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Various detection methods including the maximum likelihood (ML) detection have been studied for multiple-input multiple-
output (MIMO) systems. While it is usually assumed that the number of independent data symbols, M, to be transmitted by
multiple antennas simultaneously is smaller than or equal to that of the receive antennas, N , in most cases, there could be
cases where M > N , which results in underdetermined MIMO systems. In this paper, we employ the prevoting cancellation
based detection for underdetermined MIMO systems and show that the proposed detectors can exploit a full receive diversity.
Furthermore, the prevoting vector selection criteria for the proposed detectors are taken into account to improve performance
further. We also show that our proposed scheme has a lower computational complexity compared to existing approaches, in
particular when slow fading MIMO channels are considered.

1. Introduction

The use of multiple antennas in wireless communications,
where the resulting system is called the multiple input
multiple output (MIMO) system [1], can increase spectral
efficiency [2]. For the symbol detection in MIMO sys-
tems, it is usually required to jointly detect the received
signals at a receive antenna array as multiple signals are
transmitted through a transmit antenna array consisting of
multiple antenna elements. For the maximum likelihood
(ML) detection, an exhaustive search can be used. In general,
however, since the complexity of the ML detection grows
exponentially with the number of independent data symbols
transmitted, an exhaustive search for the ML detection may
not be used in practical systems. Thus, for the MIMO
detection, computationally efficient linear detectors, such
as the minimum mean square error (MMSE) and zero-
forcing (ZF) detectors [3], could be used in practical systems.
Other low complexity approaches, including the successive
interference cancellation (SIC) technique [1, 4], are also well
investigated. With ordered signal detection and cancellation,
the ZF-SIC and MMSE-SIC detectors perform better than
linear detectors.

Taking the channel matrix as a basis for a lattice, lattice
reduction-(LR-) based detectors have been proposed in [5,
6]. Since a lattice can be generated by different bases or
channel matrices, in order to mitigate the interference from
other signals, we can find a matrix (or basis) whose column
vectors are nearly orthogonal to generate the same lattice.
Based on the Lenstra-Lenstra-Loávsz (LLL) algorithm [7],
LLL-LR-based detectors are proposed in [8], and complex-
valued LLL-LR based detectors are also proposed in [9] by
performing LR with a complex-valued channel matrix. Their
performance is analyzed in [9–11]. LR-based detectors have
a good performance, and their complexity is significantly,
lower than that of the ML detector using an exhaustive
search. Furthermore, it is shown in [11, 12] that the LR-based
detectors can fully exploit a receive diversity.

In MIMO systems, the channel matrix is called fat,
square, or tall matrix if the number of transmit antennas M is
greater than, equal to, or smaller than the number of receive
antennas N . According to [2], the MIMO channel capacity
can be approximated as CMIMO � min(M,N)CSISO, where
CSISO denotes the channel capacity of single-input single-
output channels. Thus, with regard to capacity, we may prefer
a square channel matrix (i.e., M = N). However, if we
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need to employ a lower order modulation due to a limited
receiver’s complexity, we can consider a fat channel matrix
(i.e., M > N), because the spectral efficiency per transmit
antenna can be lower as CMIMO/M = (N/M)CSISO < CSISO.
For this reason, in this paper, we focus on underdetermined
MIMO systems. (Throughout this paper, it is assumed that
different symbols transmitted by M transmit antennas are
linear independent with others within a time slot.)

For the detection in underdetermined MIMO systems,
various techniques can be considered. Instead of exhaustive
searching for all the possible decision vectors as in the
ML detection, list-based detectors [13–18] create a list
of candidate decision vectors and then choose the best
candidate as their final decision. In [19–24], a family of
list-based Chase detectors are proposed. Since the Chase
detection cannot achieve a full receive diversity order,
especially when underdetermined MIMO systems are con-
sidered, generalized sphere decoding (GSD) approaches
[25–30] were developed. In [31], two suboptimal group
detectors are introduced, and a geometrical approach-based
detection for underdertermined MIMO systems is studied in
[32]. To further reduce the complexity, a computationally
efficient GSD-based detector with column reordering is
proposed in [33], namely, “tree search decoder—column
reordering” (TSD-CR). However, their complexity is still
high. Moreover, the LR-based detector is only applicable to
the case of tall or square channel matrices [8, 11]. Hence,
we need to develop a detector that can be employed for
fat channel matrices and has a near optimal performance
with a reasonably low complexity, especially for a low-order
modulation.

To apply MIMO detectors to underdertermined MIMO
systems, in this paper, a prevoting cancellation-(PVC-) based
MIMO (PVC-MIMO) detection approach is proposed. (This
work is an extension of [34]. In [34], the PVC-MIMO is
considered with the LR-based subdetectors. In this paper, we
extend the PVC-MIMO with various subdetectors, including
linear detectors, LR-based linear, and SIC detectors.) The
main idea of the proposed detector is to divide the transmit-
ted symbols into two groups. First, one or more reference
symbols are selected out of all the transmitted symbols as the
prevoting vector (the residual symbols from the postvoting
vector), and all the possible candidate symbols for the
prevoting vector are considered (e.g., for 2 symbols that are
selected for the prevoting vector and 4-quadratic-amplitude
modulation (4-QAM) method being used, there are 4 ×
4 = 16 possible candidate symbol vectors to be considered).
Then, for each candidate prevoting vector, its contribution
(as the interference) is canceled from the received signal,
and the remaining symbol estimates are obtained by a
subdetector (which could be a linear detector or LR-based
detector) operating on size-reduced square subchannels. The
final hard-decision symbol vector is obtained by taking the
one that minimizes the Euclidean distance metric among the
candidate vectors. Note that the size of prevoting vectors is
determined to generate square subchannels (e.g., for a 2 × 4
channel matrix, 2 symbols are selected for the prevoting
vectors, and the size of subchannel matrix is 2 × 2 square
matrix). With an LR-based detector for the sub-detection,

theoretical and numerical results show that the proposed
approach can achieve a full receive diversity order.

