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The problem of choosing the best forwarders in Delay-Tolerant Networks (DTNs) is crucial for minimizing the delay in packet
delivery and for keeping the amount of generated traffic under control. In this paper, we introduce sociable routing, a novel routing
strategy that selects a subset of optimal forwarders among all the nodes and relies on them for an efficient delivery. The key idea
is that of assigning to each network node a time-varying scalar parameter which captures its social behavior in terms of frequency
and types of encounters. This sociability concept is widely discussed and mathematically formalized. Simulation results of a DTN
of vehicles in urban environment, driven by real mobility traces, and employing sociable routing, is presented. Encouraging results
show that sociable routing, compared to other known protocols, achieves a good compromise in terms of delay performance and
amount of generated traffic.

1. Introduction

This paper introduces sociable routing, a novel routing
scheme for Delay-Tolerant Networks (DTNs) [1] and pro-
poses its evaluation and assessment with respect to other
existing protocols. The key idea of sociable routing is to
solve the routing problem in DTNs [2] by assigning to
each network node a time-varying scalar parameter, called
sociability indicator, depending on its social behavior, that
has to do with the frequency and type of node’s encounters.
Then, each node forwards its data packets only to the most
sociable nodes. Thus, the chances of reaching the intended
endpoint are maximized and the amount of transmissions
kept under control.

After giving a detailed formalization of the sociability
concept, we simulate packet transmissions in a DTN in an
urban context. In particular, we propose a case study where
nodes are vehicles moving according to real traffic traces
[3]. Encouraging results show that sociable routing achieves
a good compromise in terms of delay performance and
amount of generated traffic. Along with result discussion,
we also mention some issues that are still open and discuss
possible improvements.

The main contribution of this paper is the formalization
of a sociability concept and a guideline to its exploitation
for efficient forwarding in DTNs. Additionally, a framework
for its evaluation and comparison with other schemes is also
presented.

In a typical DTN, nodes are mobile and of the same type,
they have wireless communication as well as buffering capa-
bilities. However, they can communicate and exchange data
only if they are within a certain distance, commonly called
transmission range. In a standard scenario, the transmission
range is small compared to network size. For this reason,
the network is most of the time partitioned and source-to-
destination paths do not exist. Nonetheless, the appearance
of new links when old ones break due to mobility, together
with a store-and-forward paradigm, can still make packet
delivery possible.

In the DTN jargon, data packets are referred to as bundles
[1], since it is often assumed that an overlay layer, called
bundle layer, is present above the existing protocol stack for
supporting interoperability.

The problem of routing in DTNs has recently deserved
a growing attention [2, 4–7]. When no information on
nodes schedule is available, epidemic routing, which basically
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implies flooding, seems to be the only possible approach [8].
However, this reveals practically unfeasible because of the
generated traffic which grows exponentially. The opposite
approach consists of a perfect scheduling of transmissions,
which requires deterministic knowledge of nodes behavior,
as in the interplanetary paradigm [9]. In most of the cases,
either partial information on nodes contacts and mobility
patterns is available, or they possess some intelligence allow-
ing them to learn such information and adapt their routing
criteria consequently. When nodes are position-aware and
can learn and share their mobility patterns, a solution is
found in MobySpace routing [10], which uses the fact that
nodes with similar patterns are likely to meet up. Other
approaches consider the problem from a social perspective
as, for example, in [5], where the authors introduce SimBet
Routing, a strategy that exploits the notion of centrality.
In [11], a general framework for context-aware adaptive
routing in DTNs, called CAR, is proposed. CARmakes use of
Kalman filter-based prediction techniques and utility theory
in order to select the best carrier for a message. In [12],
Hui et al. introduce BUBBLE rap, a forwarding algorithm
based on social information and suitable for Pocket Switched
Networks (PSNs). The authors ground their work on the
concept of community, assuming each individual is doubly
ranked based on its popularity in both the whole community
and its local community. The ranking is based on the
notion of centrality. Such an approach surely catches and
exploits cooperation binds in people networks but is not
easily applicable, for example, to vehicular networks, where
communities are not so clearly definable.

Alternative scenarios envision the presence of additional
nodes whosemobility can be controlled in order tomaximize
the amount of deliveries. In [13], data ferries are extra nodes
whose paths are optimized based on a delay constraint. In
[14], cars act as data mules and employ a carry-and-forward
paradigm to transfer data packets to a portal. Finally, in [15],
opportunistic data delivery is studied when both traditional
routing and data mules techniques are jointly used.

Sociable routing can also be thought of as a protocol
inspired by the concept of network opportunism [16], where
resources offered by different nodes/networks are jointly
exploited according to the needs of a specific application
task: in such a vision, the sociability degree of a node is an
information offered to the community.

The rest of the paper is structured as follows. In Section 2,
the sociability concept and the core of sociable routing
are introduced and discussed in detail. The model for
the computation of sociability indicators is reported in
Section 3. Then, in Section 4, the simulator is described, the
performance metrics and results are shown and discussed.
Finally, Section 5 reports concluding remarks and ideas for
future work.

2. Sociability Concept

Our basic idea is that nodes having a high degree of
sociability (i.e., frequently encounter many different nodes)
are good candidate forwarders. Applying this simple rule to a
delay-tolerant network is quite straightforward. As first step,

one needs to observe nodes behavior and learn their habits.
Then, a synthetic scalar parameter will be assigned to each
node depending on its social behavior. Finally, routing from
a source to a destination node is performed by forwarding
bundles to a restricted set of relays which show a high degree
of sociability and, thus, are very likely to get in touch with all
possible endpoints.

