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A novel system model is proposed for the dual-hop multiple-input multiple-output amplify-andforward relay networks, and the
impact of antenna correlation on the performance is studied. For a semiarbitrary correlated source-relay channel and an arbitrary
correlated relay-destination channel, the complementary cumulative distribution function (CCDF) and the moment-generating
function (MGF) approximations of the end-to-end signal-to-noise ratio (SNR) are derived. The outage probability, the average
symbol error rate (SER), and the ergodic capacity approximations are also derived. Two special cases are treated explicitly: (1)
dual-antenna relay and multiple-antenna destination and (2) uncorrelated antennas at the relay and correlated antennas at the
destination. For the first case, the CCDF, the MGF and the average SER of an upper bound of the end-to-end SNR are derived in
closed-form. For the second case, the CCDF, the MGF, the average SER, and the moments of SNR are derived in closed-form; as
well, the high SNR approximations for the outage probability and the average SER are derived, and the diversity gain and coding
gain are developed. Extensive numerical results and Monte Carlo simulation results are presented to verify the analytical results
and to quantify the detrimental impact of antenna correlations on the system performance.

1. Introduction

Cooperative relay networks have been the focus of a flurry of
research activities and standard deployment [1–5]. The use
of multiple antennas at the source, relay, and/or destination
of relay networks offers significant performance gains [6–15].
Such cooperative multiple-input multiple-output (MIMO)
relaying opens up the possibility of deploying diversity
transmission techniques such as beamforming, maximal
ratio transmission (MRT), maximal ratio combining (MRC),
and transmit antenna selection (TAS) strategies [10–12, 15].
In this paper, a suboptimal yet a simple and efficient system
model, which achieves a better trade-off among the hardware
cost, complexity, and the performance, is proposed and
analyzed for dual-hop MIMO amplify-and-forward (AF)
relay networks.

Prior Related Research. The prior work can be divided into
two broad categories. The first category deals with multiple-
antenna terminals (source, relay, and destination) [6, 10–17].

The second category considers single-antenna terminals only
[4, 5, 18–21].

Single-antenna AF relaying over two hops with source
and destination using multiple antennas is analyzed in [10,
11, 13]. In these works, beamforming or MRT and MRC
technologies are considered. The difference between [11]
and [13] is that the former considers independent Rayleigh
fading whereas the latter considers independent Nakagami-
m fading. In particular, [10] extends [13] to study the
effect of antenna correlation at the source and destination.
Moreover, in [12], the performance in independent Rayleigh
fading is derived for a system, where the source uses TAS and
the destination, MRC.

References [6, 15] analyze the performance of dual-hop
multibranch cooperative systems with decode-and-forward
(DF) relays equipped with multiple receive antennas and a
single transmit antenna. However, the source and the desti-
nation are single-antenna terminals. In [6], the performance
metrics are derived by considering threshold-based MRC
and threshold-based selection diversity combining at the
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relay. Moreover, [15] extends [6] by employing distributed
beamforming to achieve improved capacity gains.

In [14, 16, 17], the performance of single-relay system,
where the source, the relay, and the destination terminals
are equipped with multiple transmit/receive antennas, is
analyzed. All these works employ space time block codes. The
analysis in [14] considers both DF and AF relaying strategies.
In [16], the performance analysis employs random matrix
theory. Reference [17] derives the exact outage probability in
closed form.

For the sake of completeness, we briefly mention some
prior research of the second category dealing with single-
antenna two-hop AF relay networks. Their performance
over Rayleigh fading is analyzed in [4, 5]. The performance
bounds for the multibranch case of such networks over
Nakagami-m fading are derived in [18]. Reference [19]
derives their performance over nonidentical Nakagami-m
fading links. The performance bounds of such networks
over generalized Gamma fading channels and nonidentical
Weibull fading channels are derived in [20, 22]. In [21], the
exact expressions and lower bounds for mixed Rayleigh and
Rician fading channels are derived.

Motivation. Although the dual-hop MIMO relay models
in [10–12, 15] provide significant performance gains over
single-antenna relaying [4, 5, 18–20], the following issues
may arise in practical network deployments of such net-
works. In the emerging cellular dual-hop relay networks,
employing multiple antennas at the mobile stations (MS) is
strictly limited due to power and space constraints. However,
there are no such constrains at the base stations (BS). On
the other hand, the hardware cost and complexity associated
with the relay should be low compared to a traditional BS.
Although relaying can be performed by an MS as well, in this
work, an infrastructure (fixed) relay [7] is considered. Such a
relay can employ multiple antennas.

In this paper, we consider a practical scenario where a
single-antenna MS communicates with a multiple-antenna
BS via a fixed relay equipped with multiple antennas. This
particular setup is shown in Figure 1. The relay uses selection
diversity combining (SDC) for signal reception and uses
one transmit antenna for forwarding the amplified signal.
Although several other antenna setups are possible for the
relay, we focus on this setup for several reasons. First,
alternatives such as MRC are more costly; if the relay employs
MRC reception, a separate receiver chain is required for
each receive antenna, and this requirement increases the cost
and complexity. Second, a single transmit antenna at the
relay keeps the cost comparable to that of a single antenna
relay, which requires only one transmit chain. Although this
particular transmit/receive strategy adopted at the relay may
not be optimal, it is designed to gain MIMO diversity benefits
yet keep the costs/complexity at the relay as low as possible.
Finally, from a theoretical point of view, there is no difficulty
in analyzing other antenna configurations at the relay, but
space limitations prevent us from doing so. The proposed
system model may thus readily be used for emerging cellular
networks with MIMO relaying, where the use of multiple
antennas in a BS is reasonable; however the use of multiple

antennas at MS may be strictly limited due to the terminal
size and power constraints.

Our Contribution. Although MIMO techniques achieve
diversity/SNR gains, these gains decrease when there is
spatial correlation among the signals received by antenna
elements. Therefore, the performance losses due to antenna
correlations must be quantified. In this paper, in particularly,
we consider the impact of spatial (antenna) correlation on
our proposed dual-hop MIMO AF relay network (Figure 1).
To the best of our knowledge, the proposed network setup
has not been analyzed before, and the differences between
our work and [6, 10] are as follows. The setup in [10]
studies a multiple-antenna source and single-antenna relay.
Moreover, in [10], MRT and MRC are employed at the source
and destination whereas our setup employs SDC and MRC
at the relay and destination, respectively. Although reference
[6] considers a relay identical to ours, the destination
is a single-antenna terminal. The relaying strategy in [6]
is DF whereas AF relaying is considered here. Further,
[6] considers independent fading whereas our work treats
consider correlated fading.