In [35], user selection criteria are considered for mul-
tiuser MIMO systems, where a single user is selected to
transmit signals to a base station (BS) at a time. By viewing
multiuser MIMO as virtual antennas in a single user MIMO
system, the user selection problems can be regarded as
the transmit antenna selection problems. In this paper, we
extend the selection criteria in [35] to support multiple
antennas (transmit symbols) at a time for the PVC-MIMO
detection where there are more transmit antennas than
receive antennas. This extension of the antenna selection,
namely, the postvoting vector selection (PVS), becomes a
combinatorial problem. Using low complexity suboptimal
detectors (LR-based detectors or linear detectors) for the
sub-detection, with an optimal PVS, it is also shown that
a near ML performance can be achieved. For slow fading
MIMO channels, through simulations, we show that the
computational complexity of the proposed PVC-MIMO
detection with PVS is lower than that of TSD-CR.

The rest of the paper is organized as follows. The
system model and our proposed prevoting cancellation-
based MIMO detection are presented in Section 2. The
optimal PVS is discussed in Section 3. The performance
of the proposed PVC-MIMO detectors is analyzed in
Section 4. Simulation results and some further discussions
are presented in Section 5. Finally, we conclude this paper in
Section 6 with some remarks.

Throughout the paper, complex-valued vectors and
matrices are represented by bold letters. We use Round-
Gothic symbols to represent real-valued vectors and matri-
ces. For a matrix A, AT, AH, and A† denote its transpose,
Hermitian transpose, and pseudo-inverse, respectively. E[·]
denotes the statistical expectation. In addition, for a vector
or matrix, ‖ · ‖ denotes the 2-norm. �β� denotes the nearest
integer to β. Denote by \ the set minus, by In an n × n
identity matrix, and by K = {k(1), k(2), . . .} the collection set
of k(1), k(2), . . .. The (p, q)th element of a matrix R is denoted
by [R]p,q.

2. Joint Detection for Underdetermined
MIMO Systems

We consider underdetermined MIMO systems with a
receiver of limited complexity, where low-order modulation
is employed as mentioned earlier. This would be the case for
downlink channels in cellular systems where the transmitter
is a base station and the receiver is a mobile terminal which
usually has a small number of receive antennas and a limited
computing power for detection. In this section, we present
the system model for this underdetermined MIMO system
and introduce our PVC-MIMO detection.

2.1. System Model. Consider a MIMO system with M
transmit and N receive antennas. Let sm denote the data
symbol to be transmitted by the mth transmit antenna.
Assume that a common signal alphabet, denoted by S, is used
for all sm. That is, sm ∈ S, m = 1, 2, . . . ,M. Furthermore, let
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SA and |S| represent the A-dimensional Cartesian product
and cardinality of S, respectively. Denote by yn the received
signal at the nth receive antenna, n = 1, 2, . . . ,N . Then, the
received signal vector over a flat-fading MIMO channel is
given by

y = [y1, y2, . . . , yN
]T

= Hs + n,
(1)

where s = [s1, s2, . . . , sM]T is the transmit signal vector and
n = [n1,n2, . . . ,nN ]T is the noise vector which is assumed
to be a zero-mean circular symmetric complex Gaussian
(CSCG) random vector with E[nnH] = N0I. Here, H is the
channel matrix which can also be written as

H = [h1,h2, . . . ,hM], (2)

where hm denotes the mth column vector of H. Throughout
this paper, we assume that the channel state information
(CSI) is perfectly known at the receiver. The impact of chan-
nel estimation error on the performance will be discussed in
Section 5.2.

2.2. Proposed Approach: Prevoting Cancellation-Based MIMO
Detection. For underdetermined MIMO systems, since a
sufficiently low complexity and a near optimal performance
cannot be obtained by existing MIMO detectors (i.e., MMSE
detector, ML detector, list-based detectors [13–24], and
GSD-based detectors [25–30]) at the same time, in this
subsection, we propose the PVC-MIMO detection.

Let R = M − N , and denote by P = {p1, p2, . . . , pR} the
index set for the prevoting signal vector (the selection of this
vector will be discussed in Section 3), which is denoted by
sP = [sp1 , . . . , spR]T. Then, (1) is rewritten as

y = HP sP + HQsQ + n, (3)

where HP = [hp1 , . . . ,hpR] is a submatrix of H associated

with sP , sQ = [sq1 , . . . , sqN ]T the postvoting signal vector and
HQ = [hq1 , . . . ,hqN ] a submatrix of H associated with sQ.
Here, the index set Q is given by Q = {1, . . . ,M} \ P . Note
that HQ is square and sP ∈ SR and sQ ∈ SN .

