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This paper studies carrier frequency offset (CFO) estimation in the uplink of multi-user multiple-input multiple-output
(MIMO) orthogonal frequency division multiplexing (OFDM) systems. Conventional maximum likelihood estimator requires
computational complexity that increases exponentially with the number of users. To reduce the complexity, we propose a sub-
optimal estimation algorithm using constant amplitude zero autocorrelation (CAZAC) training sequences. The complexity of
the proposed algorithm increases only linearly with the number of users. In this algorithm, the different CFOs from different
users destroy the orthogonality among training sequences and introduce multiple access interference (MAI), which causes an
irreducible error floor in the CFO estimation. To reduce the effect of the MAI, we find the CAZAC sequence that maximizes the
signal to interference ratio (SIR). The optimal training sequence is dependent on the CFOs of all users, which are unknown. To
solve this problem, we propose a new cost function which closely approximates the SIR-based cost function for small CFO values
and is independent of the actual CFOs. Computer simulations show that the error floor in the CFO estimation can be significantly
reduced by using the optimal sequences found with the new cost function compared to a randomly chosen CAZAC sequence.

1. Introduction

Compared to single-input single-output (SISO) systems,
multiple-input multiple-output (MIMO) systems increase
the capacity of rich scattering wireless fading channels
enormously through employing multiple antennas at the
transmitter and the receiver [1, 2]. Orthogonal Frequency
Division Multiplexing (OFDM) is a widely used technology
for wireless communication in frequency selective fading
channels due to its high spectral efficiency and its ability to
“divide” a frequency selective fading channel into multiple
flat fading subchannels (subcarriers). Hence, MIMO-OFDM
is an ideal combination for applying MIMO technology
in frequency fading channels and has been included in
various wireless standards such as IEEE 802.11n [3] and IEEE
802.16e [4]. An extension of theMIMO-OFDM system is the
multiuser MIMO-OFDM system as illustrated in Figure 1.

In such a system, multiple users, each with one or multiple
antennas, transmit simultaneously using the same frequency
band. The receiver is a base-station equipped with multiple
antennas. It uses spatial processing techniques to separate
the signals of different users. If we view the signals from
different users as signals from different transmit antennas of
a virtual transmitter, then the whole system can be viewed
as a MIMO system. This system is also known as the virtual
MIMO system [5].

Carrier frequency offset (CFO) is caused by the Doppler
effect of the channel and the difference between the trans-
mitter and receiver local oscillator (LO) frequencies. In
OFDM systems, CFO destroys the orthogonality between
subcarriers and causes intercarrier interference (ICI). To
ensure good performance of OFDM systems, the CFO
must be accurately estimated and compensated. For SISO-
OFDM systems, periodic training sequences are used in
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Figure 1: Overview of multiuser MIMO-OFDM systems.

[6, 7] to estimate the CFO. It is shown that these CFO
estimators reach the Cramer-Rao bound (CRB) with low-
computational complexity. A similar idea was extended to
collocated MIMO-OFDM systems [8–10], where all the
transmit antennas are driven by a centralized LO and so
are all the receive antennas. In this case, the CFO is still
a single parameter. For multiuser MIMO-OFDM systems,
each user has its own LO, while the multiple antennas at
the base-station (receiver) are driven by a centralized LO.
Therefore, in the uplink, the receiver needs to estimate
multiple CFO values for all the users. In [11, 12], methods
were proposed to estimate multiple CFO values for MIMO
systems in flat fading channels. In [13], a semiblind method
was proposed to jointly estimate the CFO and channel
for the uplink of multiuser MIMO-OFDM systems in
frequency selective fading channels. An asymptotic Cramer-
Rao bound for joint CFO and channel estimation in the
uplink of MIMO-Orthogonal Frequency Division Multiple
Access (OFDMA) system was derived in [14] and training
strategies that minimize the asymptotic CRBwere studied. In
[15], a reduced-complexity CFO and channel estimator was
proposed for the uplink ofMIMO-OFDMA systems using an
approximation of the ML cost function and a Newton search
algorithm. It was also shown that the reduced-complexity
method is asymptotically efficient. The joint CFO and
channel estimation for multiuser MIMO-OFDM systems
was studied in [16]. Training sequences that minimize the
asymptotic CRB were also designed in [16].