One relevant assumption that we need is the periodicity
of behaviors, meaning that it is possible to make predictions
on the social conduct of a node based on what has been
observed before. Roughly speaking, we expect those nodes
that showed very high sociability over a time period of a
certain length to behave accordingly in the future for a period
of at least the same length. This is a reasonable hypothesis
in population networks [17], and we believe it still is in all
scenarios where the mobility of nodes is governed by human
behavior, as in vehicular networks, pedestrian networks, and
so forth.

In this section, we illustrate the notion of sociability in
more detail. In particular we give a mathematical characteri-
zation of it, showing how such information can be exploited
by the nodes for enhancing routing performance and how it
can be obtained.

2.1. Modeling. The way in which the social features are
modeled should be very simple, on the one hand, in order
for the nodes to produce and exchange such information in
an inexpensive manner. On the other hand, the challenge
stands in capturing as much as possible of the exploitable
information in a single parameter, that we will call sociability
indicator.

One way sociability could be quantified is by looking
at the intercontact information of each node [18, 19].
In particular, the intercontact time analysis reveals how
frequently a node meets with one another. As an example,
an indication on the average intercontact time of a node
with any other could give a rough idea of its social behavior.
However, in the latter case, one can appear very sociable
by having frequent meetings with a very restricted set of
neighbors. Unfortunately, this does not make it a good
candidate forwarder.

Moreover, an important aspect to be captured in analogy
with human relationships, is that one person who only
meets a single friend, the latter being very sociable, can itself
be considered sociable. Turning to an information network
perspective, a node being isolated most of the time with
very sporadic links to a single neighbor, may appear very
unsociable. Nonetheless, if the neighbor is very sociable and
can reach many destinations, then the former node may
also have chances to send its bundles to many destinations
through a 2-hop path. As a consequence, the presence of
sociable neighbors is an important addendum that should be
incorporated into the sociability indicator of one node.

Intuitively, it is a natural assumption that mobility
patterns of nodes are related to their social behavior. In
fact, if a node visits a great number of different locations
in a short time, it is likely to meet many others. Although
this is true to some extent, there are plenty of scenarios
where the concentration of users is not constant in space
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(e.g., the union of a city center with its suburbs). Hence,
the mere covering large distances does not necessarily
result in high forwarding opportunities. For this reason, in
order to maintain the overall idea detached to any specific
environment, we chose not to include any direct information
regarding mobility patterns in the sociability indicator. An
important advantage of this approach is that no information
on nodes position is ever required (see Section 2.2).

In [10], the authors state that two people having similar
mobility patterns (in terms of frequency of visits to specific
locations) are more likely to meet each other, thus to be
able to communicate. Then, they recognize that the main
limitation of the previous statement is that even though two
people visit the same locations, they do not necessarily do it
synchronously. Thus, two such nodes may never be in the
range of each other. This is not a rare event, especially at
urban scale. Consider, for example, a public transportation
fleet (e.g., buses). Two buses running on the same route have
the exact same mobility patterns. However, if one follows the
other few kilometers behind, they never reach each other.
More generally, there are places like, for example, a big mall,
that many people periodically visit at different time. This
results in some similarity of their patterns which does not
necessarily reflect meeting opportunities.

It is worth mentioning that sociability indicators are not
based on the notion of communities (as in [12]), that is,
groups of individuals that “stay in touch” for prolonged
time due to shared habits, behaviors, believes, and so forth.
The reason of this is that our approach is more vehicular
traffic oriented and thus try to cope with a highly dynamical
environment. This results in the fact that (i) we do not aim at
identifying such groups of people; (ii) we do not keep track
of contact duration, since it is not equally relevant in all types
of networks (e.g., in vehicular networks contacts are all rather
short in the majority of cases).

Finally, we emphasize that the sociability indicator only
highlights what are the best forwarders in a given time
period, in the sense of those having the highest degree
of sociability. As a consequence, this information is not
related to a specific destination to be reached but it is
instead absolute. This descends from avoiding a sociability
characterization based on mobility patterns and is consistent
with the intent of minimizing the exchange of data. This also
implies that no prior knowledge of the destination (e.g., its
position, sociability indicator, etc.) is requested at the source.

A hybrid concept considering a mixture of sociability and
mobility information could be evaluated in future studies.
In Sections 3.1 and 3.2 we report a formal definition of
the sociability indicator for the cases where only directed
contacts enhance sociability, and also multihop contacts are
considered, respectively.

2.2. Acquisition. Since we do not use information on posi-
tions, nodes are not requested to adopt any positioning
technique, nor do they have to learn their mobility patterns
as in [10]. The two main issues arising with the use of
sociable routing are (i) how a node learns its own social
behavior and (ii) how it communicates its social behavior to
other nodes.

Note that the two issue are strictly connected, as a
node needs to know the social behavior of its neighbors
in order to derive its own. For this reason, a distributed
strategy where nodes, upon encounters, update their own
sociability parameter through the exchange of a minimum
amount of data, could be the optimum. For example,
the sociability updates could be appended to data bundles
in order not to overwhelm the network with signaling
information. Although this is not addressed here, since
our aim is primarily that of presenting and validating the
general idea at the base of sociable routing, we give a rough
indication of the cost of acquiring sociability indicators.