Define the finite set of all the possible candidate vectors
for sP as {s1

P , s2
P , . . . , sKP }, whereK = |S|R (for example,K =

42 if the size of sP is 2×1 and 4-QAM is used). Assuming that
sP = skP , k ∈ {1, . . . ,K}, (3) is rewritten as

rk = HQsQ + n, (4)

where rk = y−HP skP . After the PVC in (4), we can apply any
conventional MIMO detector that works for a square MIMO
channel for the detection of sQ. For convenience, denote by
ŝkQ the detected symbol vector of sQ (by any means) for given
sP = skP . Let

sk =
⎡

⎣
sP

ŝkQ

⎤

⎦. (5)

With K candidates of sk, that is, {s1, . . . , sK}, based on the
ML detection principle, the solution of the PVC-MIMO
detection is given by

ŝ = arg min
sk∈{s1,...,sK}

‖y −H′sk‖2, (6)

where k ∈ {1, . . . ,K} and H′ = [HPHQ].

3. Selection for Postvoting Vectors Depending
on Subdetectors

In the PVC-MIMO detection, we note different postvoting
vector results in different HQ which may lead to different
performance of sub-detection. In order to exploit the
performance of the PVC-MIMO detection, in this section,
we focus on the selection of the postvoting vector. For the
sub-detection, we consider a few low complexity detectors
including linear and LR-based detectors. Note that since a
number of the sub-detection operations are to be repeatedly
performed, the complexity of sub-detection should be low.

3.1. Selection Criterion with Linear Detector. As a linear
detector, for example, we consider the MMSE detector in this
subsection. Under the assumption that the prevoting vector
is correct, from (4), the output of the MMSE detector is given
by

ŝkQ =WH
mmser

k, (7)

where Wmmse is the MMSE filter that is given by Wmmse =
(HQHH

Q + (N0/Es)IN )
−1
HQ. Here, Es represents the symbol

energy with S.
The detection performance depends on the channel

matrix. For a given channel matrix, as discussed in [35, 36],
we can have the max-min eigenvalue (ME) selection criterion
for the selection of Q. Since Q ∈ {1, . . . ,M}, the optimal set
Q can be found by using the ME criterion as

QME = arg max
Q

λmin

(
HH

Q HQ

)
, (8)

where λmin(A) denotes the minimum eigenvalue of A.

3.2. Selection Criteria with LR-Based Linear and SICDetectors.
To determine Q for the PVS, we consider the case where
LR-based MIMO detectors, which can provide a near ML
performance with low complexity [6, 8], are employed for
the sub-detection.

Without loss of generality, we assume that the elements
of s are complex integers [6, 8]. For the LR-based linear
detection, from (4), the received signal vector can be
rewritten as

rk = Gc + n, (9)

where G = HQU−1 and c = UsQ, while U is an integer
unimodular matrix and G is an LR matrix of a nearly
orthogonal basis. The LR-based linear detection is carried
out to detect c as ĉ = �W̃rk	, where W̃ = G† for the ZF



4 EURASIP Journal on Wireless Communications and Networking

detector and W̃ = GH(GGH + (N0/Es)IN )
−1

for the MMSE
detection.

For the LR-based MMSE-SIC detector, HQ is replaced
by an extended channel matrix defined as Hex =
[HT

Q

√
(N0/Es)IN ]

T
, while rk and n are replaced by rex =

[(rk)T 0]
T

and nex = [nT − √(N0/Es)sT
Q]

T
, respectively.

Using the LR with Hex, the lattice-reduced matrix Gex can be
found as Hex = GexUex, where Uex is an integer unimodular
matrix. The LR-based MMSE-SIC detection is carried out
using the QR factorization of Gex = QR, where R is upper
triangular. Multiplying QH to y results in

QHrex = Rc + n, (10)

where c = UexsQ and n = QHnex. The SIC is performed with
(10). With the upper triangular matrix R, the last element
of c, that is, the Nth layer, is detected first. Then, in the
detection of the (N − 1)th layer, the contribution of the last
element of c is canceled, and the signal of the (N − 1)th layer
is detected. This operation is terminated when all the layers
are detected.

With the LR-based MMSE and MMSE-SIC detectors
performed on HQ, where Q ∈ {1, . . . ,M}, the optimal set
Q can be found by using the ME and the max-min diagonal
(MD) selection criteria [35], which are shown as

QME = arg max
Q

λmin

(
GH

QGQ

)
, (11)

QMD = arg max
Q

{
min
r

∣
∣
∣r(Q)

r,r

∣
∣
∣
}

, (12)

respectively, where GQ is the lattice-reduced basis from HQ

and r(Q)
r,r denotes the (r, r)th element of R from HQ in (10).

4. Performance Analysis

In this section, we consider the diversity gain of the proposed
PVC-MIMO detector through the error probability under
the assumption that the elements of H are independent
CSCG random variables with mean zero and unit variance,
that is, Rayleigh MIMO channels. We also discuss the
complexity of the PVC-MIMO detection.