It is known in the literature that the computational
complexity for obtaining theMLCFO estimates in the uplink
ofmultiuserMIMO-OFDM system grows exponentially with
the number of users [15, 16]. A low-complexity algorithm
was proposed in [16] for CFO estimation in the uplink
of multiuser MIMO OFDM systems based on importance
sampling. However, the complexity required to generate
sufficient samples for importance sampling may still be high
for practical implementations. In this paper, we study algo-
rithms that can further reduce the computational complexity
of the CFO estimation. Following a similar approach as

in [17], we first derive the maximum likelihood (ML)
estimator for the multiple CFO values in frequency selective
fading channels. Obtaining the ML estimates requires a
search over all possible CFO values and the computational
complexity is prohibitive for practical implementations. To
reduce the complexity, we propose a sub-optimal algorithm
using constant amplitude zero autocorrelation (CAZAC)
training sequences, which have zero autocorrelation for any
nonzero circular shifts. Using the proposed algorithm, the
CFO estimates can be obtained using simple correlation
operations and the complexity of this algorithm grows only
linearly with the number of users. However, the multiple
CFO values destroy the orthogonality between the training
sequences of different users. This introduces multiple access
interference (MAI) and causes an irreducible error floor in
the mean square error (MSE) of the CFO estimates. We
derive an expression for the signal to interference ratio (SIR)
in the presence of multiple CFO values. To reduce the MAI,
we find the training sequence that maximizes the SIR. The
optimal training sequence turns out to be dependent on the
actual CFO values from different users. This is obviously not
practical as it is not possible to know the CFO values and
hence select the optimal training sequence in advance. To
remove this dependency, we propose a new cost function,
which is the Taylor’s series approximation of the original cost
function. The new cost function is independent of the actual
CFO values and is an accurate approximation of the original
SIR-based cost function for small CFO values. Using the new
cost function, we obtain the optimal training sequences for
the following three classes of CAZAC sequences:

(i) Frank and Zadoff Sequences [18],

(ii) Chu Sequences [19],

(iii) Polyphase Sequence by Sueshiro and Hatori (S&H
Sequences) [20].

Both Frank and Zadoff sequences and S&H sequences exist
for sequence length of N = K2, where N is the length of the
sequence and K is a positive integer, while Chu sequences
exist for any integer length. For both Frank and Zadoff and
Chu sequences, there are a finite number of sequences for
each sequence length. Therefore, the optimal sequence can be
obtained using a search among these sequences. However, for
S&H sequences, there are infinitely many possible sequences.
As the optimization problem for S&H sequences cannot
be solved analytically, we resort to a numerical method to
obtain a near-optimal solution. To this end, we use the
adaptive simulated annealing (ASA) technique [21]. For
small sequence lengths, for example, N = 16 and N = 36,
we are able to use exhaustive search to verify that the solution
obtained using ASA is globally optimal. (Because CFO values
are continuous variables, theoretically, it is not possible
to obtain the exact optimum using exhaustive computer
search, which works in discrete variables. If we keep the step
size in the search small enough, we can be sure that the
obtained “optimum” is very close to the actual optimum
and can be practically assumed to the actual optimum. In
this way, we are able to verify the solution obtained by
the ASA is “practically” optimal.) Computer simulations
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were conducted to evaluate the performance of the CFO
estimation using CAZAC sequences. We first compare the
performance using CAZAC sequences with the performance
using two other sequences with good correlation properties,
namely, the IEEE 802.11n short training field (STF) [3] and
the m sequences [22]. The results show that the error floor
using the CAZAC sequences is more than 10 times smaller
compared to the other two sequences. Comparing the three
classes of CAZAC sequences, we find that the performance
of the Chu sequences is better than the Frank and Zadoff
sequences due to the larger degree of freedom in the sequence
construction. The S&H sequences have the largest number
of degree of freedom in the construction of the CAZAC
sequences. However, the simulation results show that they
have only very marginal performance gain compared to the
Chu sequences. This makes Chu sequences a good choice
for practical implementation due to its simple construction
and flexibility in sequence lengths. By using the identified
optimal sequences, the error floor in the CFO estimation is
significantly lower compared to using a randomly selected
CAZAC sequence.

The rest of the paper is organized as follows. In Section 2,
we present the systemmodel and derive the ML estimator for
the multiple CFO values. The sub-optimal CFO estimation
algorithm using CAZAC sequences is proposed in Section 3.
The training sequence optimization problem is formulated
in Section 4 and methods are given to obtain the optimal
training sequence. In Section 5, we present the computer
simulation results and Section 6 concludes the paper.

2. SystemModel

In this paper, we study a multiuser MIMO-OFDM system
with nt users. For simplicity of illustration and analysis, we
assume that each user has a single transmit antenna. The
base-station has nr receive antennas, where nr ≥ nt . The
received signal at the ith receive antenna can be written as

ri(k) =
nt∑

m=1

⎛
⎝e jφmk

L−1∑

d=0
hi,m(d)sm(k − d)