Consider a network of N nodes at an initial state
where no one knows its sociability indicator. This number
is computed on the basis of the frequency and amount of
encounters of a node. Thus, we can assume the ith node
receives identity information from every encountered node.
We will then estimate the scaling law for such transmissions.
Let us denote as ni the number of encounters of the ith node,
i = 1, . . . ,N . On average, an arbitrary node has E{ni} =
n encounters (i.e., transmissions/receptions) over a certain
time period. From network perspective, the average number
of exchanges is Kn ∝ N · n. Now, n is a function of several
parameters. In particular, n ∝ T · v · ρ, where T is the
observation period, v the average speed of nodes and ρ the
density of nodes, seems a reasonable assumption. Moreover,
ρ is in turn proportional toN . This yields the conclusion that
Kn = O(N2).

In a successive step, when each node has computed a first
estimation of sociability indicator, the exchange continues in
such a way that the ith node receives from the neighbors not
just their identities but also their sociability indicators, which
are used for refining the estimation of its own. However, this
has no effect on the above mentioned scaling law.

Hence, in the following we assume that nodes have
knowledge of their social behavior referred to a specific time
window. In particular, the analysis carried out in Section 3 is
based on a centric perspective for the sake of mathematical
treatment, without loss of generality, due to the feasibility of
a distributed strategy at reasonable cost, as roughly discussed
above.

2.3. Usage. As previously mentioned, the basic idea is to
select a set of sociable nodes that can potentially reach any
endpoint. This set should be kept small enough to avoid
useless transmissions. To this end, the following strategy can
be adopted. A node takes its routing decision at a given
time t by (i) evaluating the sociability indicators of the
current neighbors; (ii) comparing them to its own and (iii)
choosing as forwarders a maximum of Nf nodes that have
greater sociability than its. This simple scheme allows to
limit the number of bundle transmissions at each encounter
by setting a maximum, Nf . Moreover, a node does not
transmit any bundle if it does not meet any more sociable
node. As a further implication, when a bundle is generated
by a node with low sociability degree, a large number of
transmissions are permitted, since the source will certainly
meet more sociable nodes. In fact the network copes with
lack of encounters by generating multiple replicas of the
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(1) Rk(t) := ∅
(2) if b ∈Wk(t) then
(3) Rk(t) = {b}
(4) else
(5) i = 1
(6) while Wk(t) /=∅∩ i ≤ Nf do
(7) h := argmax j∈Wk(t)s j
(8) Wk(t)←Wk(t) \ {h}
(9) if s j > sk∩ not 1 j(t) then
(10) Rk(t)← Rk(t)∩ {h}
(11) end if
(12) i← i + 1
(13) end while
(14) end if

Algorithm 1: Routing decision algorithm.

original bundle. This happens because the algorithm pushes
unsociable nodes, although they meet others sporadically, to
transmit to almost everyone they meet. On the contrary, if
the bundle is generated by the most sociable node, there will
not be any transmission until the source is itself in the range
of the destination, since it is also the best possible forwarder.
This seeming imbalance is explainable as follows. Because an
unsociable source is likely to remain isolated for a long time,
it makes sense for the network to put a greater effort to route
its message along by generating replicas. In the opposite case,
when a source is highly sociable, only few transmissions are
required because mobility will do the rest.

In a formal tone, by using a notation similar to that
of [10], let U be the set of all nodes and N = |U| their
number. The sociability indicator of a node k ∈ U at time
t is sk(t) ∈ [0, 1]. We also define a Boolean indicator, 1k(t),
which is true if node k already possesses the bundle, and false
otherwise. Assume also that at time t node k has a number
of active direct links to some neighbors. Let us denote as
Wk(t) ⊆ U the neighborhood of k. The routing decision
of k consists of either keeping the bundle or selecting up to
Nf next forwarders belonging to Wk(t), provided they do
not already possess the bundle. With respect to a destination
node, b, this can be performed by using a decision algorithm
to be applied to the set Wk(t) and b, and yields the set,
Rk(t) ⊆ Wk(t) ⊆ U , |Rk(t)| ≤ Nf , of next forwarders. The
pseudocode is given in Algorithm 1.

3. Evaluation of Sociability Indicators

In order to evaluate the routing strategy based on the
sociability concept, we first propose a simple model where
the sociability indicator of each node is computed by looking
at its direct encounters, meaning that it only considers
single-hop neighbors. Then, we extend the latter definition
to the case where the sociability degree of one node
depends not only on its direct encounters but also on the
encounters of its neighbors in an iterative fashion. Finally, we
introduce a set of real mobility traces that we used to test our
definitions.

3.1. First Hop-Based Sociability. As a first assumption, we
consider the duration of any encounter to be constant, for
simplicity, and equal to 1 second. Although duration is a
relevant fact in that it is related to the amount of data
than can be exchanged, the aim here is just to focus on
the number and frequency of encounters, whereas a more
advance concept of sociability incorporating data rates is left
to future studies. A definition of sociability of node k limited
to its direct encounters can be given as follows. Let T be a
time window of finite length and 1c(k, j, t) be the meeting
indicator function defined as

1c
(
k, j, t

) =
⎧
⎨

⎩

1, if k is incontact with j at time t,

0, otherwise.
(1)

Then, the sociability indicator of node k at time t is

s(T)k (t) = 1
N · T

∑

j∈U

∫ t

t−T
1c
(
k, j, τ

)
dτ. (2)

Such a definition quantifies the social behavior of a node
by counting its encounters with all the other nodes in the
network over a period T . In order to assess whether this can
be considered a valid estimate of the future behavior, the
implications of the choice of T will be discussed.