4.1. Diversity Analysis. In order to characterize the error
probability of the PVC-MIMO detection, let so represent the
original transmitted vectors and S = {s1, . . . , sK} represent
the set of the candidate solutions provided by the PVC, where

each sk is generated from (5), that is, sk = [skT
P ŝkT

Q ]
T

, k =
1, 2, . . . ,K . Let ŝ represent the final decision of the detector
selected from the candidate solutions in S obtained in (6).
Then, we can define two error probabilities as follows.

Definition 1. One defines the probability that the transmitted
symbol vector does not belong to the set of candidate
solutions as Pe,PV = Pr(so /∈S) = 1 − Pr(so ∈ S), that is,
Pr(so ∈ S) = Pr(∃sk′ ∈ S : sk

′ = so), k′ = 1, 2, . . . ,K , where
the event of {∃x : f (x)} denotes that there is at least one x
such that a function of x, f (x), is true.

Definition 2. One defines the probability that the final
decision is not the transmitted one provided that the
transmitted vector belongs to the set of candidate solutions
as Pe,SEL. In other words, Pe,SEL is the probability that the
final decision is not correct conditioned on so ∈ S, that is,
Pe,SEL = Pr(ŝ /= so | so ∈ S).

Using these two probabilities, the error probability of the
PVC-MIMO detection can be given by

Pe = 1− (1− Pe,PV

)(
1− Pe,SEL

) = Pe,PV + Pe,SEL − Pe,PVPe,SEL .

(13)

We will first discuss the error probability when an LR-
based detector is employed for the sub-detection of PVC-
MIMO without PVS. Since an LR-based detector can provide
a full receive diversity [11, 12], the PVC-MIMO detection can
provide a reasonably good performance even without PVS.
Next, we will consider the error probability when a linear
detector is employed. In this case, the PVS plays a crucial role
in achieving a good performance.

4.1.1. Error Probability with LR-Based Detectors. Let us
consider the case where LR-based detectors are used for the
sub-detection of PVC-MIMO without PVS.

A sufficient and necessary condition for so ∈ S is given
by {∃sk′ ∈ S : sk

′ = so}. In the proposed PVC approach,

noting that sk = [skT
P ŝkT

Q ]
T

and so = [soT
P soT

Q ]
T

, we have

Pr(so ∈ S) = Pr(∃sk′ ∈ S : sk
′
P = soP , ŝk

′
Q = soQ). That is, we

have so ∈ S if and only if there exists a candidate solution sk
′

(sk
′ ∈ S and sk

′ = [sk’T
P ŝk’T

Q ]
T

), where the selected sP by the
PVC approach, that is, sk

′
P in sk

′
, satisfies sk

′
P = soP and the

detected postvoting vector (see (4)) after this PVC, that is, ŝk
′
Q

in sk
′
, also satisfies ŝk

′
Q = soQ. Note that with the exhaustive

search approach of PVC, we have Pr(∃sk′ ∈ S : sk
′
P = soP )=1.

Hence, we have

Pe,PV =1− Pr(so ∈ S)= 1− Pr
(
∃sk′ ∈ S : sk

′
P =soP , ŝk

′
Q=soQ

)

= 1− Pr
(
ŝk

′
Q = soQ | sk

′
P = soP

)
= EHQ

[
Pe|HQ

]
,

(14)

where Pe|HQ denotes the error probability of the sub-
detection that detects sQ for given HQ. That is, Pe,PV in (14)
is equivalent to the (average) error probability of the sub-
detection performed on the square submatrix, HQ.

Based on the principle of LR, we derive Pe,PV for LR-
based detectors. LR-based detectors can achieve a full receive
diversity with a relative low complexity by generating a nearly
orthogonal basis for a given channel matrix [8] to mitigate
the effect of (multiple antenna) interference. In the LLL-
LR [7] algorithm, we transform HQ into a new basis, for
example, denoted by G in (9). Here, we have L(G) =
L(HQ) ⇔ G = HQT, where T is an integer unimodular
matrix and L(A) denotes a basis of lattice generated by A.
Then, G is called LLL-reduced with parameter δ if G is QR
factorized as

G = QR, (15)
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where Q is unitary (QTQ = IN ), R is upper triangular, and
the elements of R satisfy the following inequalities:

∣∣
∣[R]�,ρ

∣∣
∣ ≤ 1

2

∣∣
∣[R]�,�

∣∣
∣, with 1 ≤ � < ρ ≤ N ,

δ[R]2ρ−1,ρ−1 ≤ [R]2ρ,ρ + [R]2ρ−1,ρ, with ρ = 2, . . . ,N ,

(16)

where δ is a given parameter (δ ∈ (1/2, 1)) [11].
From [11], the error probability of the LR-based MMSE

detection is almost equivalent to that of the LR-based ZF
detection. From (9), with the LR-based ZF detection, let
x = G†rk. Then, it follows that

x = UsQ + G†n. (17)

The estimation of sQ can be expressed as

ŝQ = U−1�x	 = sQ + U−1
⌊
G†n

⌉
. (18)

Thus, the error probability of detecting sQ for given HQ

with the LR-based MMSE detectors can be deduced from
[11] (for details, see Section 4.3 in [11]). We have

Pe,PV ≤ cNN

(
2
c2
δ

)N
(2N − 1)!
(N − 1)!

