Hindawi Publishing Corporation

EURASIP Journal on Wireless Communications and Networking
Volume 2011, Article ID 629526, 10 pages
doi:10.1155/2011/629526

Research Article

Development and Evaluation of a Python Telecare System Based
on a Bluetooth Body Area Network

M. J. Moroén, A. Gomez-Jaime, J. R. Luque, and E. Casilari

Departamento de Tecnologia Electrénica, ETS de Ingenieria de Telecomunicacién, Universidad de Malaga, Spain

Correspondence should be addressed to M. J. Mor6n, mjmoron@uma.es

Received 31 October 2010; Revised 28 December 2010; Accepted 31 December 2010

Academic Editor: Arie Reichman

Copyright © 2011 M. J. Mordn et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents a prototype of a telemonitoring system, based on a BAN (Body Area Network) that is integrated by a
Bluetooth (BT) pulse oximeter, a GPS (Global Positioning System) unit, and a smartphone. The smartphone is the hardware
platform for running a Python software that manages the Bluetooth piconet formed by the sensors. Thus the smartphone forwards
the data received from the Bluetooth devices, encoded into JSON (JavaScript Object Notation), to a central server. This server
provides universal access to the information of the patient’s location and health status through a web application based on AJAX
(Asynchronous JavaScript and XML) technology. Additionally, for the described prototype, the study presents some performance
analyses about several topics that are of great interest for the applicability of the prototype: (i) the technique used to forward the
patient’s location and health status, (ii) the power consumption of the smartphone (which is compared with the measurements of
an equivalent software developed for Java Micro Edition platform), and (iii) the web browser compatibility of the web application

developed for the control and monitoring of the patients.

1. Introduction

In the context of e-Health (i.e., the application of infor-
mation and communication technologies to the health
area), remote monitoring is one of the most representative
applications and one of the e-Health services which implies
more technologic and logistical challenges.

The term “chronic diseases” (applied to disorders such
as diabetes, asthma, cardiovascular diseases, cancer, or
depression) is employed to refer to health problems that,
while not being transmissible diseases, persist over time and
require some degree of care. Epidemiological data from 2000
indicate that, globally, nontransmissible diseases and mental
disorders have entailed a mortality rate of 59% and 46% of
the total morbidity [1]. Additionally, there are predictions
that, for 2020, both types of conditions will lead to a
78% of the global morbidity in developed countries [1].
Moreover, it cannot be neglected that these diseases impact
not only on the health of the population but also on the
economic resources of the citizens and states. For example,
in the United States where health cost per capita is higher
than the average of other developed countries [2], the total

expenditure on health due to chronic diseases increased from
78% in 2002 up to 84% in 2009 [3, 4].

The efficient management of chronic diseases represents
a challenge due to the significant impact on the population
health (quantified in terms of morbidity and mortality rates)
and on health expenditure. In this scope, both European
countries and the United States have deployed new and more
efficient health care models, focused on the prevention of
chronic diseases and their consequences. Although there are
different methods, specifically conceived to manage every
kind of disease, all of them require the active involvement
of the patient for the control of the symptoms and the
corresponding therapy as well as for the tracking of the
evolution accomplished by the physicians (normally during
a lengthy period). This vision of the health care implies
a close communication with the patient and, therefore, a
greater number of home visits, which obviously increase
the cost of the sanitary system. However, the application of
information and communication technologies, and specially
home telecare or home telemonitoring, allows extending the
health care outside the hospital by virtual medical visits,
combining the tracking of the patients with a cost reduction.

2 EURASIP Journal on Wireless Communications and Networking

(body area network)

3

Control and monitoring units
(CMU)

!I_»F il

Central control
server

(CCS)

FIGURE 1: Architecture of monitoring system.

Besides, the information retrieved from the continuous
monitoring of patients during long periods represents a
key tool for the advances in the diagnosing of a disease,
for the description of its evolution and for the forecast
of possible complications, including the early prevention
of the occurrence of severe events that may require the
hospitalization [5]. At last, the implantation of this new
model of care would bring about the following benefits: an
improved quality of life of the patients, a decrease in the rate
of hospitalizations, fewer outpatient visits, and an increased
patient satisfaction [6].

Up to now, the advantages of telemonitoring for chronic
diseases care have been exposed. Nevertheless, the usefulness
of telemonitoring is more evident when mobile communica-
tions and wireless technologies are combined. Traditionally,
the medical telemonitoring systems have consisted of home
telecare units that send biosignals or medical alarms to the
medical premises from a PC connected to the fixed telephony
network [7]. However, the progress in the field of smart
medical sensors together with the expansion of wireless and
mobile communications, has enabled the creation of new
monitoring systems which allows increasing the mobility and
the comfort of the patients.

These systems are normally based on the usage of wireless
sensors and a smartphone or PDA (Personal Digital Assis-
tant), which is in charge of forwarding the data received by
the sensors, to the monitoring point [8—10]. The application
of these technologies to telemonitoring is known as m-
Health (mobile health) or pervasive-Health [11, 12], in a
process in constant evolution that leads to the concept
of u-Health or ubiquitous-Health [13]. The ubiquitous
telemonitoring involves a significant improvement in the
management of chronic conditions, allowing continuous and
real-time monitoring during the normal patient activity. The

aim under the u-Health concept is to provide the telemon-
itoring service from any place and in any time, without
limiting it to the home environment. Certainly, as noted in
[14], the chronic care must be provided in these conditions.