As a first observation, T should be large enough to
collect a sufficient statistic of encounters and let the indicator
be significant. However, this time strongly depends on the
characteristics of the network (e.g., topology, sparsity, etc.) as
well as on those of mobility (e.g., velocity, correlatedness of
movements, etc). For example, with reference to a vehicular
network at urban scale, one user is likely to accomplish some
daily tasks such as going to work in the morning, going
out for lunch and go home again in the evening. In this
case, a daily periodicity is clearly noticeable [18] and it is
reasonable to assume that the information on social behavior
of a user collected for a period T = 1 day is exploitable for
the following day.

On the other hand, if T is so large as to allow users to
change habits, the outcome parameters will no longer have a
meaning. This could be the case, for instance, of a network of
pedestrians carrying a mobile device in a campus [20, 21]. A
student user that is observed for several semesters, is likely to
modify its paths and encounters history when a new semester
begins and it takes new courses.

In conclusion, T should somehow reflect the periodicity
of human behavior and capture its coherence. However, since
human interactions feature self-similarities at different scales
[22], what periodicity scale it is more convenient to seek is a
context dependent issue.

From (2), it is easy to see that 0 ≤ s(T)k (t) ≤ 1. In

particular, s(T)k (t) = 1 when the node k meets every other
node at each time instant. Recent studies [23] showed that
human contacts are governed by power-law behavior. In
rough words, this means that a node that reaches all the
others in a given period of time, will probably encounter few
of them very frequently and have very rare opportunities of
exchanging data with the rest. For this reason, we emphasize
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the importance of evaluating not only the percentage of other
nodes one gets in contact with, but also how many times.
This is indeed the role of the integral in (2).

3.2. K th Hop-Based Sociability. As noted in Section 2.1, the
sociability degree of one user should intuitively benefit from
having highly sociable neighbors. With this in mind, we

now aim at extending the previous definition. Let s(n,T)k (t)
be the sociability indicator of node k at time t, computed
over a time range T , accounting for an n-hop dependence.
For simplicity, we omit the dependence upon T , that is,

s(n,T)k (t) ≡ s(n)k (t). Then, we have as in (2)

s(1)k (t) = 1
N · T

∑

j∈U

∫ t

t−T
1c
(
k, j, τ

)
dτ = 1

N · T
∑

j∈U
p(1)k, j ,

(3)

where p(1)k, j =
∫ t
t−T 1c(k, j, τ) dτ and the dependence on t has

been suppressed for conciseness. An immediate extension
for incorporating into one node’s sociability indicator the
sociability of first hop neighbors, is obtained as

s(2)k (t) = 1
N · T

∑

j∈U
max

(
p(1)k, j , p(2)k, j

)
, (4)

where

p(2)k, j =
∑

h∈U
min

(
p(1)k,h, p(1)h, j

)
·wk,h, j , (5)

with wk,h, j being a weight parameter to be conveniently

defined. Starting from the redefinition (3), p(1)k, j represents
the number of direct contacts between nodes k and j over
T . In order to include indirect contacts as well, we need to
define p(2)k, j , which counts the number of contacts between
k and j through a third relay node. In (4) we compute the
2-hop sociability indicator by considering either direct or 2-
hop connections, depending on which modality of the two
gives greater contact opportunities. To explain (5), refer to
the scenario of Figure 1. A node N1 may connect to a node
N2 by exploiting a 2 hop link involving nodeN3. In particular,
N1 may send its bundle to N3 as soon as the link A is active.
N3 keeps it in a buffer and sends it to N2 when the link B
becomes active. Due to the dynamic nature of the network,
the links A and B are intermittent and thus may exists or not
at a given time instant depending on the mobility patterns of
the nodes. Assume that, in the interval [t−T , t], the two links
appear 4 times each in the order shown in the bottom part of
Figure 1.

Observe that at the beginning, linkA appears right before
link B. This makes it possible for node N1 to send bundles
to node N2 through N3, and should indeed be regarded as
a contact opportunity. Conversely, when B appears before
A (as it happens later on), no transmisson is possible from
N1 to N2. By simple observation, it is straightforward to
realize that one contact opportunity arises whenever there
is an ordered sequence A,B on the timeline (for a thorough
analysis of intermittent links problems inDTNs, refer to [24],

N1

A
N3

B

N2

(a)

A1 B1 A2B2 A3B3 B4A4

t − T t

(b)

Figure 1: (a) simple 3 nodes network with intermittent links. (b)
temporal occurrence of the links.

where the issue is addressed from the theoretical perspective
of time-varying graphs.) In our example this happens twice,
although links A and B appear 4 times each. Note also
that link A appears 3 times before the last apparition of B.
Even though N3 can buffer all the bundles received by N1

in the 3 transmissions, it then has only one opportunity to
send them to N2 and thus the temporal sequence of links
A2, A3, A4, B4 gives rise to a single contact opportunity
from N1 to N2. As a natural consequence, we can state
that, given a sequence of apparitions of links A and B,
where they appear nA and nB times, respectively, the number
of contact opportunities from N1 to N2 can never exceed
min(nA,nB). This explains the presence of the min function
in (5).