⎞
⎠ + ni(k), (1)

where φm is the CFO of themth user, k is the time index, and
L is the number of multipath components in the channel.
The dth tab of the channel impulse response between the
mth user and the ith receive antenna is denoted as hi,m(d),
sm denotes the transmitted signal from themth user and ni is
the additive white Gaussian noise at the ith receive antenna.
Here we assume the initial phase for each user is absorbed in
the channel impulse response. From (1), we can see that we
have nt different CFO values (φm’s) to estimate.We consider a
training sequence of lengthN and cyclic prefix (CP) of length
L. The received signal after removal of CP can be written in
an equivalent matrix form

ri =
nt∑

m=1
E
(
φm
)
Smhi,m + ni, (2)

where ri = [ri(0), . . . , ri(N − 1)]T and superscript T denotes
vector transpose. The CFOmatrix of userm is denoted E(φm)

and is a diagonal matrix with diagonal elements equal to
[1, exp( jφm), . . . , exp( j(N − 1)φm)]. We use Sm to denote
the transmitted signal matrix for the mth user, which is an
N × N circulant matrix with the first column defined by
[sm(0), sm(1), sm(2), . . . , sm(N − 1)]T . Here we assume N > L
so the channel vector between the mth user and the ith
receive antenna hi,m is anN×1 vector by appending the L×1
channel impulse response [hi,m(0), . . . ,hi,m(L − 1)]T vector
with N − L zeros.

Using this system model, the received signals from all nr
receive antennas can be written as

R =A
(
φ
)
H +N , (3)

where

R = [r1, . . . , rnr
]
N×nr ,

A
(
φ
) = [E(φ1

)
S1, . . . ,E

(
φnt
)
Snt
]
N×(N×nt).

(4)

For clearness of presentation, we use subscripts under the
square bracket to denote the size of the corresponding
matrix. The vector φ = [φ1, . . . ,φnt ] is the CFO vector
containing the CFO values from all users, and the channels
of all users are stacked into the channel matrixH given as

H =

⎡
⎢⎢⎢⎢⎣

H1

...

Hnt

⎤
⎥⎥⎥⎥⎦

(N×nt)×nr

, (5)

with Hi = [h1,i, . . . ,hnr ,i]N×nr being the channel matrix for
the ith user. The noise matrix is given byN = [n1, . . . ,nnr ].

Because the noise is Gaussian and uncorrelated, the
likelihood function for the channelH and CFO values φ can
be written as

Λ
(
H̃ , φ̃

)
= 1
(
πσ2

n

)N×nr exp
{
− 1
σ2
n

∥∥∥R −A(φ̃)H̃
∥∥∥
2
}
,

(6)

where H̃ and φ̃ are trial values for H and φ and σ2
n is the

variance of the AWGN noise. Following a similar approach as
in [17], we find that for a fixedCFO vector φ, theML estimate
of the channel matrix is given by

Ĥ
(
φ̃
)
=
[
AH

(
φ̃
)
A
(
φ̃
)]−1

AH
(
φ̃
)
R, (7)

where superscript H denotes matrix Hermitian. Substituting
(7) into (6) and after some algebraic manipulations, we
obtain that the ML estimate of the CFO vector φ is given by

φ̂ = argmax
φ̃

{
tr
(
RHB

(
φ̃
)
R
)}

, (8)

with

B
(
φ̃
)
=A

(
φ̃
)[
AH

(
φ̃
)
A
(
φ̃
)]−1

AH
(
φ̃
)
, (9)

and tr(•) denotes the trace of a matrix. To obtain the ML
estimate of the CFO vector φ, a search needs to be performed
over the possible ranges of CFO values of all the users.
The complexity of this search grows exponentially with the
number of users and hence the search is not practical.
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3. CAZAC Sequences forMultiple
CFOs Estimation

To reduce the complexity of the CFO estimation for mul-
tiuser MIMO-OFDM systems, in this section, we propose a
sub-optimal algorithm using CAZAC sequences as training
sequences. CAZAC sequences are special sequences with con-
stant amplitude elements and zero autocorrelation for any
nonzero circular shifts. This means for a length-N CAZAC
sequence, we have s(n) = exp( jθn) and the auto-correlation

R(k) =
N∑

n=1
s(n)s∗(n� k) =

⎧
⎨
⎩
N , k = 0,

0, k /= 0,
(10)

for all values of k = 0, 1, . . . ,N − 1. Here we use � to
denote circular subtraction. Let S be a circulant matrix
with the first column equal to [s(0), s(1), . . . , s(N − 1)]T .
The autocorrelation property of CAZAC sequences can be
written in equivalent matrix form as

SHS = NIN , (11)

where IN is the identity matrix of size N × N . This means
that S is both a unitary (up to a normalization factor of N)
and a circulant matrix.

In [23], we showed that for collocated MIMO-OFDM
systems, using CAZAC sequences as training sequences
reduces overhead for channel estimation while achieving
Cramer Rao Bound (CRB) performance in the CFO esti-
mation. Here, we extend the idea to the estimation of
multiple CFO values in the uplink of multiuser MIMO-
OFDM systems. Let the training sequence of the first user
be s1. The training sequence of the mth user is the cyclic
shifted version of the first user, that is, sm(n) = [s1(n�τm)]T ,
where τm denotes the shift value. It is straightforward to show
that the training sequences between different users have the
following properties.

(i) The autocorrelation of the training sequence for the
ith user satisfies

SHi Si = NIN , (12)

for i = 1, . . . ,nt .