In our work, for a semiarbitrary correlated source-relay
channel and arbitrary correlated relay-destination chan-
nel, we derive integral expressions for the complementary
cumulative distribution function (CCDF) and the moment-
generating function (MGF) of the end-to-end signal-to-
noise ratio (SNR). The numerically efficient Gauss-Laguerre
quadrature rule [23] is employed to evaluate the integrals.
The outage probability, the average symbol error rate (SER),
and the ergodic capacity expressions are also derived. Closed-
form expressions are derived for the performance of two spe-
cial cases of antenna correlation: (1) dual-antenna relay and
multiple-antenna destination and (2) uncorrelated antennas
at the relay and correlated antennas at the destination. We
develop closed-form expressions for the CCDF and the MGF
of an upper bound of the SNR for the first case. The average
SER is evaluated by using the Gauss-Chebyshev quadrature
rule [23]. Exact closed-form expressions are derived for the
CCDF, the MGF, the average SER, and the moments of SNR
of the second case. In particular, for the second case, the
high SNR approximations for the outage probability and the
average SER are derived and used to obtain valuable insights
such as the diversity and the coding gains. Numerical and
Monte Carlo simulation results are provided to analyze the
system performance, obtain valuable insights, and validate
our analysis. The insights provided by our analysis may well
be used for designing of MIMO relay networks.

The rest of this paper is organized as follows. Section 2
presents the system and the channel model. In Section 3,
the performance analysis is presented. Section 4 contains the
numerical and simulation results. Section 5 concludes the
paper, and the proofs are annexed.

Notations. Kν(z) is the Modified Bessel function of the second
kind of order ν [23, 9.6]. 2F1(α,β; γ; z) is the Gauss Hyper-
geometric function [23, 15.1]. Q(z) denotes the Gaussian
Q-function [23, 26.2.3]. Qm(a, b) is the mth-order Marcum
Q-function [24, equation (1)]. For the sake of brevity, we
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Figure 1: System model: dual-hop MIMO relaying.

write Q(a, b) to denote Q1(a, b). Im(z) is the mth-order
Modified Bessel function of the first kind [23, 9.6.3]. Ei(z) is the
Exponential integral function [25, 8.211.1]. EΛ{z} denotes the
expected value of z over Λ. ‖Z‖F and (Z)H are the Frobenius
norm and conjugate transpose of Z.

2. System and Channel Model

We consider the dual-hop relay network in Figure 1. The
single-antenna source (S) communicates with the destina-
tion (D) having Nd ≥ 1 antennas via an AF relay (R).
The relay has Nr ≥ 1 receive antennas and uses only one
antenna among them for forwarding. ( Although TAS can
be used at the relay for the second time slot, it provides
diversity gains only when Nr > Nd despite the additional CSI
feedback requirement (see Remark 1 in Section 3). However,
in practice, Nr > Nd is unlikely even since the relays should
usually be more cost/complexity effective than BS.) Half-
duplex transmission is assumed. Since we consider a MIMO-
enabled infrastructure relay, which is used primarily for
extending the network coverage, the direct channel between
S and D, which is far apart, is not considered assuming
heavy shadowing and path loses. Cooperation occurs in two
timeslots. In the first timeslot, the source transmits to the
relay. In the second timeslot, the relay forwards an amplified
version of the source signal to the destination. The relay and
destination employ SDC and MRC receptions, respectively.
Perfect channel state information is assumed to be available
at the relay and destination.

2.1. Source-to-Relay Channel Model. An arbitrary correlation
model for the source-to-relay (S → R) channel appears to be
analytically intractable for dual-hop AF relay networks. We
instead consider the semiarbitrary correlation model. (The
use of the semiarbitrary correlation model simplifies the Nr-
fold numerical integration [26] in evaluating the CCDF of
the SDC output SNR for the S → R channel into a single
integral [27] and thereby enables the efficient computation of
distribution functions of the end-to-end SNR of dual-hop AF
relaying.) In other words, the S → R single-input multiple-
output (SIMO) channel is a semiarbitrary correlated [27] flat
Rayleigh fading channel. The S → R channel vector is given
by Ψ1/2

R hsr , where ΨR is the Nr ×Nr covariance matrix at the
relay, and hsr is an Nr × 1 vector with independent Rayleigh
fading entries. The (p, q)th element of ΨR is given by [28,
8.1.5]

Ψ
p,q
R =

⎧
⎨

⎩

ρpρq, p /= q

1, p = q
where 0 ≤

(

ρp, ρq
)

≤ 1. (1)

Thus, Ψ
p,q
R can be parameterized by a 1 × Nr vector ρ with

the pth element ρp.

2.2. Relay-to-Destination Channel Model. The relay-to-
destination (R → D) SIMO channel is an arbitrary
correlated [29] flat Rayleigh fading channel. In this case,
the R → D channel vector is given by Ψ1/2

D hrd, where ΨD

is the covariance matrix at the destination, and hrd is an
Nd×1 vector with independent Rayleigh fading entries. ΨD is
constructed according to a practical channel model [30, 31]
with the (p, q)th element given by

Ψ
p,q
D = e− j2π(p−q)ld cos(θd)e−(1/2)(2π(p−q)ld sin(θd)σd)2

, (2)

where ld is the relative antenna spacing between adjacent
antennas (measured in number of wavelengths) of the linear
array of antennas at the destination, θd is the mean angle of
arrival, and σ2

d is the destination angular spread. The actual

angle of arrival is given by θd = θd + θ̂d with θ̂d ∼ N (0, σ2
d ).

Such a correlation model may arise in practice in uniform
linear antenna arrays, and this model appears to be adequate
to describe a real-world scattering environment [30].

2.3. The End-to-End SNR. The received signal vector at the
relay can be written as

yr =
√
P1Ψ

1/2
R hsrx + nr, (3)

where P1 is the transmit power; x is the transmitted symbol
satisfying E{|x|2} = 1; nr is the additive white Gaussian
noise (AWGN) vector with mean zero and variance No. The
relay employs SDC to obtain the scalar signal as

yr =
√
P1h

I
srx + nr , (4)

where |hIsr| = max1≤i≤Nr |hisr| and {hisr}Nr
i=1 are the elements

of Ψ1/2
R hsr and nr is the AWGN at the Ith antenna. In the

second timeslot, the signal yr is amplified with the gain G
and forwarded to the destination. The received signal at the
destination can be written as

yd = wH
(√

P2Ψ
1/2
D hrdGyr + nd

)

, (5)

where P2 is the relay transmit power factor, nd is the Nd ×
1 AWGN vector satisfying E{ndnH

d } = NoINr , and wH is
the receive weight vector for MRC operation [32] given by
w = Ψ1/2

D hrd/‖Ψ1/2
D hrd‖F . Next, we expand (5) to obtain the

following model for the received signal at the destination:

yd =
√
P1P2G‖Ψ1/2

D hrd‖FhIsrx +
√
P2G‖Ψ1/2

D hrd‖Fnr

+
(

Ψ1/2
D hrd

)H
nd.