The scientific literature has paid a lot of attention to m-
Health systems. The research jobs presented in [10, 15-20],
focus on the telemonitoring of patients with chronic diseases,
by employing wireless technologies. From these and other
existing works we can point out that remote monitoring
systems represent one of the most promising technological
research areas in the health context, especially because its
application to the management of chronic diseases may have
a significant economic impact. However, the results shown
in several systematic reviews of published articles (evidence-
based studies) conclude that, although the telemonitoring of
patients represents a promising solution for the management
of chronic diseases, more trials are needed to assess its
economic viability and its applicability in real scenarios [21-
23]. In fact, besides the need for empirical studies to appraise
the cost-effectiveness (as in the case of the work presented
in [22]), the testing with actual patients (see the study in
[24]) and the assessment of the functionalities of the involved
technologies [25] should not be disregarded. This paper
focuses on this assessment. Specifically, the paper presents
and evaluates a prototype of a monitoring system based
on a Body Area Network (BAN) worn by the patient. This
BAN integrates Bluetooth sensors, managed by a Python
[26] application that runs on a smartphone. The patient
is monitored through a web application, based on AJAX
(Asynchronous JavaScript and XML) [27] technology.

The paper is structured as follows. Section 2 summarizes
the objectives of the proposed architecture. The explana-
tion of the developed prototype is detailed on Section 3.
Section 4 includes the tests which have been executed to

EURASIP Journal on Wireless Communications and Networking 3

evaluate the power consumption, under different conditions
of monitoring, and the web browser compatibility of the
web application intended for remote monitoring. Finally,
Section 5 recapitulates the conclusions and presents the
current research lines of the on-going work.

2. Objectives

One of the architectures usually employed for monitoring
systems is based on wireless short range networks: BANs
(Body Area Networks) or PANs (Personal Area Networks).
Bluetooth [28] and 802.15.4/ZigBee [29] are the most
widely used standards for the deployment of these types of
networks. In the typical topology defined for short-range
wireless networks, a central element (coordinator, master
etc.) is normally in charge of coordinating the network and
forwarding the information sent by the sensors to the remote
monitoring point. Additionally, in the monitoring center, the
data received from the BAN or PAN networks are stored
and processed in order to detect and notify risk events (e.g.,
medical alarms) [30]. Some examples of research jobs and
even commercial products, which employ telemonitoring
applications based on short-range wireless networks, are
presented in [14, 31-34].

In this paper, we describe and analyze a prototype
of a biomedical monitoring system with an architecture
based on a Bluetooth BAN. The system is deployed without
requiring the development of any specific hardware, just
combining commercial Bluetooth vital parameter sensors
and a conventional smartphone.

In contrast with other studies describing similar experi-
ences, we pay special attention to the evaluation of specific
issues which may impact on the system operation. In
particular we focus our analysis on (i) the performance
evaluation of the technique used by the network to forward
the patient’s location and health status, (ii) the power
consumption of the smartphone that is used to forward the
information received from a Bluetooth sensor, and (iii) the
browser compatibility of the web application developed for
the remote and real-time tracking of the patient.

3. System Description

The developed prototype of the monitoring system is
integrated by the next subsystems, as shown in Figure 1.

(i) A Bluetooth BAN which is formed by a pulse-
oximeter, a GPS receiver, and a smartphone. The
smartphone along with the Python-developed con-
trol application acts as the Node of Control (NC) or
master node (coordinator) of the Bluetooth piconet.

(ii) A Central Control Server (CCS) consisting in a web
server with Python support, which centralizes the
monitoring information received from the NC.

(iii) The remote Control and Monitoring Units (CMUs):
a web application in charge of the control and
monitoring of the BAN network. The developed web
application should run in any conventional computer
or mobile device with an Internet connection and a
web browser.

All these components of the system and the communica-
tions interfaces between them are described in the following
sections.

3.1. Architecture

3.1.1. BAN. The Body Area Network is integrated by the
following components.

(i) A Nonin 4100 [35] pulse-oximeter and a GPS
receiver, both provided with Bluetooth interfaces.

(ii) The Nonin 4100 pulse-oximeter measures several
vital parameters, such as the heart rate (HR), the
saturation of peripheral oxygen (SPO2), and the
perfusion level. The pulse-oximeter supports two
operational modes: (i) under simple mode 1, the
device sends only 3 octets per second with basic infor-
mation about the health status (basically the SPO2
value and the heart rate); (2) under the verbose mode
2, the device transmits three packets per second.
Every packet includes 25 five-octet frames, which
encapsulate the information of the plethysmogram,
two different averaged estimations of the HR and the
SPO2, and the battery status. On the other hand,
the GPS receiver has been included considering the
application of the system in a real scenario. The GPS
would allow the emergency team to locate the patient
in case of detecting alarm conditions.

(iii) A Nokia smartphone with Symbian OS S60 [36]
(Series 60 User Interface), Python support, and Blue-
tooth and Wi-Fi [37] interfaces has been employed
as the hardware platform for the NC component.
The main reason to select a smartphone is the wide
diffusion of these handheld devices in the market
of consumer electronics. In fact, the total sales of
smartphones in 2009 have attained a 36.4% of the
global sales of mobile phones [38]. Besides, another
advantage of using smartphones is the familiarity of
general users with these electronic gadgets as well as
the quick and easy installation of applications, such
as what is concluded in [14].