Although we know that the number of contact opportu-

nities of k with j through h is in the range [0,min(p(1)k,h, p
(1)
h, j )],

we cannot give an exact estimate of such number, because
it depends on the sequence of apparition of the two links,
which we do not keep track of in our model. However, it is
possible to obtain an approximated average expression for it
by means of simple statistical considerations.

Consider the network k → h → j. Assume the links

k → h and h → j, which are activated p(1)k,h and p(1)h, j times,
respectively, appear uniformly at random on [t−T , t]. Define
the random variable t′k,h as

t′k,h : =
{
time of 1st appearance of link k −→ h

}

= min
(
t(1)k,h, . . . , t

(a)
k,h

)
,

(6)

where t(m)
k,h ∼ U[t − T , t], for all m, and a = p(1)k,h. By noting

the equivalence of the events

{
t′k,h ≤ t

}
=
{
t(m)
k,h > t,∀m

}c
, (7)
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with c denoting the complementary event, we have the CDF

Ft′k,h(τ) = 1−
[
1− Ftk,h(τ)

]a

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, τ ≤ t − T ,

1−
(
1− τ

T

)a
, t − T ≤ τ ≤ t,

1, τ > T ,

(8)

and the expectation

E
{
t′k,h
}
= T

a + 1
= T

p(1)k,h + 1
. (9)

A sufficient (but not necessary) condition for outage of the 2-
hop link connecting k to j through h over a period T , is when
all the instances of the h → j link appear before the expected
first appearance of the k → h link. This outage probability,
Pout, is obtained as

Pout =
[
Fth, j

(
E
{
t′k,h
})]b =

⎛

⎝
E
{
t′k,h
}

T

⎞

⎠

b

, (10)

where b = p(1)h, j . Finally, substituting (9) into (10) yields

Pout =
⎛

⎝ 1

1 + p(1)k,h

⎞

⎠

p(1)h, j

. (11)

Hence, 1− Pout is an upper bound to the probability that the
2-hop link connecting k to j is available at least once over the
period T . This suggests that the weight wk,h, j in (5) should
acquire the same meaning. For this reason we let wk,h, j =
1− Pout and (5) becomes

p(2)k, j =
∑

h∈U
min

(
p(1)k,h, p

(1)
h, j

)
·
⎡

⎣1−
⎛

⎝ 1

1 + p(1)k,h

⎞

⎠

⎤

⎦

p(1)h, j

. (12)

It is worth noting that the expression min(p(1)k,h, p
(1)
h, j ) ·

[1− (1/(1 + p(1)k,h))]
p(1)h, j

could be interpreted as an approxi-
mation to the number of contact opportunities between k
and j through h. In order to test its tightness, we simulated
a three nodes network where the two links k → h and
h → j appear uniformly at random on [t − T , t]. Results
are reported in Figure 2, where the expected number of

contact opportunities is plotted as a function of p(1)k,h for

different values of p(2)k,h. It can be observed that the analytical
expression may be regarded as an upper bound, which is

tighter for smaller values of p(1)k,h and p(1)h, j . As a consequence,
this model may be employed as long as (i) the period T is
taken such that a small number of encounters between k and
h, h and j, is recorded and (ii) the encounters do not deviate
too much from a uniform distribution.

While the first assumption can be arbitrarily nonin-
fluential by adjusting T , the second assumption can only
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Figure 2: Comparison between model and simulation for the
expected number of contact opportunities when p(1)k,h and p(1)h, j vary.

be verified by examining real traffic traces. However, more
sophisticated models may be formulated when some a priori
information on the traffic is available and contact statistics is
inferred accordingly.

The extension of (4) to K hop is simply

s(K)k (t) = 1
N · T

∑

j∈U
max
K

{
p(K)k, j

}
, (13)

where

p(K)k, j =
∑

h∈U
min

(
p(K−1)k,h , p(K−1)h, j

)
·
⎡

⎣1−
⎛

⎝ 1

1+p(K−1)k,h

⎞

⎠

⎤

⎦

p(K−1)h, j

.

(14)

3.3. Mobility Traces Used and Sociability Plots. Recent mea-
surement campaigns have been conducted in the context
of ambient mobile networks, with particular emphasis on
vehicular networks at urban scale and pedestrian networks
in a building scenario. Some of them (e.g., [25]), required
the help of voluntary attendees of a conference who carried
mobile devices during several days period for recording
spontaneous contacts among users. At urban level, although
the difficulty of finding volunteers between private users,
analogous experiments could be performed on vehicles
belonging to a specific entity, such us public transportation
fleets. Such precious data, especially that of contacts among
users, reveals very important for studying the social behavior
of nodes and providing insight for potential delay-tolerant
applications.

A variety of measurements have been made recently
available on the Internet [3, 26] in the form of traffic
traces or contact patterns. When a historical database of
contacts is available, it is possible to study the social behavior.
This, however, cannot be done in conjunction with mobility
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San francisco taxi fleet observed for several weeks

10 km

Figure 3: Superposition of the mobility patterns of all San
Francisco taxicabs: intensity of color is proportional to the time
globally spent on each location.

consideration, since the information on mobility patterns
is not directly present. In some studies (see, e.g., [10]),
the log information of Wi-fi users who connect to a set
of access points (APs) is examined. APs may be regarded
as locations and consequently the mobility patterns of the
users (consisting of a sequence of visits to the locations) can
be indirectly inferred. By following this rationale, it is also
natural to assume that two users that are connected to the
same AP at a given time, they are in contact with each other.