(6)

By using (6), the resulting SNR can be obtained as

γeq =
(

P1
∣
∣hIsr

∣
∣2
/No

)(

P2‖Ψ1/2
D hrd‖2

F/No

)

P2‖Ψ1/2
D hrd‖2

F/No + 1/G2No
. (7)

The gains of practical channel state information-(CSI-)
assisted relays can be defined as in [1, 4]. Thus, by
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substituting G =
√

1/(P1|hIsr|2 + No) into (7), the SNR of the
dual-hop system with the practical CSI-assisted relay can be
written as follows:

γeq =
γ1γ2

γ1 + γ2 + 1
, (8)

where γ1 = P1|hIsr|2/No is the instantaneous SNR of the
SDC output at the relay in semiarbitrary correlated Rayleigh
fading, and γ2 = P2‖Ψ1/2

D hrd‖2
F/No is the instantaneous

SNR of the MRC output at the destination over arbitrary
correlated Rayleigh fading. We also define γ1 = E{γ1} and
γ2 = E{γ2} as the average of γ1 and γ2, respectively.

We can also consider ideal CSI-assisted relays that invert
the S → R channel regardless of its fading state [4]. For this

case, the relay gain is given by G =
√

1/P1|hIsr|2, and the SNR
γeq,ideal is given by [4]

γeq ≤ γeq,ideal =
γ1γ2

γ1 + γ2
. (9)

Moreover, the γeq can be upper bounded as [5, 18]

γeq ≤ γeq,ideal ≤ γub
eq = min

(
γ1, γ2

)
. (10)

3. Performance Analysis

This section presents a comprehensive performance analysis
of our proposed MIMO relay network model by taking
into account the spatial correlation of antenna elements at
the MIMO-enabled terminals. The CCDF and the MGF of
the end-to-end SNR γeq are derived and used to obtain
accurate closed-form approximations the outage probability,
the average symbol error rate (SER), and the ergodic capacity.

3.1. Statistical Characterization of the End-to-End SNR. An
accurate closed-form approximation for the CCDF of the
end-to-end SNR in (8) can be derived as (Appendix A)

Fγeq (x)

≈ 1
Δ(ΨD)

Nd∑

j=1

(−1)Nd+ jλNd−1
j ΔNd , j(A(ΨD))

× e−x/γ2λj

⎛

⎜
⎜
⎝1−

L∑

p=1

L∑

q=1

wpwq

×
Nr∏

k=1

⎡

⎢
⎢
⎣1−Q

⎛

⎜
⎜
⎝

√
2ρktq
1− ρk

,

√
√
√
√
√

2x
(

x + γ2λj yp + 1
)

γ1γ2λj
(
1− ρk

)
yp

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠,

(11)

where λ1 > · · · > λNd are the eigenvalues of ΨD, Δ(ΨD) is the
determinant of the Vandermonde matrix of the eigenvalues
of ΨD, and ΔNd , j(M) is the determinant of the matrix
M with Ndth row and jth column removed. The (i, j)th
element of A(M) is given by A(M)i, j = vi−1

j where v

denotes the eigenvalues of M. Further, {wp,wq}Lp=1,q=1 and

{yp, tq}Lp=1,q=1 are the weights and the nodes of the Gauss-
Laguerre quadrature rule, respectively. The nodes (yp, tq) and
weights (wp,wq) can be efficiently computed by using the
approach proposed in [33]. Moreover, L is the number of
terms used for the Gauss-Laguerre quadrature rule.

The MGF of the end-to-end SNR is a useful statistic
which can be used to analyze a wide range of performance
metrics. The MGF of γeq can accurately be approximated as
follows (Appendix A):

Mγeq (s) ≈ 1− 1
Δ(ΨD)

Nd∑

j=1

(−1)Nd+ jλNd
j ΔNd , j(A(ΨD))

× s

λjs + 1/γ2

⎛

⎝1−
L∑

p=1

L∑

q=1

L∑

r=1

wpwqwr

×
Nr∏

k=1

[

1−Q
(√

αk,r ,
√

βk,p,q

)]
⎞

⎠,

(12)

where αk,r = 2ρktr/(1 − ρk) and βk,p,q = 2zq(γ2λjzq + (1 +
γ2λj yp)(1 + γ2λjs))/γ1(1 + γ2λjs)

2(1− ρk)yp.

3.2. Outage Probability. The outage probability is the proba-
bility that the instantaneous SNR γeq falls below a predefined
SNR threshold γth. Thus, the outage probability Pout can
readily be obtained by using (11) as follows:

Pout = Pr
(

γeq ≤ γth

)

= 1− Fγeq

(
γth

)
. (13)

3.3. Average Symbol Error Rate. The average SER is an
important performance metric of wireless networks. The
conditional error probability (CEP) of the coherent binary
frequency-shift keying (C-BFSK) and M-ary pulse amplitude

modulation (PAM) is given as Pe | γ = aQ(
√

bγ) [32], where
a and b are constants dependent on the modulation scheme.
For example, the cases (a = 1, b = 2) and (a = 1, b = 1)
yield the exact bit error rate of the coherent binary phase-
shift keying (BPSK) and C-BFSK, respectively. Further, the
SER of M-ary PAM is given by (a = 2(M − 1)/M) and
(b = 6 log2M/M2 − 1) [32]. An accurate closed form average
SER approximation can be derived by integrating Pe | γ over
the PDF of the SNR γeq as follows (Appendix B):

Pe ≈ a

2
− a

2Δ(ΨD)

√

b

2

Nd∑

j=1

(−1)Nd+ jλNd−1
j ΔNd , j(A(ΨD))

×
√

2
b + 2/γ2λj

⎛

⎝1− 1√
π

L∑

p=1

L∑

q=1

L∑

r=1

wpwqwrz
−1/2
q

×
Nr∏

k=1

[

1−Q
(√

αk,r ,
√

ζk,p,q

)]
⎞

⎠,

(14)

where αk,r = 2ρktr/(1 − ρk) and ζk,p,q = 4zq(2zq + (1 +
γ2λj yp)(2 + bγ2λj))/γ1(2 + bγ2λj)

2(1− ρk)yp.
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3.4. Ergodic Capacity. The channel capacity is defined as
the maximum data rate at which information can be
transmitted across a noisy channel with arbitrary reliability.
The ergodic capacity Cγeq is defined as the expected value of
the instantaneous maximum mutual information I between
S and D. For a dual-hop cooperative relay system operating
over two timeslots per burst, I is given by I = (1/2)log2(1 +
γeq) [1]. Then, the ergodic capacity can be expressed asCγeq =
(1/2)E{log2(1 + γeq)} = ∫∞

0 (Fγeq (x)/2loge(2)(1 + x))dx. By
substituting (A.4) into Cγeq and applying the Gauss-Laguerre
quadrature rule, an approximation for Cγeq in closed form is
obtained as follows:

Cγeq ≈
1

2loge(2)Δ(ΨD)

Nd∑

j=1

(−1)Nd+ jλNd−1
j ΔNd , j(A(ΨD))

×
⎛

⎝−e1/γ2λj Ei

(

− 1
γ2λj

)

−
L∑

p=1

L∑

q=1

L∑

r=1

wpwqwr

×
(

zq +
1

γ2λj

)−1 Nr∏

k=1

[

1−Q
(√

αk,r ,
√
ηk,p,q

)]
⎞

⎠,

(15)

where αk,r = 2ρktr/(1 − ρk) and ηk,p,q = 2zq(γ2λj(yp + tr) +
1)/γ1(1− ρk)yp.