(ii) The cross correlation between training sequences of
the ith and jth users satisfies

SHi S j = N�τj−τi , (13)

where �τj−τi denotes a matrix which results from
cyclically shifting the one elements of the identify
matrix to the right by τj − τi positions.

For SISO-OFDM systems, an efficient CFO estimation
technique is to use periodic training sequences [6, 7]. In
this paper, we extend the idea to multiuser MIMO-OFDM
systems. In this case, each user transmit two periods of
the same training sequences and the received signal over
two periods can be written as (We assume here timing

synchronization is perfect. We also assume a cyclic prefix
with length L is appended to the training sequence during
transmission and removed at the receiver.)

R =
⎡
⎣

E
(
φ1
)
S1 · · · E

(
φnt
)
Snt

e jNφ1E
(
φ1
)
S1 · · · e jNφnt E

(
φnt
)
Snt

⎤
⎦H +N .

(14)

Without loss of generality, we show how to estimate the CFO
of the first user and the same procedure is applied to all the
other users to estimate the other CFO values. Since same
procedure is applied to all the users, the complexity of this
CFO estimation method increases linearly with the number
of users.

We first consider a special case when there are no CFOs
for all the other uses except user one, that is, φm = 0 for
m = 2, . . . ,nt . In this case, we cross correlate the training
sequence of the first user with the received signal as shown
below

Y′
1 =W1R

=
⎡
⎣
SH1 0

0 SH1

⎤
⎦
⎡
⎣

E
(
φ1
)
S1 · · · Snt

e jNφ1E
(
φ1
)
S1 · · · Snt

⎤
⎦H +N

′

=

⎡
⎢⎢⎢⎢⎣

SH1 E
(
φ1
)
S1H1 +

nt∑

m=2
SH1 SmHm

ejNφ1SH1 E
(
φ1
)
S1H1 +

nt∑

m=2
SH1 SmHm

⎤
⎥⎥⎥⎥⎦
+N

′

=

⎡
⎢⎢⎢⎢⎣

SH1 E
(
φ1
)
S1H1 +

nt∑

m=2
�τmHm

ejNφ1SH1 E
(
φ1
)
S1H1 +

nt∑

m=2
�τmHm

⎤
⎥⎥⎥⎥⎦
+N

′
.

(15)

Because �τm is a matrix resulting from cyclic shifting the
identity matrix to the right by τm elements, �τmHm produces
a matrix resulting by cyclic shifting the rows of Hm by τm
elements downwards.

We make sure that the cyclic shift between the m − 1th
and mth users is not smaller than the length of the channel
impulse response, that is, τm − τm−1 ≥ L. Since the channel
has only L multipath components, only the first L rows in
the N × nr matrix Hm are nonzero. Therefore, �τmHm has
all zero elements in the first L rows when τm − τm−1 ≥ L
for m = 2, . . . ,nt and N − τnt ≥ L (notice that to ensure
these conditions hold, we need to have the training sequence
length N ≥ ntL). Hence, the first L rows ofY1 will be free of
the interference from all the other users. Let us define IL as
the first L rows of the N ×N identity matrix; we have

Y1 =
⎡
⎣
IL 0

0 IL

⎤
⎦Y′

1 =
⎡
⎣

ILSH1 E
(
φ1
)
S1H1

e jNφ1ILSH1 E
(
φ1
)
S1H1

⎤
⎦ +N ′′.

(16)

The multiplication of IL is to select the first L rows from
the matrix SH1 E(φ1)S1H1. Because the CFOs of all the other
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users are 0, the shift orthogonality between their training
sequences and user 1’s training sequence is maintained. In
this case, Y1 is free of interferences from the other users.
Following the similar approach as in [23], we can show that
the ML estimate of user 1’s CFO givenY1 can be obtained as

φ̂1 = 1
N
�

⎧
⎨
⎩

L∑

k=1

nr∑

m=1
Y∗1 (k,m)Y1(k +N ,m)

⎫
⎬
⎭, (17)

where �(•) denotes the angle of a complex number. The
computational complexity of this estimator is low.

When the other users’ CFO values are not zero, Y1 is
given by

Y1 =
⎡
⎣

ILSH1 E
(
φ1
)
S1H1

e jNφ1ILSH1 E
(
φ1
)
S1H1

⎤
⎦

+

⎡
⎢⎢⎢⎢⎣

IL

nt∑

m=2
SH1 E

(
φm
)
SmHm

IL

nt∑

m=2
e jNφmSH1 E

(
φm
)
SmHm

⎤
⎥⎥⎥⎥⎦
+N ′′

=
⎡
⎣

ILSH1 E
(
φ1
)
S1H1

e jNφ1ILSH1 E
(
φ1
)
S1H1

⎤
⎦ +V +N ′′.