We believe it is not possible to assess to which extent the
latter assumptions hold. For this reason, we seek traces where
the exact position of users is sampled, at least randomly in
time. Then, from a complete mobility information, contacts
history can be easily extracted.

In this paper we base our analysis on the traffic traces
from the taxicabs of the city of San Francisco, CA [3],
consisting of approximately 500 units. Such data report the
GPS coordinates of each vehicle collected over 30 days in the
San Francisco Bay Area. Each taxi is equipped with a GPS
receiver and sends a location-update (timestamp, identifier,
geo-coordinates) to a central server. The location-updates are
quite fine-grained—the average time interval between two
consecutive location updates is less than 10 seconds, allowing
us to accurately interpolate node positions between location-
updates. In the heatmap of Figure 3, a spatial plot is reported
where the intensity of color is proportional to the time spent
by the totality of taxicabs in each location.

With respect to this data, we report in Figure 4, as

examples, the sociability indicators s(1)k , s(2)k , s(3)k , s(4)k for the
different vehicles (i.e., 1 ≤ k ≤ 500) (Figures 4(a) and 4(c))
and the Complementary Cumulative Distribution Function

(CCDF) of s(1)k , s(2)k , s(3)k , s(4)k (Figures 4(b) and 4(d)). All the
plots refer to a T = 100 seconds observation time. In
particular, plot pairs Figures 4(a), 4(b), 4(c), and 4(d) are
taken over two subsequent time windows, randomly sampled
over the whole trace.

As one can see, the sociability indicators are on average
smaller in plot Figure 4(c) compared to Figure 4(a): this
means that in the second observation period, a smaller
number of contacts has been recorded. For the 1 hop
case, very few nodes have a significant indicator, while the
others have almost zero indicators. This reflects in plots
Figures 4(b) and 4(d), where one can observe that less than
5% of nodes have indicators greater than 3 · e − 3. When a
multihop sociability definition is considered, the indicators
on average increase. This means that most of the nodes
having rare contacts, happen indeed to be in contact with
highly sociable nodes.

However, although this effect is remarkable whenmoving
from single hop to two hops sociability, it is not significant
when the number of hops considered is greater than 3.
This is coherent with the fact that multihop connections,
although exponentially more numerous when K is greater,
are less likely to be successful since links must appear in
the correct temporal order. Finally, it bears highlighting that
nodes which are completely isolated, do remain so no matter
how many hops we allow. For this reason, it appears in
plots Figures 4(b) and 4(d) that the probability of having a
sociability indicator greater than zero, never approaches one.

4. Simulation Results

In the present section we introduce the simulator that allows
us to test the forwarding scheme proposed and to compare
it to other existing protocols. Then, before showing the
numerical results, a brief overview of performance metrics
and a short description of our benchmarking schemes, are
given.

4.1. Methodology. We have designed an autonomous net-
work simulator for testing the routing scheme. It takes as
input a mobility trace like the one presented in Section 3.3
and generates mobile nodes accordingly. The time is dis-
cretized and resolution is 1 second. Each node has an infinite
buffer for storing the exchanged bundles. In a realistic setup,
a routing protocol should be evaluated by accounting for
limited buffering capabilities. Nonetheless, although we do
not address it here, we assess the validity of protocols by also
counting the amount of extra bundles generated, as a rough
measure of resources consumption at network level.

In addition, wemake very simple assumptions at physical
and MAC layers, namely, nodes are in contact when their
distance is less than the transmission range, TR; channels
are interference-free; and transmissions are instantaneous.
Furthermore, although a node is not aware of its absolute
geographical position, it has a complete knowledge of its
logical connectivity, (i.e., what other nodes are within its
transmission range), and it is always willing to cooperate
with others.

A simulation run starts when two nodes are randomly
selected as source and destination of a bundle, respectively,
and terminates when the bundle is either successfully
received by the recipient or discarded for exceeding a timeout
threshold.



8 EURASIP Journal on Wireless Communications and Networking

0
100 200 300 400 5000

100 200 300 400 5000

0.5

0

0.5

100 200 300 400 5000
0

0.5

1 hop

1

1

So
ci
ab
ili
ty
in
di
ca
to
r

2 hop

Vehicle ID

3 hop

(a)

0

0.1

0.2

0.3

0.4

0.5

Sociability indicator

C
C
D
F

p(1)

p(2)
p(3)

p(4)

10−2 10−1 100

(b)

0
100 200 300 400 5000

100 200 300 400 5000

0.5

0

0.5

100 200 300 400 5000
0

0.5

1 hop

1

1

So
ci
ab
ili
ty
in
di
ca
to
r

2 hop

Vehicle ID

3 hop

(c)

0

0.1

0.2

0.3

0.4

0.5

Sociability indicator

C
C
D
F

p(1)

p(2)
p(3)

p(4)

10−2 10−1 100

(d)

Figure 4: Bar plots ((a), (c)) and Complementary Cumulative Distribution Function (CCDF) plots ((b), (d)) of sociability indicators
computed over two different time windows of duration T = 100 second each.