For the NC component a Python application, whose
graphical interface is shown in Figure 2, has been developed.
This application provides the following functionalities:

(1) local configuration of the BAN (selection of sensors
to be monitored),

(ii) establishment and management of Bluetooth com-
munications with the BT devices of the BAN,

(iii) local monitoring: For this mode of operation, the
application only shows a screen depicting the data
received from the sensors,

(vii) remote monitoring: the application connects with the
CCS server in order to forward the data measured by
the sensors,

4 EURASIP Journal on Wireless Communications and Networking

x BAN Monitor
Sensor: Nonin

Heart Rate: 52

Sp02: 97

ALARM OFF HR in range SP in range
Sensor: BTGPS

Latitude: 3645.527 1N

Longitude: 00352.0207W

Opdiones Salir
F1GURE 2: View of the Python application developed for NC (node
of control) component.

(iv) management and execution of the configuration
commands which are received from the CMU unit
through the CCS,

(v) detection and notifications of events that occur when
the heart rate (HR) and saturation of peripheral
oxygen (SPO2) are out of the normality range (whose
values can be remotely programmed).

3.1.2. Central Control Server (CCS). The internal structure
of the CCS server is shown in Figure 3. The main component
is the PyMHealth application, developed with Python pro-
gramming language. This application has been deployed on
CherryPy [39], an object-oriented HTTP (Hyper Text Trans-
fer Protocol) [40] framework encoded in Python, which
provides both a web server and an application server. Besides,
as persistent layer, SQLObject [41] has been employed as
it supplies a common object-oriented interface for different
database management systems (DBMSs): PostgreSQL, MS
SQL Server, SQLite, Sybase, and MySQL. Particularly, in a
first prototype, MySQL [42] has been selected as DBMS, due
to its simplicity and because its source code is available under
the terms of the GNU General Public License [43].
The other components in the CCS are the following:

(i) An open source MQB (Message Queue Broker) that
fully implements the Java Message Service 1.1 (JMS)
[44], Apache ActiveMQ [45]: it has been used to
forward the data of the patients to the CMUs. For
the communication of the PyMHealth application
with this broker the messaging protocol STOMP
(Streaming Text Orientated Messaging Protocol) [46]
has been chosen.

(ii) A comet server, Orbited [47]: this element allows
that external applications interact with the messaging
broker with HTTP protocol. Comet servers are web
servers that permit sending data to a web client as
soon as these data are generated, without waiting for
any HTTP request from the client.

3.1.3. Control and Monitoring Units (CMUs). For the CMU
component a web application, coded in JavaScript [48] and
based on AJAX, has been developed. The advantage of using
JavaScript is that the most popular web browsers include a
native implementation of this language. Therefore, CMUs
do not require the installation of any additional software or
plug-in. On the other hand, AJAX technology enables CMUs
to establish asynchronous HTTP connections in order to
obtain data from the patients. In this way, the data visualized
in the browser are automatically updated, without refreshing
the web page continuously.

The CMUs retrieve the patient’s information by accessing
the web pages which are dynamically executed and generated
by the CCS server. The main page is the DHTML (Dynamic
Hyper Text Markup Language) [49] page “Monitor.htm,”
which is depicted in Figure 4. This page displays the mon-
itored biosignals while it offers a simple interface to set up
the configurable control parameters of the sensor. Thus, this
page contains all the logic required by the communications
with the CCS server for the reception and representation
of the data collected by the sensors, as well as for sending
configuration commands. Depending on the nature of the
monitored signals, this page is automatically updated by
using JavaScript routines and the DOM (Document Object
Model) [50] interface. Specifically, aiming at obtaining the
data corresponding to a particular sensor, the JavaScript
object XMLHttpRequest [51] is employed. The execution
of this object takes into account the differences between
the most popular web browsers (so that the CMUs can
be deployed on any common browser in a transparent
way for the user). For example, the initial versions of
Microsoft Internet Explorer [52] do not include a native
implementation of XMLHttpRequest interface. In this case,
the program automatically imports the ActiveX [53] object
from the Microsoft XML Parser (MSXML) library [54].

3.2. Interfaces between Subsystems

3.2.1. Communication between the Node of Control (NC) and
the Central Control Server (CCS) . For the communication
between the NC and CCS components, based on HTTP
Protocol, two channels are employed.

(i) Data Channel. The goal of this channel is to collect
in the CCS the biosignal data that are forwarded by
the NC. The NC can be optionally configured to
transmit continuously. Thus, for any packet received
from a device connected to the BAN, the NC
sends to the CCS a POST HTTP message, whose
body encapsulates the sensor data. Conversely, if the
transmission has been set in a periodic basis (with a
configurable period), all the packets received during
the last period are assembled to be transmitted in
a single HTTP request. In any case, the data are
encoded into JSON (JavaScript Object Notation)
[55], which is a text format based on a subset of
JavaScript literals (Standard ECMA-262 [56]). JSON
is independent from the programming language but

EURASIP Journal on Wireless Communications and Networking 5

Database

MySaL”
- -

Message queue broker
ActiveMo

‘ Object relational mapper
SQLObject

g

2

g

= PyMHealth STOMP

=3 client

o N

- 2

TCP interface

[{ Application server

TCP interface

@/ CherryPy $ Comet server
HTTP HTTP comet
(polling) HTTP interface (pushing)
| Firewall 1

Frcure 3: CCS server structure.

it shares notations with some languages, including
Python. JSON has been selected instead of other
formats, such as XML (eXtensible Markup Language)
[57], due to its simplicity for encoding/decoding and
because it is lighter in weight than XML.