(18)

From (18), we can see that the orthogonality between the
training sequences from different users is destroyed by the
non-zero CFO values φm. As a result, there is an extra
Multiple Access Interference (MAI) termV in the correlation
outputY1. This interference is independent of the noise and
therefore it will cause an irreducible error floor inMSE of the
CFO estimator in (17). The covariancematrix of theMAI can
be expressed as

E
{
VVH

}
= E

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

IL

nt∑

m=2
SH1 E

(
φm
)
SmHm

IL

nt∑

m=2
e jNφmSH1 E

(
φm
)
SmHm

⎤
⎥⎥⎥⎥⎥⎦

×
⎡
⎣

nt∑

m=2
HH

m S
H
mE

H
(
φm
)
S1IH

L ,

nt∑

m=2
e− jNφmHH

m S
H
mE

H
(
φm
)
S1IH

L

⎤
⎦

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

(19)

We assume the channels between different transmit and
receive antennas are uncorrelated in space and different paths
in the multipath channel are also uncorrelated. We define
pi,m = [pi,m(0), . . . , pi,m(L − 1), 0, . . . 0]T(N×1) as the power

delay profile (PDP) of the channel between themth user and
the ith receive antenna and we have

E
{
HmH

H
n

}
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, m /= n,

diag

⎛
⎝

nr∑

i=1
pi,m

⎞
⎠, n = m.

(20)

Defining Pm = diag(
∑nr

i=1 pi,m), we can rewrite the covariance
matrix of the interference as

E
{
VVH

}
=
⎡
⎣
C D

DH C

⎤
⎦, (21)

where

C = IL

⎧
⎨
⎩

nt∑

m=2
SH1 E

(
φm
)
SmPmSHmE

H
(
φm
)
S1

⎫
⎬
⎭I

H
L ,

D = IL

⎧
⎨
⎩

nt∑

m=2
e− jN2φmSH1 E

(
φm
)
SmPmSHmE

H
(
φm
)
S1

⎫
⎬
⎭I

H
L .

(22)

We can see that the interference power is a function of the
training sequence Sm, the channel delay power profile Pm,
and the CFOmatrices E(φm).

4. Training Sequence Optimization

In the previous section, we showed that the multiple
CFO values destroy the orthogonality among the training
sequences of different users and introduces MAI. In this
section, we study how to find the training sequence such that
the signal to interference ratio (SIR) is maximized.

4.1. Cost Function Based on SIR. From the signal model in
(18), we can define the SIR of the first user as

SIR1 =
tr
[
IL

{
SH1 E

(
φ1
)
S1P1SH1 E

H
(
φ1
)
S1
}
IH
L

]

tr
[
IL

{∑nt
m=2 S

H
1 E
(
φm
)
SmPmSHmEH

(
φm
)
S1
}
IH
L

] .

(23)

From the denominator of (23), we can see that the total
interference power depends on the CFO values φm of all
the other users. As a result, the optimal training sequence
that maximizes the SIR is also dependent on φm for m =
1, . . . ,m. In this case, even if we can find the optimal training
sequences for different values of φm, we still do not know
which one to choose during the actual transmission as the
values φm are not available before transmission. This makes
(23) an unpractical cost function.

Let us look at user 1 again. In the absence of the CFO,
the signal from user 1 is contained in the first L rows
of the received signal Ỹ1. When the CFO is present, such
orthogonality is destroyed and some information from user
1 will be “spilled” to the other rows of Ỹ1, thus causing
interference to the other users. For user 1, therefore, to keep
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the interference to the other users small, such “spilled” signal
power should be minimized. On the other hand, the useful
signal we used to estimate the CFO of user 1 is contained
in the first L rows of Ỹ1 and such signal power should
be maximized. Therefore, considering user 1 alone, we can
define the signal to “spilled” interference (to other users)
ratio for user 1 as

SIR1 =
tr
[
IL

{
SH1 E

(
φ1
)
S1P1SH1 E

H
(
φ1
)
S1
}
IH
L

]

tr
[
IL

{
SH1 E

(
φ1
)
S1P1SH1 EH

(
φ1
)
S1
}
IL

H
] , (24)

whereIL is the complement ofIL, that is,IL is the lastN−L
rows of the N ×N identity matrix.

The denominator in (24) can be expressed as

tr
[
IL

{
SH1 E

(
φ1
)
S1P1SH1 E

H
(
φ1
)
S1
}
IL

H
]

= N tr
[
S1P1SH1

]

− tr
[
IL

{
SH1 E

(
φ1
)
S1P1SH1 E

H
(
φ1
)
S1
}
IL

H
]

= N 2 tr[P1]−tr
[
IL

{
SH1 E

(
φ1
)
S1P1SH1 E

H
(
φ1
)
S1
}
IL

H
]
.

(25)

Substituting this into (24), we have

SIR1 =
tr
[
IL

{
SH1 E

(
φ1
)
S1P1SH1 E

H
(
φ1
)
S1
}
IH
L

]

N 2 tr[P1]− tr
[
IL

{
SH1 E

(
φ1
)
S1P1SH1 EH

(
φ1
)
S1
}
IH
L

] .