3.5. Special Cases. In this section, two special cases of our
proposed system model are analyzed.

3.5.1. Two Receive Antennas at the Relay (Nr = 2). Consider
the case where only two receive antennas are at the relay.
This case may arise in practise due to the space limitations
at the relay or due to the cost factor. In this section, the lower
bounds for the outage probability and the average SER are
derived in closed form by using the upper bound of the SNR
γub

eq in (10).
The CCDF of γub

eq can be written as [34]

Fγub
eq

(x) = Fγ1 (x)Fγ2 (x). (16)

When Nr = 2, the CCDF of SDC in the equally correlated
Rayleigh fading channels given in (A.2) reduces to the well-
known result [35, 36]

Fγ1 (x) = 2e−x/γ1Q

(√
2x

γ1

(
1− ρ2

) , ρ

√
2x

γ1

(
1− ρ2

)

)

− e−2x/γ1(1−ρ2)I0

(
2ρx

γ1

(
1− ρ2

)

)

.

(17)

The CCDF of γ2 can readily be obtained by using (A.3) and
Fγ2 = 1− ∫ x

0 fγ1 (t)dt as follows:

Fγ2 (x) =
Nd∑

j=1

(−1) j+Nd

Δ(ΨD)
λNd−1
j ΔNd , j(A(ΨD))e−x/γ2λj . (18)

Then, the closed-form expression for the CCDF of γub
eq can be

obtained by substituting (17) and (18) into (16) as follows:

Fγub
eq

(x) = 1
Δ(ΨD)

Nd∑

j=1

(−1) j+NdλNd−1
j ΔNd , j(A(ΨD))

×
(

2e−μxQ

(√
2x

γ1

(
1− ρ2

) , ρ

√
2x

γ1

(
1− ρ2

)

)

− e−νxI0

(
2ρx

γ1

(
1− ρ2

)

))

,

(19)

where μ = (γ1 + γ2λj)/γ1γ2λj and ν = (γ1(1 − ρ2) + 2γ2λj)/
γ1γ2λj(1− ρ2).

The MGF of γub
eq can be derived in closed-form by

substituting (19) into (A.5) as follows:

Mγub
eq

(s) = 1− 1
Δ(ΨD)

Nd∑

j=1

(−1) j+NdλNd−1
j ΔNd , j(A(ΨD))

× s

⎛

⎝
1

s + μ

⎛

⎝1 +

(
s + μ + 1/γ

)

√(
s + μ + ε

)2 − σ2

⎞

⎠

− 1
√

(s + ν)2 − σ2

⎞

⎠,

(20)

where σ = 2ρ/γ1(1− ρ2) and ε = (1 + ρ2)/γ1(1− ρ2).
With the aid of (19), a lower bound of the outage

probability can readily be computed as follows: Plb
out = 1 −

Fγub
eq

(γth).
Next, we present an accurate and computationally effi-

cient closed-form approximation for computing a lower
bound for the average SER. The CEP of the coherent binary
frequency-shift keying (C-BFSK) and M-ary PAM can be

expressed in an alternative form [37] as Pe | γ = aQ(
√

bγ) =
(a/π)

√
(b/2)

∫∞
0 (exp(−γ(s2 +b/2))/(s2 +b/2))ds. The average

error rate can be obtained in the following form by averaging
the alternative CEP expression over the PDF of γub

eq and
manipulating it with the variable transformation s2 + b/2 =
b/(x + 1) [37]:

P
lb
e =

a

π

√

b

2

∫∞

0

Mγub
eq

(
s2 + b/2

)

s2 + b/2
ds

= a

2π

∫ 1

−1

Mγub
eq

(
b/
(
γ + 1

))

√

1− γ2
dγ.

(21)

We use an accurate and computationally efficient method in
[37] which uses the Gauss-Chebyshev quadrature rule [23]
to obtain a very compact closed-form expression for (21):

P
lb
e =

a

2Np

Np∑

n=1

Mγub
eq

(
b

2
sec2(θn)

)

+ RNp , (22)

where Np is a positive integer, θn = (2n−1)π/4Np, and RNp is
the remainder term. RNp becomes negligible as Np increases
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[37]. Thus, the lower bound of average SER can be obtained
by substituting (20) into (22).

Moreover, for the CEP of the noncoherent binary
frequency-shift keying (NC-BFSK) and differential BPSK (D-
BPSK) is given in the form [32] Pe | γ = ae−bγ, with
(a = 0.5, b = 1) and (a = 0.5, b = 0.5) for D-BPSK
and NC-BFSK, respectively. Now, the average SER of NC-
BFSK and D-BPSK can be derived by substituting (19) into

P
lb
e = a− ab

∫∞
0 Fγub

eq
(x)e−bxdx as follows:

P
lb
e = a− ab

Δ(ΨD)

Nd∑

j=1

(−1) j+NdλNd−1
j ΔNd , j(A(ΨD))

×
⎛

⎝
1 + 
/ρ

b + μ
− 1

√

(b + ν)2 − σ2

⎞

⎠,

(23)

where 
 = b+(γ1+2γ2λj)/γ1γ2λj and ρ =
√

(b + ε + μ)2 − σ2.

3.5.2. Uncorrelated Antennas at the Relay (ρ = 0). When the
antenna spacing at the relay is sufficiently large, the S → R
channels experience independent Rayleigh fading. In this
case, the CCDF of γeq can be obtained by substituting ρ = 0
in (A.4) and by using the identity of the Marcum-Q function,
Q(0, x) = e−x

2/2, as follows (Appendix D):

Fγeq (x) = 2
Δ(ΨD)

Nd∑

j=1

Nr∑

l=1

(
Nr

l

)

(−1) j+l+Nd+1λNd−1
j

× ΔNd, j(A(ΨD))

√
√
√x(x + 1)l

γ1γ2λj
e−x((γ1+γ2λj l)/γ1γ2λj )

×K1

(

2

√
√
√x(x + 1)l

γ1γ2λj

)

.

(24)

Let us consider an ideal CSI-assisted relay. For this case, the
SNR γeq,ideal is given in (9), and the CCDF of γeq,ideal can be
easily obtained with the aid of (24) as follows:

Fγeq,ideal (x) = 2
Δ(ΨD)

Nd∑

j=1

Nr∑

l=1

(
Nr

l

)

(−1) j+l+Nd+1λNd−1
j

× ΔNd, j(A(ΨD))

√
√
√ l

γ1γ2λj
xe−x((γ1+γ2λj l)/γ1γ2λj )

×K1

(

2x

√
√
√ l

γ1γ2λj

)

.