(ii) Control Channel. This channel is conceived for the
transmission/reception of configuration commands.
By means of this channel the NC component peri-
odically sends GET HTTP requests to the CCS in
order to get the pending configuration commands.
The frequency for this polling process is also a
configurable parameter of the NC.

The way in which HTTP is utilized differs for these
channels.

(i) In the case of the data channel, standard HTTP
mode is used for periodic transmissions. On the
other hand, for continuous transmissions, HTTP
pipelining mode is employed. This nonblocking
mode allows sending several consecutive requests
without having to wait for the corresponding HTTP
responses from the server. For this purpose, pipelin-
ing mode requires that the underlying HTTP con-
nection operates in persistent mode. Consequently,
the latency is minimized as the handshake and the
overhead of establishing a new connection for each
request is eliminated. Thus, the reuse of existing
connections significantly improves the performance
of the application.

(ii) The Control Channel utilizes the HTTP polling
mode. This mode permits the client to query the
server at regular intervals in order to get data which
are asynchronously updated in the server.

The management of both data and control channels is
centralized in a dedicated thread formed by three active

objects. Two of them are responsible for the data channel:
one is only in charge of sending HTTP requests, while the
other one receives the responses from the server. Concur-
rently, the third active object periodically polls the server
querying about the pending commands.

3.2.2. Communication between the Central Control Server
(CCS) and the Control and Monitoring Units (CMUs). To
acquire the data received by the CCS from the NC, the CMU
units could periodically send HTTP requests to the server. In
that case, the period of these requests should be short enough
to guarantee the real-time signal monitoring. However, this
conventional method could negatively impact on the system
performance in several respects: less available bandwidth,
more battery consumption (which would entail a serious
problem for portable CMU units) and an unnecessary
overload of the server. Alternatively, in order to avoid these
drawbacks, the data received from NC are asynchronously
forwarded by the CCS to the CMU units. For this purpose,
the publish/subscribe model, also known as streaming HTTP,
has been adopted. This communication model is a func-
tionality provided by the Orbited daemon, a Comet server
based on Twisted [58] (a Python event-driven framework for
asynchronous communication between processes).

As it has been previously mentioned, the MQB Apache
ActiveMQ and STOMP protocol are employed to forward
to the CMU units the data of the sensors. Specifically, the
PyMHealth application is responsible for publishing the data
received from the NC at the queue of the MQB identified as
/topic/ban/sensor, where ban and sensor parameters, respec-
tively, define the source BAN and sensor from which the
data are being received. Besides, depending on the data to be
monitored, every CMU has to subscribe to the corresponding
queue. So, whenever a new STOMP message is received,
a JavaScript function is invoked to extract data, which are
encoded into JSON.

The STOMP client used by PyMHealth application to
publish the data is a Pyhton client, while the client program

6 EURASIP Journal on Wireless Communications and Networking

NONIN Remote Monitor

Patient:
Alejandro

Sensor Data:

HR:[B1_|spoz:[ss |

E-HR: B9 HE-D: |64 E-HR-D: |65

3p02D:[% |SpOZFast: (36 |SpOZBE: E-3p02 E-Sp02-D:
ALARM: & HROUT OF RANGE: O 8p02 OUT OF RANGE: &

Pleth Waveform:

255
204
153
102

51
0

0 30 60 90 120 150 180

210 240 270 299

Control Panel:

- Chonnel Subscription:

[Connect][Discannect]Name: guest |Passw’nrd |guasl
destination: | ftopic/ale/Monin
- Commands:

[Change transmission mode:]Mode:\DZ \
[Change Masimum HRt JHR Max, ‘

Change Minimum Sp02 [BpO32 Mm:l:l

Figure 4: DHTML page “Monitor.htm”.

that is executed on the CMU side is a JavaScript pull client
provided by the Orbited daemon.

Additionally, three specific control commands have been
contemplated to remotely configure the pulse-oximeter.
These commands can be selected by the user in the DHTML
page “Monitor.htm” (as it is represented in Figure 4). These
commands define the operational mode of the sensor and the
alarm thresholds for the HR and the SPO2 signals. Moreover,
a general command has been included to configure the data
transmission in a continuous or periodic basis. The CMU
unit generates an HTTP POST request by using JavaScript
object XMLHttpRequest. This POST HTTP request, sent
to the CCS server, encapsulates the commands (which are
encoded into JSON) together with the identifier of the BAN
which the commands are targeted to.

4. Evaluation Tests

This section includes (i) the performance evaluation of the
HTTP pipelining mode, used by the NC component to
forward the patient’s location and health status; (ii) the
power consumption tests which are carried out for the NC
component, under different monitoring conditions; (iii) the
compatibility tests that have been executed for the CMU
units with different browsers.

4.1. Performance Evaluation of HITP Pipelining. The goal
is to evaluate the performance of the HTTP pipelining
mode, used by the NC component to forward the patient’s
data to the CCS. The evaluation has been carried out in
terms of Round-Trip delay Time (RTT), by comparing the
pipelining technique with other HTTP modes. For this test,
several Python client applications have been developed for
the following operating HTTP modes.

(i) HTTP Socket. The socket directly sends HTTP mes-
sages through the TCP interface implemented by
socket.py.

(ii) HTTP Nonpersistent. This mode employs the
httplib.py Python module for the standard
distribution of information with non-persistent
connections.

(iii) HTTP Persistent. It also uses the httplib.py module.
However, in this case the TCP connection is not
closed until the HTTP connections have concluded.

(iv) HTTP Pipelining (Header). a variant of the previous
mode that applies pipelining to the header.