(26)

Now we can define the training sequence optimization
problem as

Sopt = argmax
S̃1

SIR′1

= argmax
S̃1

tr
[
IL

{
S̃H1 E

(
φ1
)
S̃1P1SH1 E

H
(
φ1
)
S̃1
}
IH
L

]

�− tr
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IL
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S̃H1 E

(
φ1
)
S̃1P1S̃H1 EH

(
φ1
)
S̃1
}
IH
L

]

= argmin
S̃1

�− tr
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S̃H1 E

(
φ1
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S̃1P1S̃H1 EH

(
φ1
)
S̃1
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]
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(
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(
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)
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L

]

= argmin
S̃1

⎧
⎨
⎩

�

tr
[
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S̃H1 E

(
φ1
)
S̃1P1S̃H1 EH

(
φ1
)
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}
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L

]−1
⎫
⎬
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= argmax
S̃1

{
tr
[
IL

{
S̃H1 E

(
φ1
)
S̃1P1S̃H1 E

H
(
φ1
)
S̃1
}
IH
L

]}
,

(27)

where � denotes N 2 tr[P1].
From (27), we can see that the optimal training sequence

depends on the power delay profile P1 and the actual CFO
value φ1. The channel delay profile is an environment-
dependent statistical property that does not change very
frequently. Therefore, in practice, we can store a few training
sequences for different typical power delay profiles at the
transmitter and select the one that matches the actual

Table 1: Number of possible Frank-Zadoff and Chu sequences for
different sequence lengths.

N Frank-Zadoff Sequence Chu Sequence

16 2 8

36 2 12

64 4 32

channel delay profile. On the other hand, it is impossible
to know the actual CFO φ in advance to select the optimal
training sequence. In the following, we will propose a new
cost function based on SIR approximation which can remove
the dependency on the actual CFO φ1 in the optimization.

4.2. CFO Independent Cost Function. Let us assume that the
CFO value φ is small. In this case, we can approximate the
exponential function in the original cost function by its first-
order Taylor series expansion, that is, exp( jφ) ≈ 1 + jφ.
Therefore, we have

E
(
φ1
) ≈ IN + jφ1N, (28)

where N is a diagonal matrix given by N = diag[0, 1,
2, . . . ,N − 1]. Using this approximation, we get

SHE
(
φ
)
SPSHEH

(
φ
)
S ≈ SH

(
I + jφN

)
SPSH

(
I− jφN

)
S

= P + jφSHNSP− jφPSHNS

+ φ2SHNSPSHNS.
(29)

Here we omitted the subscript 1 for the clearness of the
presentation. Therefore, the optimization problem can be
approximated as

Sopt = argmax
S̃

{
tr
[
IL

(
P + jφS̃HNS̃P− jφPS̃HNS̃

+φ2S̃HNS̃PS̃HNS̃
)
IH
L

]}
.

(30)

Notice that the first term P in the summation is independent
of S and hence can be dropped. It can be shown that the
diagonal elements of the second term jφSHNSP are constant
and independent of S. Therefore, tr[IL( jφSHNSP)IH

L ] is
also independent of S and hence can be dropped from
the cost function. The same applies to the third term
− jφPSHNS, which is the conjugate of the second term.
Therefore, the final form of the optimization using Taylor’s
series approximation can be written as

Sopt = argmax
S̃

{
tr
[
IL

(
S̃HNS̃PS̃HNS̃

)
IH
L

]}
. (31)

The advantage of (31) is that the optimization problem is
independent of the actual CFO value φ as long as the value of
φ is small enough to ensure the accuracy of the Taylor’s series
approximation in (28).

Now we look at how we can obtain the optimal CAZAC
training sequences for the cost function (31). In particular,
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we look at three classes of CAZAC sequences, namely, the
Frank-Zadoff sequences [18], the Chu sequences [19], and
the S&H sequences [20]. The Frank-Zadoff sequences exist
for sequence length N = K2 where K is any positive integer.
For N = 16, all elements of the Frank-Zadoff sequences are
BPSK symbols while for N = 64, all elements are BPSK and
QPSK symbols. Therefore, the advantage of the Frank-Zadoff
sequences is that they are simple for practical implemen-
tation. The disadvantage is that there are limited numbers
of sequences available for each sequence length as shown in
Table 1. The advantage of Chu sequences is that the length
of the sequence can be an arbitrary integer N . Compared to
Frank-Zadoff sequences, there are more sequences available
for the same sequence length as shown in Table 1. For both
Frank-Zadoff and Chu sequences, there are a finite number
of possible sequences for each N . The optimal sequence can
be found by using a computer search using the cost function
(31). The S&H sequences only exist for sequence length N =
K2. The sequences are constructed using a sizeK phase vector

exp( jθ) = [e jθ1 , . . . , e jθK ]
T
. Therefore, the optimization of

training sequence S is equivalent to the optimization on the
phase vector θ given by

θ = argmax
θ̃

{
J
(
θ̃
)}

with

J
(
θ̃
)
= tr

[
IL

(
SH
(
θ̃
)
NS
(
θ̃
)
PSH

(
θ̃
)
NS
(
θ̃
)
IH
L

)]
.