(25)

The PDF of γeq and γeq,ideal can easily be derived by
differentiating (24) and (25) with respect to x and by using
x(∂Kν(x)/∂x) + νKν(x) + xKν−1(x) = 0 [38, 8.486.12].
However, for the sake of brevity, the PDF results are omitted.

A closed-form expression for the MGF of γeq,ideal can
be derived by substituting (A.4) into (A.5) as shown in
Appendix E:

Mγeq,ideal (s) = 1− 64
3γ1γ2Δ(ΨD)

Nd∑

j=1

Nr∑

l=1

(
Nr

l

)

l(−1) j+l+Nd+1

× λNd−2
j ΔNd, j(A(ΨD))

× s 2F1
(
3, 3/2; 5/2;

(
s + ψ − ϕ

)
/
(
s + ψ + ϕ

))

(
s + ψ + ϕ

)3 ,

(26)

where ψ = (γ1 + γ2λj l)/γ1γ2λj and ϕ = 2
√

l/γ1γ2λj .
By substituting (24) into (B.1), a closed-form expression

for the average SER can be derived as follows (Appendix F):

Pe,ideal = a

2
− 3aπ

γ1γ2Δ(ΨD)

√

b

2

Nd∑

j=1

Nr∑

l=1

(
Nr

l

)

l(−1) j+l+Nd+1

× λNd−2
j ΔNd, j(A(ΨD))

× 2F1
(
5/2, 3/2; 2;

(
b/2+ψ−ϕ)/(b/2+ψ+ϕ

))

(
s + ψ + ϕ

)5/2 .

(27)

A generalized closed-form expression for the moments of
the SNR can be obtained by substituting (25) into γneq,ideal =∫∞

0 nxn−1Fγeq,ideal (x)dx and evaluating the resulting integral as
follows (Appendix G):

γneq,ideal =
8n
√
π

γ1γ2Δ(ΨD)

Nd∑

j=1

Nr∑

l=1

(
Nr

l

)

l(−1) j+l+Nd+1λNd−2
j

× ΔNd, j(A(ΨD))

× 2F1
(
n + 2, 3/2;n + 3/2;

(
ψ − ϕ

)
/
(
ψ + ϕ

))

(
ψ + ϕ

)n+2 .

(28)

The SNR moments can be used to study the higher-
order metrics, such as the skewness and the kurtosis that
characterize the distribution of γeq,ideal. The skewness (S),
which is a measure of the symmetry of the distribution,

can be obtained as S = γ3
eq,ideal/(γ

2
eq,ideal)

3/2
. The kurtosis

(K), which quantifies the degree of peakedness of the

distribution, is given by K = γ4
eq,ideal/(γ

2
eq,ideal)

2
. On the other

hand, the amount of fading (AoF) is a performance metric
which quantifies the severity of the fading that the signal
experienced from the source to the destination. The AoF is

given by AoF = γ2
eq,ideal/(γeq,ideal)

2 − 1.

3.6. High SNR Analysis. This section presents the high SNR
analyses for the proposed system model when the antennas
at the relay are uncorrelated.
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3.6.1. The Outage Probability at High SNR. The behavior of
the cumulative distribution function (CDF) of γeq for large
γ is equivalent to the behavior of Fγeq (y) around y = 0 [39].
By substituting γ1 = γ2 = γ and x = γy into (25) and by
expressing the exponential function and the Bessel function
in terms of their Taylor series expansions around y = 0 [38,
equations (1.211) and (8.446)], one obtains the expression
with the lowest powers of y. Now, by collecting the first-order
terms, the high SNR approximation (i.e., when γ = γ1 =
γ2 → ∞) for the CDF of the end-to-end SNR (24) can be
derived as follows:

F∞γeq
(x) ≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ω1

(
x

γ

)Nr

+ o

(
x

γ

)Nr+1

, Nr < Nd,

Ω2

(
x

γ

)Nd

+ o

(
x

γ

)Nd+1

, Nr > Nd,

Ω3

(
x

γ

)N

+ o

(
x

γ

)N+1

, N = Nr = Nd,

(29)

where

Ω1 = 2
Δ(ΨD)(Nr)!

Nd∑

j=1

Nr∑

l=1

(
Nr

l

)

(−1)Nr+Nd+ j+l+2

× λNd−3/2
j lNr+1/2ΔNd , j(A(ΨD)),

Ω2 = 1

(Nd)!
∏Nd

i=1λi
,

Ω3 = 1
N !

⎡

⎢
⎣

⎛

⎝
N∏

i=1

λi

⎞

⎠

−1

+
2

Δ(ΨD)(N)!

N∑

j=1

N∑

l=1

(
N
l

)

× (−1)N+N+ j+l+2λN−3/2
j lN+1/2ΔN , j(A(ΨD))

⎤

⎥
⎦.

(30)

At high SNR, the outage probability can easily be
obtained by substituting (29) into Pout = F∞γeq

(γth).

3.6.2. The Symbol Error Rate at High SNR. The average SER
at high SNR can be derived by substituting (29) into Pe =
(a/2)

√
(b/2π)

∫∞
0 x−1/2e−bx/2F∞γeq

(x)dx as follows:

P∞e ≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ω1a2Nr−1Γ(Nr + 1/2)
√
π
(
bγ

)Nr
+ o

(

γ−(Nr+1)
)

, Nr < Nd,

Ω2a2Nd−1Γ(Nd + 1/2)
√
π
(
bγ

)Nd
+ o

(

γ−(Nd+1)
)

, Nr > Nd,

Ω3a2N−1Γ(N + 1/2)
√
π
(
bγ

)N +o
(

γ−(N+1)
)

, N=Nr=Nd.

(31)

In the high SNR regime, the average SER can be
represented by P∞e ≈ [Gcγ]−Gd , where Gd and Gc are referred

to as the diversity gain and coding gain, respectively [39]. By
using (31), Gd and Gc are given by

Gd = min(Nr ,Nd), (32)

Gc =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
b

(
Ω1a2Nr−1Γ(Nr + 1/2)√

π

)−1/Nr

, Nr < Nd,

1
b

(
Ω2a2Nd−1Γ(Nd + 1/2)√

π

)−1/Nd

, Nr > Nd,

1
b

(
Ω3a2N−1Γ(N + 1/2)√

π

)−1/N

, N = Nr = Nd,

(33)

respectively.

Remark 1. The diversity order of the proposed system is
given by Gd = min(Nr ,Nd) (32). If a single-antenna relay is
used, then Gd = min(1,Nd) = 1 even though the destination
is equipped with multiple antennas. Thus, our analysis shows
that in order to retain MIMO diversity benefits for dual-hop
relay networks with single-antenna sources, the relay should
be equipped with multiple antennas.