(v) HTTP Pipelining. It employs the httplib.py module, at
lowlevel, to implement the pipelining mode.

Under all these modes, the client establishes a sequence
of HTTP connections, measuring the resulting RTT. By
averaging successive iterations of the tests, the measured
average RTT for every client is graphically represented in
Figure 5. The graph also shows the results obtained through a
raw TCP socket (which obviously involves less overhead and
less delay). As it can be observed, the pipelining technique
is the most efficient method when compared with the other
methods provided by the httplib.py module.

4.2. Power Consumption Tests. This subsection describes the
analysis of power consumption that has been conducted for
the NC component. In particular, the consumption tests have
been executed on a Nokia N95 smartphone, acting as the
NC. During all the measurements, “Nokia Energy Profiler
1.2” application [59] (a specific software for Symbian S60
3rd Edition, FP1, and later versions) has been used. This
application generates an owner file, which can be exported
to CSV (Comma Separated Values) format, containing
information about several performance metrics of the smart-
phone, such as power and current consumption, average and
instant battery voltage, CPU load, RAM memory usage, and
downlink (download) and uplink (upload) speeds through
the employed IP stack. Basing on the measurements logged
in this file, the power consumption has been evaluated when
the Python application of the NC component is running.
Initially, the efficiency of HTTP pipelining mode,
employed by NC component in the continuous transmission,
has been compared with the standard HTTP mode. From
the results, it can be concluded that HTTP pipelining mode,
which is the most efficient technique in terms of delay,
introduces a 12% decrease of the battery autonomy.
Additionally, the results have been compared with the
measurements obtained with an equivalent transmission

EURASIP Journal on Wireless Communications and Networking 7

HTTP pipelining

HTTP pipelining (header)
HTTP persistent

HTTP non-persistent
HTTP socket

Raw TCP

200 250 300 350 400 450

(ms)

FIGURE 5: Average round-trip delay time (ms) for different HTTP clients.

Remote

GSM off

periodic
(10s)

Remote
GSM off

Local

Gskton ﬁ

JAVA
B Python

FIGURE 6: Results (estimation of the battery lifetime in hours) of the
autonomy tests for the NC component.

software developed for Java ME (Java Micro Edition) plat-
form [60], when the pulse-oximeter device operates in mode
2, without getting location information and in the next cases:

(i) Local monitoring:

(a) With GSM (conventional mobile) communica-
tion enabled.

(b) With GSM communication disabled.

(ii) Remote monitoring: with GSM communication dis-
abled. For these tests, standard HTTP (nonpersistent)
is used for both Python and Java ME versions of the
program. Two cases are considered:

(a) continuous transmissions of the sensor infor-
mation,

(b) periodic transmission: Every 10s, an HTTP
request with all packets received during this
interval is sent to the CCS.

From the results which are shown in Figure 6, it can be
inferred the following:

(i) Local monitoring: with the Java ME encoded client
a greater autonomy is obtained in the NC, indepen-
dently that GSM communication is enabled (12%)
or disabled (18%). Nevertheless, the difference is not
very significant if we take into account that Python is
a very high-level language (VHLL), even more than
Java.

(ii) Remote monitoring and continuous transmission:
Python program outperforms Java ME version with
a 32% increase in the autonomy.

(iii) Remote monitoring and periodic transmission: the
energy efficiency which is achieved with the Java
ME version is remarkably higher to that measured
for the Python version (with a 69% of reduction
in the battery consumption). For this case, it is
worth pointing out that the method used to send
the data to the CCS (with JSON encoding) prevents
from improving the performance. Specifically, the
efficiency loss is mainly provoked by the Wi-Fi
transceiver and the additional CPU load that implies
the serialization of data according to JSON format:
with Java ME version, the instantaneous rate in the
uplink, every 10s, does not exceed 4.3 KB/s while
the measured CPU load is 18%. Conversely, with
Python version, a rate of 22 KB/s is achieved and the
CPU load rises to 51%. Therefore, although JSON
simplifies the encoding and decoding processing, it
is less efficient than binary transmission, which is the
method used by Java ME version.

4.3. Web Browser Compatibility Tests. Existing web browsers
(Safari, Firefox, IE, Opera, Chrome, S60 Browser, among the
most popular ones) [52, 61-65] are theoretically supposed
to fulfill the web standards defined by organizations such as
World Wide Web Consortium (W3C) [66]. However, in the
actual implementations, there are different interpretations
of the standards and compatibility problems may appear.

8 EURASIP Journal on Wireless Communications and Networking

TasLE 1: Compatibility of the web application developed for the
CMU units with different existing web browsers.

TABLE 2: Simultaneous persistent connections that a browser can
support.

Web browser Compatible
FIREFOX 3 YES
SAFARI 3 YES
1IE7 YES
CHROME 0.2 YES
OPERA 9 NO
OPERA 8 (Symbian S60) NO
OSS Browser v1.0/v2.0 (Symbian S60) NO

Furthermore, certain aspects of the implementation of the
standards may be inefficient for mobile platforms, such as
those that are based on Symbian S60. In addition, novel
features, as support of XMLHttpRequest object, are only
specified in draft versions of the standard [51], although this
feature has been incorporated to the most popular browsers,
due to the wide diffusion of AJAX technologies in the web
applications context. Therefore, it is presumable that the
employed web technologies will not be error-free and will
not work with the same efficiency in all the typical browsers
[67]. For these reasons we have considered of great interest
the evaluation of the compatibility of the web application
developed for the CMU units when it is run on different
web browsers. In fact, in a first step, it has been verified if
the connections with Orbited server through STOMPClient
object can be properly established for the web browsers. The
results are summarized in Table 1.