(32)

Notice that this is an unconstrained optimization problem
and each element of the phase vector can take any values
in the interval [0, 2π). From the construction of the S&H
sequence [20], it can be easily shown that S(θ+ψ) = e jψS(θ),
where θ + ψ = [θ1 + ψ, . . . , θK + ψ]T . Hence, from (32), we
can get J(θ) = J(θ + ψ). By letting ψ = −θ1, the original
optimization problem over the K-dimension phase vector
θ = [θ1, θ2, . . . , θK ]

T can be simplified to the optimization
over a (K−1)-dimension phase vector θ′ = [0, θ′1, . . . , θ

′
K−1]

T

where θ′k = θk+1 − θ1.
There are an infinite number of possible S&H sequences

for each sequence length; it is impossible to use exhaustive
computer search to obtain the optimal sequence.We resort to
numerical methods and use the adaptive simulated annealing
(ASA) method [21] to find a near-optimal sequence. To test
the near-optimality of the sequence obtained using the ASA,
for smaller sequence lengths of N = 16 and N = 36, we use
exhaustive computer search to obtain the globally optimal
S&H sequence. The obtained sequence through computer
search is consistent with the sequence obtained using ASA
and this proves the effectiveness of the ASA in approaching
the globally optimal sequence.

5. Simulation Results

In this section, we use computer simulations to study
the performance of the CFO estimation using CAZAC
sequences and demonstrate the performance gain achieved
by using the optimal training sequences. In the simulations,
we assume a multiuser MIMO-OFDM systems with two
users. (In multiuser MIMO-OFDM systems, the number
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Figure 2: MSE of CFO estimation usingN = 32 Chu sequences and
IEEE 802.11n STF for uniform power delay profile.
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Figure 3: Comparison of CFO estimation using N = 31 Chu
sequences andm sequence for uniform power delay profile.

of receive antennas has to be no less than the number
of transmit antennas from all users. Due to the practical
limitations, it is not possible to implement too many base-
station antennas. Therefore, to accommodate more users, the
multiuserMIMO-OFDMsystems can be used in conjunction
with other multiple access schemes such as TDMA and
FDMA.) Each user has one transmit antenna and the base-
station has two receive antennas. We simulate an OFDM
system with 128 subcarriers. The CFO is normalized with
respect to the subcarrier spacing. Unless otherwise stated, the
actual CFO values for the two users are modeled as random
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Figure 4: Comparison of CFO estimation using different N = 36
CAZAC sequences for L = 18 channel for uniform power delay
profile.

variables uniformly distributed between [−0.5, 0.5]. The
mean square error (MSE) of the CFO estimation is defined
as

MSE = 1
Ns

Ns∑

i=1

(
φ̂− φ

2π/M

)2

, (33)

where φ̂ and φ represent the estimated and true CFO’s,
respectively, M is the number of subcarriers, and Ns denotes
the total number of Monte Carlo trials.

First we compare the performance of CFO estimation
using CAZAC sequences with the following two sequences
which also have good autocorrelation properties:

(1) IEEE 802.11n short training field [3],

(2) m sequences [22].

In the simulations, we use the 802.11n STF for 40MHz
operations which has a length of 32. For the m sequence, we
use a sequence length of 31. To provide a fair comparison,
we compare the performance using the 802.11n STF with a
length-32 Chu (CAZAC) sequence generated by [19]

s(n) = exp

[
jπ

(n− 1)2

N

]
, (34)

and we compare the performance with them sequence using
a length-31 Chu sequence generated by [19]

s(n) = exp
[
jπ

(n− 1)n
N

]
. (35)

The performance of CFO estimation using the 802.11n STF
and N = 32 Chu sequence is shown in Figure 2. Here we
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Figure 5: Comparison of CFO estimation using different N = 36
CAZAC sequences for L = 18 channel for exponential power delay
profile.
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Figure 6: Comparison of CFO estimation using different length of
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use 16-tab multipath channels and the circular shift between
the training sequences of the two users τ2 = 16. To gauge
the performance of the CFO estimation, we also included the
single-user CRB in the comparison. The single-user CRB is
obtained by assuming no MAI and can be shown to be [24]

CRB = M2

4π2nrN 3γ
, (36)
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Figure 7: Comparison of useful signal and interference power for different sequence lengths (uniform power delay profile).

where γ is the SNR per receive antenna andM is the number
of subcarriers. From the results, we can see that the CFO
estimation using the 802.11n STF has a very high error
floor above MSE of 10−3. The performance using CAZAC
sequences is much better. In low tomedium SNR regions, the
performance is very close to the single-user CRB. An error
floor starts to appear at SNR of about 25 dB. The error floor
is around 100 times smaller compared to the error floor using
the 802.11n STF.