Remark 2. In our proposed system model, the relay uses only
one transmit antenna for forwarding the amplified signal
to the destination. Since the relay is already equipped with
multiple antennas, transmit antenna selection (TAS) can also
be employed at the relay. If the transmit antenna, which
maximizes the end-to-end SNR, is used at the relay, then the
diversity order of the system can be written by following (32)
as

GTAS
d = min(Nr ,NrNd) = Nr. (34)

Thus, the system with TAS guarantees a diversity order of Nr

whereas the system without TAS provides a diversity order of
min(Nr ,Nd). Hence TAS improves the diversity benefits only
when Nr > Nd. However, when Nr ≤ Nd, the system with
TAS achieves coding gains despite no diversity advantages.

4. Numerical Results

This section presents the numerical and the simulation
results for the proposed dual-hop AF MIMO relaying with
antenna correlation. Monte Carlo simulation results are
provided to verify the accuracy of the analytical derivations
presented in Section 3. In computing the Gauss-Laguerre
approximation for the outage probability (13), average bit
error rate (BER) (14), and ergodic capacity (15), we choose
L to be 25 for 1 ≤ min(Nr ,Nd) ≤ 3 and L to be 30 for
min(Nr ,Nd) > 3.

4.1. Comparison of Semiarbitrary and Arbitrary Correlation
Models for the S → R Channel. In Figure 2, the average BER
of BPSK for the proposed dual-hop MIMO relay network
is plotted by taking into account two correlation models;
(i) semiarbitrary correlation (ii) arbitrary correlation for
the S → R channels. For both these cases, the R → D
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channel is arbitrary correlated. The average BER curves for
the former case are plotted by using our closed-form BER
approximation (14), whereas the Monte Carlo simulation
results are used for the latter case. Figure 2 reveals clearly
that the semiarbitrary correlation model agrees well with
the arbitrary correlation model for different antenna setups.
Thus, our analytical results may well be used to obtain
design insights for dual-hop MIMO AF relay networks over
arbitrary correlated fading. Figure 2 also verifies that the
maximum diversity order is given by the minimum number
of antenna at the relay and destination; Gd = min(Nr ,Nd).
This fact can also be proved by applying the min-max cut
from the S → R and from R → D [40]. The BER curve
corresponding to Nr = 1, Nd = 1 represents the dual-
hop relaying with single-antenna terminals. The proposed
dual-hop relay network with multiple-antenna relay and
destination provides a substantial BER performance gains
compared to single-antenna relaying. Moreover, the exact
agreement between the analytical curves and the Monte-
Carlo simulation points verifies the accuracy of our analysis.

4.2. Impact of Spatial Correlation on the Average BER. In
Figure 3, the impact of antenna correlation at both the
relay and destination on the average BER of the BPSK is
depicted. Three different correlation effects are obtained
by changing ld, ρ, and σ2. Since ld is the relative antenna
spacing between the adjacent antennas in the linear array
measured in the number of wavelengths, and σ2

d is the
angular spread at the destination, smaller values of ld and
σ2
d result in higher antenna correlation at the destination.

Moreover, the amount of antenna correlation at the relay can
also be changed by changing ρ, where ρ is a 1 × Nr vector
containing the elements ρp and ρq of S → R semiarbitrary
correlation matrix (1). Thus, three correlation scenarios are
obtained as (a) high correlation, (b) medium correlation,
and (c) low correlation. Figure 3 reveals clearly that the
higher correlation effect at both the relay and destination
degrades the BER performance significantly.

4.3. Impact of Spatial Correlation on the Outage Probability.
In Figure 4, the outage probability is plotted against the
correlation coefficient of the S → R channels for the
low, medium, and high spatial correlation scenarios in
the R → D channels. Here, the S → R channels
undergo equally correlated fading. The outage probability
performance significantly degrades as the correlation of
antennas at the relay increases. Moreover, this figure also
shows that the correlation of the antennas at the destination
has a considerable impact on the outage probability.

4.4. Impact of Spatial Correlation on the Ergodic Capacity.
Figure 5 shows the impact of spatial correlation of antenna
elements at relay and the destination on the ergodic capacity
for semiarbitrary correlated S → R and arbitrary correlated
R → D channels. Lower antenna spacing (i.e., higher
spatial correlation) results in substantial losses in capacity.
Figure 5 also reveals that the smaller angular spreads (i.e.,
higher spatial correlation) degrade the capacity benefits. A
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Figure 2: Average BER of BPSK for dual-hop MIMO relaying with
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higher number of antennas at both the relay and destination
increase the capacity benefits of dual-hop systems.

4.5. Sensitivity to the Antenna Spacing and Angular Spread.
Figure 6 plots the average BER of BPSK against the antenna
spacing for three different angular spreads (σ2

d = π/6,
σ2
d = π/12, and σ2

d = π/24). Here, the S → R channel
is equally correlated whereas the R → D channel is
arbitrary correlated. Two different antenna configurations
at the relay and destination are considered. Lower antenna
spacings and angular spreads at the destination degrade the
BER performance considerably. The BER curves seem to
be approaching a fixed value once the antenna spacing is
increased beyond 2.5 λ, regardless of the angular spread.

4.6. Numerical Results for the Special Cases. This section
presents the numerical results for the special cases: (1) dual-
antenna relay and (2) uncorrelated antennas at the relay.

4.6.1. Dual-Antenna Relay. In Figures 7 and 8, we analyze
the tightness of the lower bounds developed for the average
BER and the outage probability for the special case of dual-
antenna relay. Both the lower bounds are tighter to the
exact curves at moderate-to-high SNR regime. Thus, these
bounds may serve as benchmarks for performance analysis of
practical systems with practical CSI-assisted relays. In com-
puting the lower bound for average BER by using the MGF
approach, we choose Np to be 10 for the Gauss-Chebyshev
approximation in (22). The exact agreement between the
BER curves evaluated using (22) and Monte Carlo simulation
results validates the computational accuracy of our analysis.

Figures 7 and 8 also reveal that the average BER and the
outage probability performance gap between the curves cor-
responding to high correlation and medium correlation are
larger than those of curves corresponding to low correlation
and medium correlation. The reason for this performance
gap difference is because when ld > 0.38 [32], the effect of
antenna correlation at the destination becomes negligible,
and the performance degradation is resulted solely by the
antenna correlation at the relay. However, when ρ = 0.9,
ld = 0.1, the performance is degraded by antenna correlation
at the relay and destination.

4.6.2. Uncorrelated Antennas at the Relay. In Figure 9, the
outage probability of dual-hop MIMO relaying with uncor-
related antennas at the relay and correlated antennas at the
destination is plotted against the destination angular spread.
It shows that the outage probability degrades considerably
due to the spatial correlation of antennas at the destination.
Higher angular spreads degrade the outage probability
performance significantly. Lowering the antenna spacing at
the destination adversely impacts the outage probability.

Figure 10 shows the average BER performance of dual-
hop MIMO relaying with uncorrelated antennas at the relay
and correlated antennas at the destination. Figure 10 also
shows the high SNR analysis of the average BER for different
antenna configurations at the relay and destination. The
analytical curves obtained from (27) agree exactly with
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the Monte Carlo simulation points. The average BER with
ideal CSI-assisted relays serves as tight lower bounds or a
benchmark for the average BER with practical CSI-assisted
relays.