4.2. Input Mobility and Parameters. As input mobility, we
consider the taxi cab traces introduced in Section 3.3. It
must be noted that taxi cab’s movements are not particularly
predictable as can be those of a private citizen or even a
public transportation vehicle (e.g., a bus). In fact, apart from
the most frequent routes (e.g., airport to train station), each
time a passenger is collected, a destination which potentially
differs from the previous one has to be reached. For this
reason, if we can appreciate any benefit from the sociable
routing scheme in this scenario, we expect even better
performance when using, for example, Seattle city bus traces
[26] as input mobility.

We put two constraints in order to speed up the sim-
ulations. First, source and destination nodes are randomly
picked among those that are located, at the generation

instant, in a 10 × 10 km square centered in downtown San
Francisco. This indeed decreases the average delivering time
by avoiding too far away source-destination pairs. Secondly,
nodes that have not been moving for more than 1 hour
cannot be source candidates. This avoids extra delays due
to when a bundle is generated by a cab that is not in
service, and thus has greater chances to remain isolated for
long.

The number of nodes, all included, is then 535 and the
traces are two weeks long. Every simulation is composed of
1000 runs (i.e., 1000 bundles are either successfully received
or dropped due to excess delay) and is started at a random
time on the first day of traced period. We set a timeout of 1
day and a transmission range TR = 500 meters. This value is
in accordance, for example, with the standard IEEE 802.11p
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[27], which is meant to be employed in vehicular networks.
Finally, in case of multiple contemporaneous encounters,
one node is allowed to forward the bundle to only Nf = 1
neighbor.

4.3. Performance Metrics and Benchmarks. For each received
bundle, several measures are performed. First, the delay,
that is, the elapsed time from generation to delivery, is
recorded. Delay, which is usually imposed by an application,
is a meaningful parameter for discriminating forwarding
schemes. Similarly, a cost parameter, intended as how much
of network resources a routing scheme consumes, will
also be considered. In our case, we define as cost of a
routing scheme the average number of network nodes that
receive the bundle, apart from the intended destination.
Although simplistic, this serves as an indication of how
much extra traffic is generated in the network (recall that we
neglect signaling traffic by assuming that nodes have perfect
knowledge of the logical connectivity), how intensively the
buffers are employed, and it is also related to the amount of
overhead introduced at lower layers.

Generally, as it will be observed, delay is inversely
proportional to cost, whereas good protocols are expected to
achieve low delay at a low-cost.

We also consider the path length, defined as the number
of hops from source to destination, as well as the keeping
time, defined as the average time a node keeps the bundle
before forwarding it to the next hop. The latter two are
complementary, since the product path length × keeping
time, approximately equals the delay. On equal delays, a long
path length (equivalently, a short keeping time) may indicate
a waste of resources and thus result in a high cost.

The performance of our routing scheme, sociable rout-
ing, is compared against that of other known protocols.

(i) Epidemic routing. This naive strategy [8] belongs to a
category of routing protocols achieving very low delay at
very high cost. It is indeed the optimum for what concern
the delay performance. Practically speaking, every time a
node is in contact with any other node it sends the bundle.
It is easy to realize that the number of bundles present
in the network grows exponentially in time. This diffusion
enhances the probability that one of the bundles reaches the
destination but, most of the time, its cost is unbearable for
real networks. We use epidemic routing for a lower bound
delay performance.

(ii) MobySpace routing. This scheme, introduced in [10],
considers the mobility patterns of the nodes and assigns to
each node a descriptor vector containing the frequencies of
visits to each location. The basic idea is that nodes having
similar patterns are likely to meet. Hence, a node forwards
bundles to nodes whose patterns are more and more similar
to that of the destination (which should be known at the
source). No notion of sociability is employed but only
topological considerations.MobySpace routing achieves low-
cost but has a poor delay performance.

(iii) Random routing. This protocol is created ad hoc for
comparison with sociable routing. Basically, it has the
same functionalities as sociable routing (i.e., it employs
Algorithm 1) but is fed with “fake” sociability indicators,
meaning that they are not related to the actual social behavior
of the nodes but they are just random numbers. By so doing,
we expect Random routing to achieve a cost similar to that
of sociable routing and a delay performance to be compared
with the latter.

4.4. Results. When simulating sociable routing, the time
interval between two refreshes of the sociability indicators
must be set. This should be calibrated based on the nature
of mobility traces. We assume no a priori information is
available about the social behavior of the nodes. We then take
T = 1000 second as initial guess. We also choose to evaluate
only the first and second hop based sociability schemes, since
we do not expect significant changes for a number of hops
K > 2, as observed in Section 3.3.

In Figure 5, we report the cumulative distribution of
delivered bundles over time, for the 1st and 2nd hop sociable
routing, as well as for the benchmarking protocols. By
observing a time window of approximately 1 day, it clearly
appears how epidemic delivers a much larger amount of
bundles compared to other solutions. However, as previously
noted, this scheme is practically unfeasible.

Conversely, MobySpace is the one delivering the smallest
amount of bundles. The reason seems to be the presence
of large deviations from the mean delay, occurring when a
node does not find a suitable relay and keeps the bundle for
long. A deeper consideration is that the basic assumption of
the protocol, according to which two nodes having similar
patterns are likely to meet, is not easily applicable to the case
of taxi, where all nodes tend to visit a small set of locations
(e.g., airport, main square, etc.) with approximately the same
frequencies. 1-hop sociable routing seems to be delivering
the largest amount of bundles at a fairly constant rate.
Random Routing, instead, which employs the same scheme
as 1-hop Sociable but with “fake” sociability indicators,
shows a more irregular trend. The reason is that when
bundles are sent to not very sociable nodes, they are likely
to be stuck, since they do not meet other nodes, and
consequently cause extra delays. 2-hop Sociable has a slightly
poorer performance than 1-hop Sociable, at least in terms of
number of deliveries. Finally, all the protocols could deliver
100% of packets before timeout except MobySpace, which
dropped 1.8% of bundles.