(
1
N0

)−N
, (19)

where cNN and c2
δ are constants and cδ := 2N/2(2/

(2δ − 1))−N(N+1)/4 < 1. The upper bound on Pe,PV in
(19) results from the Nth moment of Chi-square random
variable, ‖n‖2.

In addition, for LR-based SIC detection, it can be
deduced from [12] that the bound of its error probability
results from the same moment of ‖n‖2 as the LR-based linear
detection. Thus, for LR-based detectors, the upper bound on
Pe,PV in (19) results from the Nth moment of ‖n‖2.

Next, we consider Pe,SEL . Note that if the ML detector
can choose the correct transmitted symbol vector, s, among
all the possible candidate vectors in their alphabet S, the
detection in (6) can also choose s (provided that s ∈ S and
S ⊂ S), and it is obvious to show that

Pe,SEL ≤ Pe,ML , (20)

where Pe,ML is the error probability of the ML detection
employed with an N × M MIMO system. (Inequality (20)
is correct if so ∈ S. Note that the definition of Pe,SEL is
the selection error probability when there is one correct
candidate in the set S. We can use (20) to calculate Pe,SEL ,
while the error probability if so is not in S is already
calculated by Pe,PV .) It is well known that a full receive
diversity gain is achieved by this ML detector, which is N [2].
That is, the upper bound on Pe,SEL can also be obtained from
the Nth moment of Chi-square random variable, ‖n‖2.

From (13), when the LR-based detectors are employed
for the sub-detection, the error probability of the PVC-
MIMO detection is given by

Pe = Pe,PV + Pe,SEL − Pe,PVPe,SEL

≤ Pe,PV + Pe,ML − Pe,PVPe,SEL ≤ Pe,PV + Pe,ML .
(21)

Since Pe,PV , Pe,SEL , and Pe,ML in (21) are tail probabilities of
a Chi-square random variable with 2N degrees of freedom,
‖n‖2, we can see that Pe ≈ c(1/N0)−N as N0 → 0, where c is a
constant that is independent of N0. Note that N is also the
maximum receive diversity order for an underdetermined
N ×M MIMO system. Thus, a full receive diversity can be
achieved by the proposed PVC-MIMO detection with LR-
based subdetectors.

4.1.2. Error Probability with Linear Detectors. If a linear
detector (e.g., the MMSE detector introduced in Section 3.1)
is used for the sub-detection, the ME criterion can be
employed for PVS. Since a linear detector cannot exploit a
full receive diversity, the diversity order of the PVC-MIMO
detection is less than N . However, if the PVS is employed, the
PVC-MIMO detection can achieve a higher diversity order.

It can be shown that for a given set Q, the error
probability of the linear sub-detection that detects sQ for a
given square submatrix HQ is expressed as [35]

Pe|HQ ≤
1
2

erfc

⎛

⎜
⎝

√
√
√√λmin

(
HH

QHQ

)
‖Δ‖2

4N0

⎞

⎟
⎠, (22)

where Δ = sQ(1) − sQ(2) (suppose that sQ(1) is transmitted,
while sQ(2) is erroneously detected) and erfc(x) is the
complementary error function of x, that is, erfc(x) =
(2/
√
π)
∫ +∞
x e−z

2
dz. Thus, under the ME selection crite-

rion, the pairwise error probability (PEP) for detecting sQ
becomes

P
(
sQ(1) −→ sQ(2)

) = Pe|HQME

≤ 1
2

erfc

⎛

⎜
⎝

√
√
√√maxQλmin

(
HH

QHQ

)
‖Δ‖2

4N0

⎞

⎟
⎠

= 1
2

erfc

⎛

⎜
⎝

√
√
√√σ2

h‖Δ‖2maxQXQ

4N0

⎞

⎟
⎠

= 1
2

erfc

⎛

⎜
⎝

√
√
√
√σ2

h‖Δ‖2V

4N0

⎞

⎟
⎠,

(23)

where XQ = λmin(HH
QHQ)/σ2

h , V = maxQXQ and σ2
h is the

variance of the elements in channel matrix HQ.
Similar to (14), we have

Pe,PV = 1− Pr
(
∃sk′ ∈ S : sk

′
P = soP , ŝk

′
Q = soQ

)

= 1− Pr
(
ŝk

′
Q = soQ | sk

′
P = soP

)
= EHQ

[
Pe|HQME

]
.

(24)

Then from (23), we can obtain that

Pe,PV = EHQ

[
Pe|HQME

]
≤ EV

⎡

⎢
⎣

1
2

erfc

⎛

⎜
⎝

√
√
√
√σ2

h‖Δ‖2V

4N0

⎞

⎟
⎠

⎤

⎥
⎦. (25)
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For the random matrix HQ, the probability density function
(pdf) of XQ is given by [37]

fx(x) = Ne−Nx. (26)

If all the possible submatrices HQ (after PVS), which are
the candidate channel matrices for the sub-detection, are
assumed to be independent, the pdf of V is

fV (v) = LN
(

1− e−Nv
)L−1

e−Nv

= LNLvL−1 + o
(
vL−1+ε

)
(v → 0+),

(27)

where ε > 0 and L = CN
M denotes the number of possible

candidates for Q (CN
M is the number of combinations for

selecting N items in M items). (This assumption does
not hold in practical situation (the last paragraph of this
subsection addresses the practical situation).)