4.7. Comparison of BER of BPSK for Several Dual-Hop MIMO
AF Relay System Models. Figure 11 compares the average
BER of BPSK for several dual-hop MIMO AF relaying
models over arbitrary correlated fading. These average BER
curves are plotted by using Monte-Carlo simulation results.
This figure shows that dual-hop relay networks, which use
beamforming or TAS at S → R and R → D channels with
MIMO channels (i.e., multiple antennas at each terminal)
outperform the networks with SIMO channels (i.e., single-
antenna source and the relay uses only a single transmit
antenna out of Nr in the second timeslot). Further, it shows
that although the TAS is performed at the relay for the
R → D channel, no diversity gains but a coding gain can
be achieved over the use of arbitrary single transmit antenna
when Nr = Nd. For dual-hop relay models, which use SDC
with SIMO channels for S → R and R → D, perform
relatively well with those which use MRC. Although the
proposed model (see BER curve corresponding to [S →
R (SIMO): SDC at R, R → D (SIMO): MRC at D] in
Figure 11) is suboptimal, it achieves most of the MIMO
benefits while using only one transmit/receive chain at
the relay.
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Figure 11: Average BER of several dual-hop MIMO AF relay system
models over arbitrary correlated Rayleigh fading channels. γ1 = γ2,
θr = θd = π/4, lr = ld = 0.6, and σ2

r = σ2
d = π/6.

5. Conclusion

A suboptimal yet simple and realistic dual-hop AF MIMO
relay network model was developed. The impact of spatial
correlation on the performance of the proposed system
model over Rayleigh fading was investigated by using a
semiarbitrary and arbitrary correlation models for the S →
R and R → D channels, respectively. Accurate closed-form
expressions for the CCDF, the MGF, the outage probability,
the average symbol error rate, and the ergodic capacity were
derived. The performance of two special cases was studied:
(1) dual-antenna relay and multiple-antenna destination,
and (2) uncorrelated antennas at the relay and correlated
antennas at the destination. The high SNR approximations
for the outage probability and the average were derived to
obtain valuable system design insights such as the diversity
order and coding gain. Numerical and Monte Carlo simu-
lation results were presented to investigate the detrimental
effect of the antenna correlation on the system performance
and to validate our analyses. Our results show that in
order to retain MIMO benefits for dual-hop relay networks
that consist of single-antenna sources and multiple-antenna
destinations, MIMO-enabled relays should be used. Our
results may be useful in analyzing practical system scenarios
that involve a single-antenna portable device communicating
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with a multiple-antenna base station via an infrastructure-
based fixed relay equipped with multiple antennas.

Appendices

This section provides sketches of the proofs of some of the
results presented in Section 3.

A. Statistical Characterization of
the End-to-End SNR

The closed-form approximation for the CCDF of the end-
to-end SNR in (8) can be obtained by using the following
integral expression [13]:

Fγeq (x) =
∫∞

0
Fγ1

(
(z + x + 1)x

z

)

fγ2 (z + x)dz, (A.1)

where Fγ1 (x) and fγ2 (x) are the CCDF and probability
density function (PDF) of γ1 and γ2, respectively. The CCDF
of γ1 can be written as in [27, 36]

Fγ1 (x)=1−
∫∞

0

Nr∏

k=1

[

1−Q
(√

2ρkt
1−ρk

,

√
2y

γ1

(
1− ρk

)

)]

e−tdt.

(A.2)

The PDF of γ2 can be written as in [10]

fγ2 (x) =
Nd∑

j=1

(−1) j+Nd

γ2Δ(ΨD)
λNd−2
j ΔNd , j(A(ΨD))e−x/γ2λj , (A.3)

where λj , ΨD, Δ(ΨD), ΔNd , j(M), and A(M) are defined in
(11). By substituting (A.2) and (A.3) into (A.1), we obtain an
integral expression for the CCDF of the SNR as follows:

Fγeq (x)

= 1
Δ(ΨD)

Nd∑

j=1

(−1)Nd+ jλNd−1
j ΔNd , j(A(ΨD))e−x/γ2λj

×
⎛

⎝1−
∫∫∞

0

Nr∏

k=1

[
1−Q

(
Υ1(t),Υ2

(
t, y

))]
e−(y+t)dy dt

⎞

⎠,

(A.4)

where Υ1(t) =
√

2ρkt/(1− ρk) and Υ2(t, y) =
√

2x(x + γ2λj y + 1)/γ1γ2λj(1− ρk)y. No closed-form
solution for the double-integral (A.4) appears to be available.
However, it is in the form of

∫∫∞
0 f (x, y)e−xe−ydx dy, and,

thus, it can be efficiently and accurately approximated by
using the Gauss-Laguerre quadrature rule [23] in closed
form as in (11).

The MGF of γeq can be derived as follows:

Mγeq (s) =
∫∞

0
fγeq (x)e−sxdx = 1−

∫∞

0
sFγeq (x)e−sxdx.

(A.5)

The second equality of (A.5) is obtained by integrating
by parts and considering that fγeq (x) = 0,∀x ≤ 0. By
substituting (A.4) into (A.5), the MGF of γeq is obtained as
follows:

Mγeq (s)

= 1−
Nd∑

j=1

(−1)Nd+ j

Δ(ΨD)
λNd
j ΔNd , j(A(ΨD))

s

λjs + 1/γ2

×
⎛

⎝1−
∫∫∫∞

0

Nr∏

k=1

[

1−Q
(√

αk,
√

βk
)]

e−(y+z+t)dy dz dt

⎞

⎠,

(A.6)

where αk = 2ρkt/(1−ρk) and βk = 2z(γ2λjz+(1+γ2λj y)(1+
γ2λjs))/γ1(1 + γ2λjs)

2(1 − ρk)y. Again, one can accurately
approximate Mγeq (s) in (A.6) by using the Gauss-Laguerre
quadrature rule as in (12).

B. Average Symbol Error Rate

The average SER has the integral representation [31]

Pe = Eγeq

{
Pe | γ

} = a

2
− a

2

√

b

2π

∫∞

0
x−1/2e−bx/2Fγeq (x)dx.

(B.1)

By substituting (A.4) into (B.1), the average SER is obtained
as follows:

Pe = a

2
− a

2Δ(ΨD)

√

b

2

Nd∑

j=1

(−1)Nd+ jλNd−1
j ΔNd , j(A(ΨD))

×
√

2
b + 2/γ2λj

⎛

⎝1− 1√
π

∫∫∫∞

0
z−1/2

×
Nr∏

k=1

[

1−Q
(√

αk,
√

ζk

)]

e−(y+z+t)dydzdt

⎞

⎠,

(B.2)

where αk = 2ρkt/(1−ρk) and ζk = 4z(2γ2λjz+(1+γ2λj y)(2+
bγ2λj))/γ1(2 + bγ2λj)

2(1 − ρk)y. Since the triple integral
(B.2) does not appear amenable to a closed-form solution,
we again use the Gauss-Laguerre quadrature rule to obtain
an accurate average SER approximation as in (14).