In Table 1 we introduce, besides the cost, other metrics
among those discussed in Section 4.3. Average values, taken
over 1000 simulation runs, together with the 95% confidence
interval, obtained through the Student’s t distribution, are
reported. This table reveals the opposite trend of cost with
respect to delay. In fact, the delay performance of epidemic,
for example, is payed off by a large waste of resources (2.5
times more than 1-hop Sociable). By looking at path lengths,
it can be seen how low-cost strategies lead to short paths
from source to destination. As an extreme case, simulation
of MobySpace reveals that most of successful deliveries
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Figure 5: Cumulative bundles delivery over time for the routing scheme considered.
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Table 1: Numerical results in terms of average delay, cost, and path length for the protocols considered.

Delay Cost Path length

(seconds) (nodes) (hops)

Epidemic 85.98± 20.61 244.63± 6.17 10.65± 0.33

MobySpace 756.48± 240.78 47.73± 5.67 3.40± 0.21

Random 445.62± 29.13 91.14± 4.90 4.77± 0.13

1hop Sociable 370.23± 26.99 97.06± 5.25 4.82± 0.14

2hop Sociable 545.90± 50.44 60.28± 3.29 4.25± 0.12
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Figure 6: Position of the examined routing schemes on the delay
versus cost plane.

employed no more than 3 ÷ 4 hops. Finally, by noting that
the order of magnitude of delays is 100÷1000 second, we can
now state that the choice T = 1000 second for the refreshing
time was a reasonable one. In fact, the situations where many
refreshes occur while the same bundle is in the network are
intuitively non-optimal.

As one can see, the performance of 2-hop Sociable is
poorer than Random in terms of delay and better than 1-
hop Sociable in terms of cost. This deserves further consider-
ations. A greater insight is gained by looking at Figure 4 once
again. Consider, for example, Figure 4(a): in the scenario we
have selected, by only accounting for 1-hop sociability on a
T = 100 seconds period, we observe a situation where very
few nodes have sociability indicators remarkably greater than
zero, while the rest is very close to zero or zero (Figure 4(b)
suggests in fact a power law distribution). In rough words,
there are few suitable forwarders andmany unsociable nodes.
This imply the following. A node (statistically a poorly
sociable one) generates a bundle. Then, it transmits it to its
slightly more sociable neighbors. This part of the process
is slow, since encounters are sporadic for the origin node
but, at the same time, transmissions are likely to occur upon
every encounter. At some point the most sociable forwarder
is reached. Now the process rapidly converges to delivery,
thanks to the identification of the most suitable forwarder.
We may equivalently say that there is a little bit of flooding

at the very beginning of the process until the key forwarder
is met. Then what it takes is just waiting for it to meet the
destination node. Note that the latter resembles the Spray
andWait approach proposed in [28], with the difference that
the spray phase intelligently stops when the right forwarder
is met.

Consider now the 2nd plot of Figure 4(a). 2-hop based
sociability indicators still show few best forwarders. How-
ever many other nodes have non-negligible indicators. In
particular, a large subset has sociability around 0.5. Now
imagine a bundle is originated by one such node. According
to the algorithm, the latter will automatically exclude from
the list of potential next-hop relays all its peers (i.e., those
having equal or smaller indicator—a great percentage). The
key implication is that there is no initial flooding. Instead,
the origin node tends to wait to meet one of the 2 or 3
strong forwarders before initiating a transmission. Thus,
while in the 1-hop case all nodes are almost equally likely
to potentially receive the bundle, this different definition of
sociability indicators automatically excludes a subset of them.
This does not necessarily result in worse performance. In
fact, although we observe a greater delivery delay with respect
to 1-hop sociability (see Table 1), we considerably reduce the
cost, which makes it better scalable.

In conclusion, 1-hop and 2-hop sociability are two very
different routing strategies with pros and cons, among which
the network designer should choose the preferred one based
on the requirements (i.e., whether tominimize cost or delay).

For a visually more effective positioning of the examined
protocols on a delay versus cost plane, we refer to Figure 6. By
focusing on the left part of the plot, where the “affordable”
schemes are positioned, it appears that 1-hop Sociable
represents a good compromise.

5. Conclusions and FutureWork

The contribution of this paper has been the proposal of a
novel routing scheme for DTNs. sociable routing chooses the
set of best forwarders among those having high sociability
indicators, the latter being time-varying scalar parameters.
Sociability indicators relate to the social characteristics of
network nodes, by capturing the frequency and type of their
encounters. The routing strategy has been widely discussed
and evaluated by simulation on a DTN of vehicles in urban
environment. Results and comparison with other existing
protocols showed that sociability based routing can achieve
a good compromise in terms of delay performance and cost.
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Several open issues throughout the paper have beenmen-
tioned and deserve attention in future works. First, the study
of distributed algorithms for computing sociability metrics is
currently being addressed. Finally, an additional simulation
campaign using other mobility traces (possibly with different
social characteristics) could reveal the robustness of Social
Routing against diverse scenarios and prove the generality of
the key ideas.
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