In a second stage, upon checking that the implemen-
tation of STOMP client is not compatible with all the
considered browsers (problems appear with the browsers
in mobile platforms), other tests have been executed in
order to find out the reason which causes this malfunction.
Specifically, the relationship between the behavior of the
XMLHttpRequest object and the numbers of simultaneous
persistent connections that a browser can support has been
studied. The underlying problem is that an Orbited STOMP
Client requires, at least, the usage of two simultaneous persis-
tent HTTP connections. In order to estimate the numbers of
simultaneous persistent connections that a browser can sup-
port, a specific server over CherryPy has been developed. The
results are shown in Table 2. In this table it can be observed
that Nokia S60 browser is not able to establish more than a
single connection. So, we can conclude that this is the reason
why STOMP client does not properly work. Consequently
the CMU cannot be executed in a smartphone due to the
limitations of current browsers for mobile platforms.

5. Conclusions

Remote monitoring systems represent one of the most
promising technological research areas in the health context,
especially because its application to the management of
chronic diseases would have a significant economic impact.
However, to ensure that the potentialities of remote health

Number of simultaneous

Web browser X .
persistent connections

FIREFOX 3 >6
SAFARI 3 4
1IE7 2
CHROME 0.2 >6
OPERA 9 4
OPERA 8 (Symbian S60) 2
OSS Browser v1.0/v2.0 (Symbian S60) 1

monitoring are fully developed and guaranteed, more prac-
tical trials and realistic testbeds (with real patients) are
needed, especially to assess the economic viability of the
monitoring applications. Nevertheless, besides the need for
empirical studies to evaluate the cost-effectiveness, it cannot
be neglected that the maturity of the technologies involved
in the development of the applications may seriously impact
on its performance. The presented paper has focused on
the evaluation of different Web technologies that can be
employed to deploy the system software for the remote
monitoring of biosignals. Specifically, the paper has pre-
sented a prototype of a monitoring system based on BAN
(Body Area Network) that is worn by the patient. This
BAN integrates diverse Bluetooth sensors and a smartphone.
The smartphone along with the Python-developed control
application acts as the coordinator node (NC, Node of
Control) of a Bluetooth piconet formed by the sensors. This
component forwards the data received from the Bluetooth
devices to a Central Control Server (CCS).

On the other hand, the physicians can control and mon-
itor the patient’s BAN from Remote Control and Monitoring
Units (CMUs). For these units we have developed a web
application, based on AJAX (Asynchronous JavaScript and
XML) technology, which retrieves the patient’s information
through the CCS.

The presentation of the prototype is accompanied by a
study on specific issues which can impact on the applicability
of the system software, in particular, (i) the HTTP pipelining
technique which is used by the NC component to forward the
patient’s location and health status; (ii) the power consump-
tion of the NC component (smartphone), which is compared
with the measured consumption when an equivalent Java ME
software is employed; (iii) the web browser compatibility of
the web application developed for CMU units.

From the results it can be concluded that HTTP
pipelining mode, employed by NC component in the
continuous transmission, is the most efficient method,
although it implies a decrease in the battery autonomy with
respect to the standard HTTP mode. Additionally, although
the employed JSON encoding format is lighter in weight
than XML, it is less efficient than the binary transmission,
which is the method used by the Java ME version. The
energy efficiency which is achieved with Java ME version is
significantly higher than that measured with Python.

EURASIP Journal on Wireless Communications and Networking

As it refers to the web browser compatibility, it has
been verified that the STOMP client does not work properly
for all considered browsers. The reason which causes this
malfunction is the number of persistent HTTP connections
that the browsers can support, as an Orbited STOMP Client
requires at least two connections.

The described prototype is currently being extended
to other technologies. In particular, a Java prototype for
Android platform is being developed. For this new prototype
other biosensors are going to be integrated. In addition, other
operation modes will be implemented. For example, in order
to minimize the power consumption, a surveillance mode
is planned to be included. Under this mode, only severe
events would be notified to the server. Additionally, the
physicians will be able to remotely configure the periodicity
of specific measurements, such as the blood pressure and the
electrocardiogram.

Acknowledgment

This work has been supported by Spanish National Project
no. TEC2009-13763-C02-01.

References

[1] S. Pruitt, S. Annandale, J. Epping-Jordan et al., Innovative
Care for Chronic Conditions: Building Blocks for Action, World
Health Organization, Geneva, Switzerland, 2002.

[2] National Centre For Chronic Disease Prevention and
Health Promotion, “Power of prevention: chronic dis-
ease...the public helath challenge of the 21st century,”
2009, http://www.cdc.gov/chronicdisease/pdf/2009-Power-of-
Prevention.pdf.

[3] G. Anderson, Chronic Conditions: Making the Case for Ongo-
ing Care, The Robert Wood Johnson Foundation, 2002,
http://www.rwjf.org/pr/product.jsp?id=14197.

[4] G. Anderson, Chronic Care: Making the Case for Ongo-
ing Care, The Robert Wood Johnson Foundation, 2010,
http://www.rwjf.org/pr/product.jsp?id=50968.

[5] T. Penzel, K. Kesper, and H. E Becker, “Biosignal monitoring
and recording,” in Information Technology Solutions for Health-
care, K. J. Hannah, M. J. Ball, K. Zielinski, M. Duplaga, and
D. Ingram, Eds., Health Informatics, pp. 288-301, Springer,
London, UK, 2006.