The relation between the PEP in (23) and the pdf of
variable V can be deduced by Wang and Giannakis in [38].
Thus, according to [38], we can show that

Pe,PV ≤ EV
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= c1γ
−L
Δ + o

(
γ−(L+1)
Δ

)
,

(28)

where γΔ = σ2
h‖Δ‖2/N0 and c1 > 0 is constant.

Note that for M ≥ N + 1, CN
M = M!/(M − N)!N ! ≥

M!/(M − N)!N(N − 1) · · · 2 ≥ M!/(M − N)!(M − 1)(M −
2) · · · (M−N+1) =M!/(M−1)! =M > N , that is, L > N . In
addition, (20) and (21) also hold for linear detectors. Hence,
according to (28), a full diversity order N can be achieved by
the proposed detectors when the ME criterion for index set
Q selection is employed.

In practice, different HQ’s are not independent (i.e., XQ

are correlated for different Q), and the minimum eigenvalues
of HH

QHQ’s are correlated in the proposed detection after
PVS. Thus, (27) may not be valid (but just an approxi-
mation), and a full diversity order Ncannot be achieved.
However, for a small-sized matrix HQ, a near full diversity
order may be achieved due to the low correlation of the
minimum eigenvalues of different HH

QHQ’s. The numerical
results shown in the following section also confirm this
observation. That is, with the optimal PVS, the linear
detector-based PVC-MIMO detection can achieve a higher
diversity; for a small matrix HQ (e.g., a 2× 2 matrix), a near-
full receive diversity is achieved by the proposed detection.

4.2. Complexity Analysis. Denote by CSub the complexity of
the sub-detection with a square channel matrix of N × N .
Excluding the complexity of the PVS, the complexity of the
PVC-MIMO detection is given by

CPVC = KCSub. (29)

If an exhaustive search is employed to determineQ in (8),
(11), or (12), because there are

∏M−N−1
i=0 (M−i) possible index

sets, the complexity for building Q is
∏M−N−1

i=0 (M − i)CSel,
where CSel denotes the computational complexity for each
possible index set. For example, if the MD selection criterion
is used when M = 4 and N = 2, we need 4 × 3 = 12 LRs
of 2× 2 complex-valued channel matrices, and CSel becomes
the complexity for each LR. We will list the complexity of CSel

with different PVSs for their corresponding subdetectors in
Section 5, empirically using the average number of floating
point operation (flops).

For a block fading channel, assume that the channel is
not varying for a duration of W symbol vectors transmitted.
Note that PVS is only performed once for a channel
matrix. Then, including the complexity of PVS, the overall
computational complexity of the PVC-MIMO detection per
each symbol vector is given by

CPVC =
∏M−N−1

i=0 (M − i)CSel

W
+ KCSub. (30)

For slow fading channels, where the coherence time is
long, W will be large. In this case, the extracomputational
complexity required for PVS per each symbol detection
would be negligible, where we have CPVC ≈ KCSub. In
Section 5, we will compare the complexity of our proposed
PVC-MIMO detectors to other MIMO detectors using flops.

5. Simulation Results and Discussions

5.1. Simulation Results. In this subsection, we present sim-
ulation results to compare our PVC-MIMO detectors with
other detectors (including the MMSE (linear) detector, ML
detector, the Chase detector, and the TSD-CR [33] which
provides the ML performance) for underdetermined MIMO
systems. (For the Chase detector [19–24], the subvector of
sized (M − N) × 1 to be detected in the first layer is selected
from s as the one with the smallest MSE (i.e., equivalently the
highest SNR), and a list of Q candidates for this subvector
is constructed. In the second layer, the contribution from
the detected subvector is treated as the interference and is
canceled from the received signal. Then, the sub-detection
is employed with the corresponding N × N subchannel
matrix to detect the residual N × 1 subvector. Two scenarios
are considered for the Chase detection: (i) MMSE + Chase
(MMSE subdetector used in Chase detection); (ii) LR-based
MMSE-SIC + Chase (LR-based MMSE-SIC subdetector used
in Chase detection).) Six combinations of the PVC-MIMO
detectors are considered as follows: (a) MMSE + PVC-
MIMO (MMSE subdetector used in PVC-MIMO); (b) LR-
based MMSE + PVC-MIMO (LR-based MMSE subdetector
used in PVC-MIMO); (c) LR-based MMSE-SIC + PVC-
MIMO (LR-based MMSE-SIC subdetector used in PVC-
MIMO); (d) MMSE + PVC-MIMO + PVS (MMSE subdetec-
tor used in PVC-MIMO with optimal PVS (ME criterion));
(e) LR-based MMSE + PVC-MIMO + PVS (LR-based MMSE
subdetector used in PVC-MIMO with optimal PVS (ME
criterion)); (f) LR-based MMSE-SIC + PVC-MIMO + PVS
(LR-based MMSE-SIC subdetector used in PVC-MIMO with
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Figure 1: BER versus Eb/N0 of different detectors represented in
Section 5.1 for 4-QAM, M = 4, N = 2.

optimal PVS (MD criterion)). As we are interested in the case
where the receiver’s computational complexity is limited, we
only consider the cases of (M,N) ∈ {(4, 2), (4, 3), (3, 2)}.
(The case of a large M−N is discussed in Section 5.2.). Note
that elements of MIMO channel matrices in simulations
are generated as independent CSCG random variables with
mean zero and unit variance. The SNR is defined as the
energy per bit to the noise power spectral density ratio,
Eb/N0. We assume that 4-QAM and 16-QAM are used for
signaling with Gray mapping.