C. MGF of the Upper Bounded SNRwith
Two Receive Antennas at the Relay

By substituting (19) into (A.5), one gets

Mγub
eq

(s) = 1− s

Δ(ΨD)

Nd∑

j=1

2(−1) j+NdλNd−1
j

× ΔNd, j(A(ΨD))(I1 + I2),

(C.1)
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where

I1=
∫∞

0
2e−x((γ1+γ2λj )/γ1γ2λj+s)Q

(√
2x

γ1

(
1−ρ2

) , ρ

√
2x

γ1

(
1−ρ2

)

)

dx

I2 =
∫∞

0
e−x((γ1(1−ρ2)+2γ2λj )/γ1γ2λj (1−ρ2)+s)I0

(
2ρx

γ1

(
1− ρ2

)

)

dx.

(C.2)

The integral I1 can be solved by substituting x = y2 and by
using [41, equations (55) and (56)] as I1 = (1/(s+μ))(1+(s+

μ + 1/γ)/
√

(s + μ + ε)2 − σ2), where μ = (γ1 + γ2λj)/γ1γ2λj ,
ε = (1 + ρ2)/γ1(1 − ρ2), and σ = 2ρ/γ1(1 − ρ2). The integral

I2 can be solved by using [42, 4.16.6] as I2 = 1/
√

(s + ν)2 − σ2,
where ν = (γ1(1− ρ2) + 2γ2λj)/γ1γ2λj(1− ρ2). Substitution
of I1 and I2 into (C.1) yields the desired result given in (20).

D. CCDF of SNRwith Uncorrelated
Antennas at the Relay

When the S → R channel undergoes independent
Rayleigh fading, one can obtain the CCDF of
γeq by letting ρ = 0 in (A.4) as Fγeq (x) =
(1/Δ(ΨD))

∑Nd
j=1(−1)Nd+ jλNd−1

j ΔNd , j(A(ΨD))e−x/γ2λj (1 − I3),

where I3 = ∫∫∞
0 [1−Q(0,

√

2x(x + γ2λj y + 1)/γ1γ2λj y)]
Nr

× e−(y+t)dy dt. By using the fact that Q(0, b) = e−b/2 [41,
equation (2)] and binomial expansion, I3 can be simplified
to the following form:

I3 = 1 +
Nr∑

l=1

(
Nr

l

)

(−1)le−xl/γ1

∫∞

0
e−(xl(x+1)/γ1γ2λj y+y)dy.

(D.1)

By evaluating the integral in (D.1) by using [25, 3.471.9], one
can obtain the result given in (25).

E. MGF of the SNR with Uncorrelated Antennas
at an Ideal CSI-Assisted Relay

By substituting the CCDF of the SNR given in (25) into (A.5),
one obtains

Mγeq,ideal (s) = 1− 2s
Δ(ΨD)

Nd∑

j=1

Nr∑

l=1

(
Nr

l

)

(−1)Nd+ j+l+1λNd−1
j

× ΔNd , j(A(ΨD))

√
√
√ l

γ1γ2λj
I4,

(E.1)

where I4 =
∫∞

0 xe−((γ1+γ2λj l)/γ1γ2λj+s)K1(2x
√

l/γ1γ2λj)dx. The
integral I4 can be evaluated by using [25, 6.621.3] to yield the
desired result given in (26).

F. Average SER with Uncorrelated Antennas at
an Ideal CSI-Assisted Relay

By substituting (25) into (B.1), one obtains the following:

Pe = a

2
− a

Δ(ΨD)

√

b

2π

Nd∑

j=1

Nr∑

l=1

(−1)Nd+ j+l+1λNd−1
j

× ΔNd , j(A(ΨD))

√
√
√ l

γ1γ2λj
I5,

(F.1)

where I5=
∫∞

0 x−1/2e−x(b/2+(γ1+γ2λj l)/γ1γ2λj )K1(2x
√

l/γ1γ2λj)dx.
We solve I5 by using [25, 6.621.3], and substituting into (F.1),
we obtain the desired result given in (27).

G.Moments of SNR with Uncorrelated
Antennas at an Ideal CSI-Assisted Relay

By substituting (25) into γneq,ideal =
∫∞

0 nxn−1Fγeq,ideal (x)dx, one
obtains

γneq,ideal =
2n

Δ(ΨD)

Nd∑

j=1

Nr∑

l=1

(
Nr

l

)

(−1) j+l+Nd+1λNd−1
j

× ΔNd, j(A(ΨD))

√
√
√ l

γ1γ2λj
I6,

(G.1)

where I6 =
∫∞

0 xne−x((γ1+γ2λj l)/γ1γ2λj )K1(2x
√

l/γ1γ2λj)dx. The
desired result in (28) can be obtained by solving I6 by using
[25, 6.621.3].
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[8] Ö. Oyman, J. N. Laneman, and S. Sandhu, “Multihop relaying
for broadband wireless mesh networks: from theory to
practice,” IEEE Communications Magazine, vol. 45, no. 11, pp.
116–122, 2007.

[9] Y. Fan and J. Thompson, “MIMO configurations for relay
channels: Theory and practice,” IEEE Transactions on Wireless
Communications, vol. 6, no. 5, pp. 1774–1786, 2007.

[10] R. H. Louie, Y. Li, H. A. Suraweera, and B. Vucetic,
“Performance analysis of beamforming in two hop amplify
and forward relay networks with antenna correlation,” IEEE
Transactions on Wireless Communications, vol. 8, no. 6, pp.
3132–3141, 2009.

[11] D. B. Da Costa and S. Aissa, “Cooperative dual-hop relaying
systems with beamforming over nakagami-m fading chan-
nels,” IEEE Transactions on Wireless Communications, vol. 8,
no. 8, pp. 3950–3954, 2009.

[12] S. Chen, W. Wang, X. Zhang, and D. Zhao, “Performance
of amplify-and-forward MIMO relay channels with transmit
antenna selection and maximal-ratio combining,” in Pro-
ceedings of IEEE Wireless Communications and Networking
Conference (WCNC ’09), April 2009.

[13] R. H. Y. Louie, Y. Li, and B. Vucetic, “Performance analysis
of beamforming in two hop amplify and forward relay
networks,” in Proceedings of IEEE International Conference on
Communications (ICC ’08), pp. 4311–4315, May 2008.

[14] H. Muhaidat and M. Uysal, “Cooperative diversity with
multiple-antenna nodes in fading relay channels,” IEEE Trans-
actions on Wireless Communications, vol. 7, no. 8, pp. 3036–
3046, 2008.

[15] A. Talebi and W. A. Krzymień, “Multiple-antenna multiple-
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