[6] M. Duplaga and O. M. Winnem, “Model of chronic care
enabled with information technology,” in Information Tech-
nology Solutions for Healthcare, K. J. Hannah, M. J. Ball,
K. Zielinski, M. Duplaga, and D. Ingram, Eds., Health
Informatics, pp. 248-270, Springer, London, UK, 2006.

[7] N. E Giiler and E. D. Ubeyli, “Theory and applications of
telemedicine,” Journal of Medical Systems, vol. 26, no. 3, pp.
199-220, 2002.

[8] M. Tounsi and B. Qureshi, “A Bluetooth-enabled mobile
intelligent remote healthcare monitoring system: analysis and
design issues,” International Journal of Healthcare Technology
and Management, vol. 9, no. 5-6, pp. 473-484, 2008.

[9] S. Neubert, D. Arndt, K. Thurow, and R. Stoll, “Mobile real-
time data acquisition system for application in preventive
medicine,” Telemedicine and e-Health, vol. 16, no. 4, pp. 504—
509, 2010.

[10] S. Winkler, M. Schieber, S. Liicke et al., “A new telemonitoring
system intended for chronic heart failure patients using mobile

(14]

(16]

(23]

(24]

telephone technology—feasibility study,” International Journal
of Cardiology. In press.

R. S. H. Istepanian, E. Jovanov, and Y. T. Zhang, “Introduction
to the special section on m-Health: beyond seamless mobility
and global wireless health-care connectivity,” IEEE Transac-
tions on Information Technology in Biomedicine, vol. 8, no. 4,
pp. 405-414, 2004.

U. Varshney, “Pervasive healthcare and wireless health moni-
toring,” Mobile Networks and Applications, vol. 12, no. 2-3, pp.
113-127, 2007.

K. Jeong, E. Y. Jung, and D. K. Park, “Trend of wireless u-
health,” in Proceedings of the 9th International Symposium on
Communications and Information Technology (ISCIT ’09), pp.
829-833, September 2009.

F. del Pozo, P. de Toledo, S. Jiménez, M. E. Hernando, and E. J.
Goémez, “Chronic patient’s management: the Copd example,”
in M-Health: Emerging Mobile Health Systems, Topics in
Biomedical Engineering, pp. 575585, Springer, London, UK,
2006.

A. Tura, L. Quareni, D. Longo, C. Condoluci, A. van Rijn,
and G. Albertini, “Wireless home monitoring and health
care activity management through the Internet in patients
with chronic diseases,” Medical Informatics and the Internet in
Medicine, vol. 30, no. 4, pp. 241-253, 2005.

R. Ciorap, D. Zaharia, C. Corciova, M. Ungureanu, R. Lupu,
and A. Stan, “Wireless device for monitoring the patients with
chronic disease,” Revista Medico-Chirurgicala a Societatii de
Medici si Naturalisti din Lasi, vol. 112, no. 4, pp. 1115-1119,
2008.

K. Perakis, M. Haritou, R. Stojanovic, B. Asanin, and D.
Koutsouris, “Wireless patient monitoring for the e-inclusion
of chronic patients and elderly people,” in Proceedings of the
Ist International Conference on Pervasive Technologies Related
to Assistive Environments (PETRA "08), pp. 1-4, July 2008.

G. Chen, B. Yan, M. Shin, D. Kotz, and E. Berke, “MPCS:
mobile-phone based patient compliance system for chronic
illness care,” in Proceedings of the 6th Annual International
Conference on Mobile and Ubiquitous Systems: Networking and
Services (MobiQuitous ’09), pp. 1-7, July 2009.

S. Sultan and P. Mohan, “How to interact: evaluating the
interface between mobile healthcare systems and the monitor-
ing of blood sugar and blood pressure,” in Proceedings of the
6th Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services (MobiQuitous *09), pp. 1-6,
July 2009.

D. Capozzi and G. Lanzola, “An agent-based architecture for
home care monitoring and education of chronic patients,”
in Proceedings of the Workshop on Complexity in Engineering
(COMPENG ’10), pp. 138-140, February 2010.

M. Jaana, G. Pare, and C. Sicotte, “Home telemonitoring for
respiratory conditions: a systematic review,” American Journal
of Managed Care, vol. 15, no. 5, pp. 313-320, 20009.

G. Paré, M. Jaana, and C. Sicotte, “Systematic review of
home telemonitoring for chronic diseases: the evidence base,”
Journal of the American Medical Informatics Association, vol.
14, no. 3, pp. 269-277, 2007.

J. G. F. Cleland, C. Lewinter, and K. M. Goode, “Telemonitor-
ing for heart failure: the only feasible option for good universal
care?” European Journal of Heart Failure, vol. 11, no. 3, pp.
227-228, 2009.

R. S. H. Istepanian, K. Zitouni, D. Harry et al., “Evaluation of a
mobile phone telemonitoring system for glycaemic control in
patients with diabetes,” Journal of Telemedicine and Telecare,
vol. 15, no. 3, pp. 125-128, 2009.

10 EURASIP Journal on Wireless Communications and Networking

[25] A. B. Cunha, M. A. M. Capretz, and L. Raptopoulos,
“Support systems for Telehealth services: critical operational
and ICT complementary assets for large-scale provisioning,”
in Proceedings of the IEEE Toronto International Conference in
Science and Technology for Humanity (TIC-STH *09), pp. 340—
345, September 2009.