With 4-QAM modulation, in Figures 1 and 2, for channel
matrices of size 2 × 4 and 3 × 4, respectively, we show
simulation results of BER for various detectors. In Figures 3
and 4, with 16-QAM modulation, simulation results of BER
for various detectors are presented for channel matrices of
size 2× 3 and 3× 4, respectively.

From the simulation results, it is shown that a full receive
diversity can be achieved by employing the PVC-MIMO
detection approach with LR-based subdetectors. In Figures 1
and 3, we can see that “LR-based MMSE/MMSE-SIC + PVC-
MIMO” has a slight performance degradation from the ML
detector and the SNR loss is a half dB at a broad range of BER.
In all the simulation results, it is also shown that “LR-based
MMSE/MMSE-SIC + PVC-MIMO + PVS” has negligible
performance degradation compared to the ML performance.
Furthermore, we note that “MMSE + Chase” and “LR-based
MMSE-SIC + Chase” cannot provide a full diversity and
good performance, especially when SNR is high.
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Figure 2: BER versus Eb/N0 of different detectors represented in
Section 5.1 for 4-QAM, M = 4, N = 3.
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Figure 3: BER versus Eb/N0 of different detectors represented in
Section 5.1 for 16-QAM, M = 3, N = 2.
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Figure 4: BER versus Eb/N0 of different detectors represented in
Section 5.1 for 16-QAM, M = 4, N = 3.

In Figures 2 and 4, we can see that “MMSE + PVC-
MIMO + PVS” can provide a reasonably good performance.
For a 2 × 2 submatrix, we can observe that “MMSE + PVC-
MIMO + PVS” can provide a near ML performance from
Figures 1 and 3, where the sizes of channel matrices are
2 × 4 and 2 × 3, respectively. We note that the performance
of “MMSE + PVC-MIMO + PVS” with N = 2 is better
than that with N = 3. Since a low correlation of the
minimum eigenvalue of HH

QHQ is obtained by employing a

reduced-sized channel matrix HQ, a less error propagation is
expected. This confirms that the PVC-MIMO detection with
MMSE subdetector could be effective when N is sufficiently
small.

In Table 1, we list the complexity of CSel for different
detectors (i.e., “MMSE + PVC-MIMO + PVS,” “LR-based
MMSE + PVC-MIMO + PVS,” and “LR-based MMSE-SIC
+ PVC-MIMO + PVS”) by using flops, for the case of N = 2
and N = 3, respectively. Since the computation for both LR
and eigenvalue is considered in “LR-based MMSE + PVC-
MIMO + PVS,” the highest complexity is required.

Since the TSD-CR approach [33] can be applied to
underdetermined MIMO systems with a reasonable low
complexity and optimal performance, it is worthy to
compare its complexity with our proposed schemes. In
Table 2, we compare the complexity of our proposed PVC-
MIMO detectors to other MIMO detectors including the ML
detector (using an exhaustive search), MMSE detector, TSD-
CR, and Chase detectors by using flops with W = 1000,

Table 1: Complexity comparison of CSel for different detectors
listed in Section 5.1.

Average flops of CSel

Detector N = 2 N = 3

MMSE + PVC-MIMO + PVS 258 1608

LR-based MMSE + PVC-MIMO + PVS 678 3070

LR-based MMSE-SIC + PVC-MIMO + PVS 473 1587

where slow fading channels are considered. (The complexity
of PVC-MIMO with fast fading channels is discussed in
Section 5.2.). Note that for PVC-MIMO and TSD-CR, the
PVS and Householder QR decomposition of channel matrix
with minimum column pivoting are carried out once for
1000 symbol vectors transmitted, respectively, to make this
comparison fair. The flops listed in Table 2 are obtained with
Eb/N0 = 20 dB.

Although the MMSE and Chase detectors have a low
complexity, they do not suit for underdetermined MIMO
systems. It is shown that the computational complexity of
the proposed PVC-MIMO detectors with optimal PVS for
the case of {M,N} = {3, 2}, {M,N} = {4, 2}, and {M,N} =
{4, 3} with 4-QAM is significantly lower than that of ML and
TSD-CR. It is also shown that, with 16-QAM, the proposed
detectors can also provide a relatively lower complexity for
the case of {M,N} = {3, 2} and {M,N} = {4, 3}. In
addition, for different PVC-MIMO detectors in the same
MIMO system, “MMSE + PVC-MIMO + PVS” has the
lowest computational complexity among the PVC-MIMO
detectors, since no LR is used in PVS and sub-detection.

Overall, “LR-based MMSE-SIC + PVC-MIMO + PVS”
is shown to be very attractive, because its performance is
close to that of the ML detection and its complexity is low
(the complexity is almost the same as that of “MMSE +
PVC-MIMO + PVS”, which is the lowest). From this, we
can see that the combination of LR detector and optimal
PVS is the key ingredient to build low complexity, but near
ML performance, detection schemes for underdetermined
MIMO systems.