The performance of the CFO estimation using the N =
31m sequence and Chu sequence is shown in Figure 3. Here
to satisfy the condition of N ≥ ntL, we use 15-tab multipath
fading channels and the circular shift between user 1 and
2’s training sequence is also set to 15. Again using CAZAC
sequences leads to a much better performance. We can see
that in low to medium SNR regions, their performance is
very close to the single-user CRB. The error floor using
CAZAC sequences is more than 10 times smaller than that
using them sequence.

The performance of CFO estimation using different
CAZAC sequences is compared in Figure 4. Here we fix
the sequence length to 36 and the multipath channel has
L = 18 tabs with uniform power delay profile. Comparing
the performances of optimal Chu sequence and the optimal
Frank-Zadoff sequence, we can see that the error floor of
the Chu sequence is smaller. This is because there are more
possible Chu sequences compared to Frank-Zadoff sequences
and hence more degrees of freedom in the optimization.
However, comparing the performance of optimal Chu
sequence with that of the optimal S&H sequence, we can see
that the additional degrees of freedom in the S&H sequence

do not lead to significant performance gain. Compared to the
performance using a randomly selected CAZAC sequence,
we can see that the error floor using an optimized sequence
is significantly smaller. Simulations were also performed in
multipath channels with exponential power delay profile
and root mean square delay spread equal to 2 sampling
intervals. The other simulation parameters are the same as
in the uniform power delay profile simulations. Simulation
results in Figure 5 show again that the error floor in CFO
estimation can be significantly reduced when using the
optimized training sequence.

From both Figures 4 and 5, we can see that the gain of
using S&H sequences compared to Chu sequences is really
small. Therefore, in practical implementation, it is better to
use the Chu sequence because it is simple to generate and
it is available for all sequence lengths. Another advantage of
the Chu sequence is that the optimal Chu sequence obtained
using cost function (31) is the same for the uniform power
delay profile and some exponential power delay profiles we
tested. Hence, a common optimal Chu sequence can be used
for both channel PDP’s. This is not the case for the S&H
sequences.

Figure 6 shows the performance of CFO estimation
for different lengths of optimal Chu sequences. Here we
fix the channel length to L = 18. From the previous
sections, to accommodate two users, the minimum sequence
length is ntL. Therefore, we need Chu sequences of length
at least 36. We compare the performance of the optimal
length-36 sequence with that of optimal length-49 and
length-64 sequences. For the length-49 sequence, the cyclic
shift between training sequence of two users is 24, while
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for length-64 sequence, the cyclic shift is 32. From the
comparison, we can see that there are two advantages using a
longer sequence. Firstly, in the low to medium SNR regions,
there is SNR gain in the CFO estimation due to the longer
sequences length. Secondly, in the high SNR regions, the
error floor using longer sequences is much smaller. This can
be explained using Figure 7. In Figure 7, we plotted the signal
power for user 1 and user 2 after the correlation operation
in (15) for sequence length of 36 and 64. In the absence
of the CFO, user 1’s signal should be contained in the first
18 samples (L = 18). However, due to CFO, some signal
components are leaked into the other samples and become
interference to user 2. For the case of L = 18 and N = 36,
all the leaked signals from user 1 become interference to
user 2 and vice versa. If we use a longer training sequence,
there is some “guard time” between the useful signals of
the two users as shown in Figure 7 for the N = 64 case.
As we only take the useful L samples for CFO estimation
(16), only part of the leaked signal becomes interference.
Hence, the overall SIR is improved. The cost of using longer
sequences is the additional training overhead that is required.
Therefore, based on the requirement on the precision of
CFO estimation, the system design should choose the best
sequence length that achieves the best compromise between
performance and overhead.

6. Conclusions

In this paper, we studied the CFO estimation algorithm
in the uplink of the multiuser MIMO-OFDM systems. We
proposed a low-complexity sub-optimal CFO estimation
methods using CAZAC sequences. The complexity of the
proposed algorithm grows only linearly with the number
of users. We showed that in this algorithm, multiple CFO
values from multiple users cause MAI in the CFO estima-
tion. To reduce such detrimental effect, we formulated an
optimization problem based on the maximization of the
SIR. However, the optimization problem is dependent on
the actual CFO values which are not known in advance.
To remove such dependency, we proposed a new cost
function which closely approximate the SIR for small CFO
values. Using the new cost function, we can obtain optimal
training sequences for a different class of CAZAC sequences.
Computer simulations show that the performance of the
CFO estimation using CAZAC sequence is very close to the
single-user CRB for low to medium SNR values. For high
SNR, there is an error floor due to the MAI. By using the
obtained optimal CAZAC sequence, such error floor can be
significantly reduced compared to using a randomly chosen
CAZAC sequence.
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