[26] Python, Python Programming Language, http://www.python
.org/.

[27] J. J. Garrett, “Ajax: A New Approach to Web Applica-
tions,” February 2005, http://www.adaptivepath.com/ideas/
essays/archives/000385.php.

[28] Bluetooth SIG, Bluetooth, http://www.bluetooth.com.

[29] ZigBee Alliance, http://www.zigbee.org.

[30] M.J. Morén, J. R. Luque, A. Gémez-Jaime, E. Casilari, and A.
Diaz-Estrella, “Prototyping of a remote monitoring system for
a medical personal area network using python,” in Proceedings
of the 3rd International Conference on Pervasive Computing
Technologies for Healthcare—Pervasive Health (PCTHealth
’09), pp. 1-5, April 2009.

[31] MobiHealth project, http://www.mobihealth.org.

[32] N. Oliver and F. Flores-Mangas, “HealthGear: a real-time
wearable system for monitoring and analyzing physiological
signals,” in Proceedings of the International Workshop on
Wearable and Implantable Body Sensor Networks (BSN 06), pp.
61-64, April 2006.

[33] Y. Zhang and H. Xiao, “Bluetooth-based sensor networks for

remotely monitoring the physiological signals of a patient,”

IEEE Transactions on Information Technology in Biomedicine,

vol. 13, no. 6, pp. 1040-1048, 2009.

Healthcare@Home, Healthcare@Home: Patient-Centered Gr-

id Based e-Healthcare, http://www.healthcareathome.info/in-

dex.html.

[35] Nonin Medical, Nonin 4100 Bluetooth, Wireless Pulse Oxime-
ter, http://www.nonin.com/OEMSolutions/4100.

[36] Nokia, Symbian S60 Platform, http://www.s60.com.

[37] Wi-Fi Alliance, http://www.wi-fi.org.

[38] Gartner Inc., “Gartner Says Worldwide Mobile Phone Sales
to End Users Grew 8 Per Cent in Fourth Quarter 2009;
Market Remained Flat in 2009,” http://www.gartner.com/it/
page.jsp?id=1306513.

[39] CherryPy, CherryPy project, http://www.cherrypy.org.

[40] W3C, HTTP—Hypertext Transfer Protocol, http://www.w3
.org/Protocols.

[41] SQLObject, SQLObject Project, http://www.sqlobject.org.

[42] MySQL, MySQL Comunity Server, http://www.mysql.com/
downloads/mysql.

[43] GNU, GNU General Public License, http://www.gnu.org/li-
censes/gpl.html.

[44] Oracle, Java Message Service (JMS) API, http://www.oracle
.com/technetwork/java/index-jsp-142945.html.

[45] Apache Software Foundation, Project Apache ActiveMQ,
http://activemgq.apache.org.

[46] STOMP Project, Streaming Text Orientated Messaging Proto-
col, http://stomp.codehaus.org.

[47] The Orbited Project, Orbited: Real-Time Communication for
the Browser, http://orbited.org.

[48] Mozilla Foundation, Mozilla Developer Network. JavaScript,
https://developer.mozilla.org/en/JavaScript.

[49] Mozilla Foundation, Mozilla Developer Network, DHTML,
https://developer.mozilla.org/en/JavaScript.

[50] W3C, HTML DOM Specification, http://www.w3.0org/DOM.

(34

[51] W3C, XMLHttpRequest W3C Working Draft, http://www.w3
.org/ TR/’ XMLHttpRequest.

[52] Microsoft, Windows Internet Explorer, http://www.microso-
ft.com/windows/internet-explorer/default.aspx.

[53] Microsoft, Introduction to ActiveX Controls, http://msdn
.microsoft.com/en-us/library/aa751972%28VS.85%?29.aspx.

[54] Microsoft, Microsoft XML Core Services (MSXML), http://
msdn.microsoft.com/en-us/library/ms763742%28v=VS.85%
29.aspx.

[55] JSON, JSON (JavaScript Object Notation) Specification,
http://www.json.org.

[56] ECMA International, Standard ECMA-262. ECMAScript Lan-
guage Specification, http://www.ecma-international.org/pub-
lications/standards/Ecma-262.htm.

[57] W3C, Extensible Markup Language (XML), http://www.w3
.org/XML.

[58] T. M. Labs, Twisted Project, http://twistedmatrix.com/trac/
wiki/TwistedProject.

[59] Nokia, Nokia E61 specifications, http://www.forum.nokia
.com/devices/E61.

[60] Oracle, “Java ME—the Most Ubiquitous Application Platform
for Mobile Devices,” http://www.oracle.com/technetwork/
java/javame/overview/index.html.

[61] Apple Computer, Sarfari Browser, http://www.apple.com/saf-
ari.

[62] Mozilla Foundation, Mozilla Firefox, http://www.mozilla
.com/en-US/firefox.

[63] Opera Software, Opera Browser, http://www.opera.com.

[64] Google, Chrome Browser, http://www.google.com/chrome.

[65] Nokia, Nokia Mini Map Browser, http://www.nokia.com/
microsites/s60-browser-site.

[66] W3C, World Wide Web Consortium (W3C), http://www
.w3.org.

[67] Apple Developer Network, Web Page Development: Best Prac-
tices, http://developer.apple.com/internet/webcontent/bestw-
ebdev.html.

	1. Introduction
	2. Objectives
	3. System Description
	4. Evaluation Tests
	5. Conclusions
	Acknowledgment
	References