5.2. Discussion. In Section 5.1, we have discussed the com-
putational complexity of PVC-MIMO detection with slow
fading MIMO channels, where M − N is small (e.g., 1 or
2). In this subsection, we discuss the complexity of the PVC-
MIMO detection for fast fading channels and a large M −
N . Furthermore, the impact of channel estimation errors is
considered.

5.2.1. Fast Fading Channels. Previously, we have analyzed
the complexity of the PVC-MIMO detection with PVS for
slow fading MIMO channels, where W is large (e.g., W =
1000). Note that fast fading channels lead to a small W .
With the overall complexity per each symbol vector of the
PVC-MIMO detection in (30), CPVC would be high since the
weight of CSel is high when W is small (i.e., the complexity
of CSel is given in Table 1). Therefore, the PVC-MIMO detec-
tion with PVS could have a high complexity with a small W .
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Table 2: Complexity comparison of different detectors listed in Section 5.1.

Average flops for each symbol vector detection

System
4-QAM 16-QAM

{M,N} = {3, 2} {M,N} = {4, 2} {M,N} = {4, 3} {M,N} = {3, 2} {M,N} = {4, 3}
MMSE 78 109 112 302 411

ML 4484 22021 32773 286724 8388613

TSD-CR 753 1296 1226 3467 5546

MMSE + Chase 168 623 239 1671 2479

LR-based MMSE-SIC + Chase 170 626 255 1673 2490

MMSE + PVC-MIMO + PVS 193 770 325 3056 4645

LR-based MMSE + PVC-MIMO + PVS 201 783 377 3074 4697

LR-based MMSE-SIC + PVC-MIMO + PVS 197 778 356 3060 4666

For the case of W = 10, where channel varies every
10 symbol vectors transmitted (i.e., reasonably fast fading
channels), with {N ,M} = {2, 3} and {N ,M} = {2, 4}, the
average computational complexity per each symbol vector
for PVS of “LR-based MMSE-SIC + PVC-MIMO + PVS”
is 155 and 310, respectively, in terms of flops. In this case,
compared to existing approaches (in Table 2), the complexity
of the PVC-MIMO with PVS is still low.

5.2.2. LargeM−N . Since there are underdetermined MIMO
systems with a large M − N , it is worthy to discuss the
complexity of PVC-MIMO detection employed in such
MIMO systems. Considering a low-order modulation (4-
QAM), by using the same method that obtains the flops in
Table 2, we compare the computational complexity of “LR-
based MMSE-SIC + PVC-MIMO + PVS” and TSD-CR [33]
for the cases of {M,N} = {5, 2} and {6, 2}, respectively,
in terms of flops. For “LR-based MMSE-SIC + PVC-MIMO
+ PVS,” the flops of {M,N} = {5, 2} and {6, 2} are 3106
and 12263, respectively. For TSD-CR, the flops of {M,N} =
{5, 2} and {6, 2} are 5010 and 19564, respectively. It shows
that the PVC-MIMO detection has a lower complexity than
TSD-CR with a large M −N and a low-order modulation.

We note that the PVC-MIMO detection is not suitable
for the case of a large M − N and a high-order modulation
(16-QAM or 64-QAM) due to the exhaustive cancellation of
prevoting vectors. However, it is noteworthy that the GSD-
based detection (e.g., TSD-CR) has also high complexity
[25–33].

5.2.3. Imperfect CSI Estimation. In practice, the channel
matrix has to be estimated, and there could be estimation
errors. Considering an N ×M channel matrix H represented
in (1), whose elements are generated as independent CSCG
random variables with mean zero and unit variance, with an
imperfect CSI estimation, the estimated channel matrix is
given by Ĥ = H + E. Here, an N × M matrix E represents
errors in the CSI estimation, whose elements are generated
as independent zero-mean CSCG random variables with
variance v2

e .
With {N ,M} = {2, 4} and 4-QAM modulation, in

Figure 5, we present simulation results of BER for TSD-
CR and “LR-based MMSE-SIC + PVC-MIMO + PVS”
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Figure 5: BER versus Eb/N0 of “TSD-CR” and “LR-based MMSE-
SIC + PVC-MIMO + PVS” represented in Section 5.1 for ve =
{0, 0.02, 0.05} with 4-QAM, M = 4, N = 2.

with different CSI errors, where ve = 0, 0.02, and 0.05.
Figure 5 shows that the performance of TSD-CR and “LR-
based MMSE-SIC + PVC-MIMO + PVS” degrades when ve
increases in general. Nevertheless, it shows that our proposed
PVC-MIMO detection with PVS (i.e., “LR-based MMSE-
SIC + PVC-MIMO + PVS”) has a negligible performance
gap from the ML performance (i.e., TSD-CR) with CSI
estimation errors.

6. Conclusion

For underdetermined MIMO systems where a lower-order
modulation scheme can be employed, we considered low
complexity MIMO detection approaches based on PVC in
this paper. It was shown that if an LR-based detector is
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used for the sub-detection, the PVC-MIMO detection can
achieve a full receive diversity order. We confirmed this
through simulations. It was also shown that the complexity
of the proposed PVC-MIMO detectors is low and com-
parable to that of the MMSE detector when 4-QAM is
used. Therefore, the proposed detection approach can be
employed for underdetermined MIMO systems where the
receiver’s computational complexity is limited such as mobile
terminals.
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