bottom to the top as shown in Figure 2, the SEP of 
the th point is given by 

 

(14)

where  is the probability density function (PDF) of the standard normal distribution and given by 

 
(15)

 
(16)

Having derived the exact SEP of all the points, the exact average SEP for the -ary cross-QAM constellation can 
be written as 



 

(17)

Appendix shows that, with the integral function defined in (4), (17) can be rewritten as 

 

(18)

where 

 

(19)

Although it is difficult to express the function  in a closed form without integration, it is a one-
dimensional integral with finite limits, and its integrand only composes of elementary (exponential 
and trigonometric) functions, while the function  actually is a two-dimensional integral of 
exponential function with infinite limits according to (A.2) in Appendix. With (4), in fact,  can be easily 
and accurately evaluated numerically (see, e.g., using MATLAB). Note that the numerical calculation of (4) is 
much simpler and more precise than that of the infinite double series of the products of Gaussian -functions 
of equation (3) in [18].

Note that, when , only the first three terms of the right side of (18) are retained, while the last three 
terms disappear since . So, the exact SEP expression of 32-ary cross-QAM is 



 
(20)

which is the same as equation (5) in [17].

If ignoring the last three terms and only retaining the first three terms in (18), we will obtain a very 
tight approximation of the exact SEP written as 

 
(21)

Note that, when , (21) is also the exact SEP. On the other hand, the first term of (21) is just the 
average number of nearest neighbors or the Gilbert approximation. At SNR = 0 (i.e., ), especially, 
Gilbert approximation is , which is much larger than one, while (21) yields , which is 
the exact SEP.

4. Symbol Error Probability in Fading Channels
The fading channels, including Rayleigh, Nakagami-m, Nakagami-q (Hoyt), and Nakagami-n (Rice) channels, 
are considered in this section. The probability density function (pdf) of the instantaneous received SNR  in 
these channels can be written as, respectively, [21] 

 

(22)

where  is the instantaneous SNR of the received symbol,  is the instantaneous fading amplitude of 
the channel,  is the energy of each transmitted symbol,  is the one-sided power spectral density of the 



zero-mean AWGN,  is the average received SNR per symbol, and  denotes the expectation 
operator. And  is the modified Bessel function of the first kind and zeroth order. The moment 
generating function (MGF)  corresponding to (22) is, respectively, given by [21] 

 

(23)

Averaging the SEP expression (18) over the fading distribution of the received SNR, , induces the average SEP 
of arbitrary -ary cross-QAM over fading channel as given by 

 

(24)

where  denotes the PDF of  and 

 
(25)

Note that the relationships  and  for , mentioned above, are applied 
in the expression (24). Particularly, the approximate average SEP is only considering the first three terms in (24).

According to (4), it is possible to re-express the integral (25) in terms of the MGF of  as given by 



 

(26)

Substituting (23) into (26), the corresponding expressions of  in (24) for Rayleigh, Nakagami-m, Nakagami-
q (Hoyt), and Nakagami-n (Rice) channels are given as 

 

(27)

 
(28)

 

(29)

 
(30)

where  for the sake of notational convenience.

Using the above four integral expressions, the average SEP (24) over fading channels can be 
conveniently evaluated through numerical integration since these formulae are single integrals with finite limits 
and an integrand composed of elementary (exponential, trigonometric, and/or power) functions. Note that 
(27) and (28) with integer  can also be evaluated in closed form using equation (5A.24) in [21, page 
155]. Furthermore, the author in [20] has given a simpler closed-form expression for the SEP of cross-QAM 
in Rayleigh channel.



5. Numerical Results and Simulations
In this section, using the above formulations, numerical results concerning the SEP performance of cross-QAM 
and the comparison with rectangular QAM are presented, together with computer simulations. For fading 
channels, the Rayleigh channel is chosen as a special case since the results of the other type channels are 
similar to that of Rayleigh channel. So, the corresponding figures of the other type channels are not shown here 
for limited space. Figure 3 shows excellent agreement between the analytical expressions and the 
simulation results for cross -QAMs over AWGN channels and Rayleigh fading channels, respectively. 

Figure 3  Comparison of the analytical and simulation results for the SEP of cross -QAMs. 
AWGN ChannelsRayleigh Channels
 

Shown in Figure 4 is the comparison of the exact SEP and its approximations over AWGN channels and 
Rayleigh fading channels, respectively. In AWGN channels, it was shown that although the approximations 
of Proakis and Gilbert are accurate enough at high SNR, both of them are very loose and the former is looser 
at low SNR. From Figure 5(a), it can be seen that at given SEP the SNR differences between the exact SEP and 
the approximations of Proakis and Gilbert become smaller and smaller as SEP decreases. However, it can 
be observed from Figure 4(b) that the difference between the exact SEP and the approximations of Proakis 
and Gilbert in Rayleigh fading channels is larger than that in AWGN channels at high SNR. From Figure 5
(b), especially, it can be found that their SNR differences at the same SEP value are about 1 dB. On the other 
hand, the proposed approximation is very tight for all the SNR values whether in AWGN channels or in 
Rayleigh fading channels. In fact, since their SNR differences are almost 0 for all  and all given SEP, so 
the proposed approximation is almost the same as the exact SEP. 



Figure 4  Comparison of the exact and approximate SEP expressions for cross -QAMs. Note that 
the proposed approximation is almost the same as the exact SEP.AWGN ChannelsRayleigh Channels
 

Figure 5  The SNR differences between the approximate expressions and the exact expression of 
the SEP for cross -QAMs. AWGN ChannelsRayleigh Channels
 

Figure 6 compares the exact SEP of rectangular QAM and cross-QAM over AWGN channels and Rayleigh 
fading channels, respectively. Here, the -ary rectangular QAM signal constellation is assumed to be formed 



by drawing the inphase and quadrature components from the independent -ary pulse amplitude 

modulation (PAM) and -ary PAM, respectively, where , , , , 
and . Specifically, -ary, -ary, -ary, and -ary rectangular QAMs are considered here. 
In addition, the quadrature-to-inphase decision distance ratio in these constellations is set to be 1, which is 
the best ratio in terms of symbol error performance as shown in [25, 26]. The exact SEP of -ary rectangular 
QAM over AWGN and fading channels are given in [27–29]. From Figure 7, it can be seen that cross-QAM 
exhibits at least 1.1 dB SNR gain over rectangular QAM when SEP < 0.3. Numerical evaluation under other 
fading scenarios with different fading parameters, which are not shown here for limited space, also reveals 
similar SNR gain. 

Figure 6  SEP comparison between rectangular QAM and cross-QAM. AWGN ChannelsRayleigh Channels
 

Figure 7  SNR gain of cross-QAM over rectangular QAM. AWGN ChannelsRayleigh Channels
 



6. Conclusions
In this paper, the exact SEP expressions of cross-QAM in AWGN channel and fading channels have been 
derived. The obtained closed-form SEP expressions contain a finite sum of single integrals with finite limits and 
an integrand composed of elementary (exponential, trigonometric, and/or power) functions, which can be 
easily and accurately evaluated numerically. Simple and very precise approximations, which contain only 
Gaussian -function for AWGN channel and contain three terms of the single integrals mentioned above for 
fading channels, respectively, are also given. The analytical expressions show excellent agreement with 
the simulation results, and the numerical evaluation with the proposed expressions reveals that cross-QAM 
can obtain at least 1.1 dB gain compared to rectangular QAM when SEP <0.3 in all the considered channels. 
The obtained exact SEP expressions will provide valuable insight into the design of wireless systems. In 
particular, the exact SEP performance of cross-QAM in AWGN channel will be very useful in adaptive 
modulation wherein the constellation size is adjusted depending on the channel quality through the 
SEP performance of the adopted modulations with AWGN.
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Appendix
According to the definition of Gaussian -function (3),  given by (16) can be represented as 

 
(A1)

Let , the above equation can be rewritten as 
 

(A2)

Using the two-dimensional joint Gaussian -function [22, equation ], 
 

(A3)

and its Simon representation [23, equation (10)] in a new form (Since  and  can take on 
positive or negative values, the arctangents in (A.4) are defined 
by  [23].) 

 

(A4)

equation (A.2) with  and  can be, respectively, expressed as 

Acknowledgments



 

(A5)

where 
 

(A6)

Note that the property [21, equation (6.42)] 
 

(A7)

and the relationship (due to the symmetry of the sine function around ) 
 

(A8)

are used in the above derivation.With the above two equations, the exact average SEP for the -ary cross-
QAM constellation can be rewritten as 



 

(A9)

Considering that , , , one can simplifies (A.9) to yield (18) after 
some manipulations.
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