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We propose an explicit construction of full-diversity space-time block codes, under the constraint of an error correction capability.
Furthermore, these codes are constructed in order to be suitable for a serial concatenation with an outer linear forward error
correcting (FEC) code. We apply the binary rank criterion, and we use the threaded layering technique and an inner linear FEC
code to define a space-time error-correcting code. When serially concatenated with an outer linear FEC code, a product code can be
built at the receiver, and adapted iterative receiver structures can be applied. An optimized hybrid structure mixing MMSE turbo
equalization and turbo product code decoding is proposed. It yields reduced complexity and enhanced performance compared to

previous existing structures.

1. Introduction

Space-time block (STB) code designs have recently attracted
considerable attention, since they improve the reliability of
communication systems over fading channels. Tarokh et al.
[1] developed some criteria for designing STB codes (for the
high SNR regime), in order to minimize the pairwise error
probability. Among the resulting proposed schemes (based
on these criteria), orthogonal space-time block (OSTB)
codes, introduced by Alamouti [2] and generalized by Tarokh
et al. [3], are attractive due to their low optimal decoding
complexity. Their practical use is limited to the Alamouti
scheme (two transmit antennas) as their rate decreases
rapidly with an increase in the number of transmit antennas,
and they cannot achieve the MIMO system capacity. Hassibi
and Hochwald proposed the linear dispersion codes (LDCs)
[4] that maximize the mutual information between transmit-
ted and received signals in order to achieve the maximum
ergodic capacity of the equivalent MIMO system.

Then full rate and full diversity STB codes were designed.
The application of the threaded layering principle yielded
the threaded algebraic space-time (TAST) codes [5]. Belfiore
et al. added a nonvanishing determinant constraint [6-8] to

achieve the optimal diversity/multiplexing tradeoft [9] and
defined the perfect space-time block codes [10, 11].

However, in any transmission system the forward error
correction coding is used in conjunction with interleaving.
All the above STB codes deal with the forward error correct-
ing code as an independent entity of the transmitter scheme.
A joint design of FEC, modulation, and space-time scheme
was considered in [1], in order to construct the space-time
trellis codes (STTCs) that provide maximum diversity and
maximum coding gain. STTCs exhibit higher coding gains
than STB codes, but due to their trellis nature, the optimal
decoding has a high computational cost incompatible with a
practical implementation.

An interesting method to design full diversity space-
time block codes with an error correction capability has
been developed in [12—-14]. In the current paper, these codes
are referred as space-time error correcting codes (STECCs)
in order to stress on their ability to correct errors due to
the transmission. We name also concatenated STECC the
serial concatenation of a STECC and an outer linear FEC
code. In [12], a binary rank criterion has been introduced
in order to construct full diversity STECCs for binary phase
shift keying (BPSK) modulation. A generalization of this
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criterion to design full diversity STECCs with higher spectral
efficiency using quadrature amplitude modulation (QAM),
has been considered in [14]. But, since the generalized rank
criterion implies that the error correcting code must be
defined over a finite field where its dimension depends on the
modulation order, the construction of full diversity STECCs
for higher-order modulations cannot be realized in practice
using this approach. In [13], an unified construction of
STECCs achieving the optimal rate-diversity tradeoff [15]
from binary error correcting codes for different types and
orders of modulation has been presented. Independently, an
explicit construction of concatenated STECCs for 2 transmit
antennas based on explicit linear combinations of FEC
codewords has been presented in [16]. Thanks to the linearity
of FEC codes, it has been shown in [17] that STECCs seem
more adapted than other STB codes to be concatenated with
linear forward error correcting codes.
The contributions of this paper are as follows.

(i) Compared to [16], a theoretical analysis of STECC is
given resulting in the design of full diversity STECCs
for two transmit antennas.

(ii) It is proved that a product code can be reconstructed
from a concatenated STECC. An optimized hybrid
receiver associating a turbo equalizer (interference
canceller) based on the minimum mean square
error (MMSE) criterion and a turbo product code
decoder is proposed, yielding reduced complexity
and enhanced performance.

In Section 2, we describe the system model and show
through theoretical analysis the suboptimality of STECCs
proposed in [16] for 2 transmit antennas. In Section 3,
we apply the threaded layering principle and the binary
rank criterion to design full transmit diversity STECCs. In
Section 4, considering STECCs concatenated to an outer FEC
code, we first show how a product code can be reconstructed
at the receiver. Then we combine the turbo equalization
and turbo product code decoding principles to develop an
adapted receiver with reduced complexity and enhanced
performance. In Section 5, we present simulation results and
finally, we give our conclusions in Section 6.

Notations. Column vectors (resp., matrices) are denoted by
boldface lower (resp., capital) case letters. Superscripts ()"
and ()" stand for transpose and conjugate transpose, re-
spectively. I, represents the n X n identity matrix. Z, C, and
Z[i] denote, respectively, the ring of rational integers, the
field of complex numbers and the ring of complex integers.
0,xn (resp., 1,x,) denotes the n X n matrix having all its
elements equal to 0 (resp., 1). Subscripts of matrices indicate
their dimensions.

2. System Model

We first recall the usual criteria applied to design space-
time codes for a MIMO system with 7, transmit antennas
and n, receive antennas considering a transmission over a
nonfrequency selective block fading channel. We assume that

the channel state information (CSI) is known at the receiver.
In the second part, we give a theoretical analysis of the family
of rectangular STECCs presented in [16] for n; = 2 transmit
antennas to show that they do not achieve full transmit
diversity.

The n, X T received signal matrix can then be expressed as

Yn,><T = Hn,xn[Xn[XT + Nn,XT’ (1)

where X is the n; X T transmitted space-time error correcting
codeword, H is the n, X n; channel matrix with indepen-
dent and identically distributed (i.i.d.) zero-mean complex
circular Gaussian entries and N is the n, X T i.i.d. zero-mean
complex circular Gaussian noise.

2.1. Space-Time Code Design Criteria. Let us assume a coher-
ent scenario and an optimal maximum likelihood STB code
detection. The pairwise error probability (PEP) is defined as
the probability of estimating a codeword X # X at the receiver
while X has been sent. To minimize the pairwise error
probability, the space-time code must fulfill the following
constraints [18].

(i) The Rank Criterion. Maximize the minimum rank r
of the matrix A(X, X) = (X - X)(X - X)™.

(ii) The Determinant Criterion. Maximize the minimum
product of the nonzero eigenvalues, (]_[;Zl)t i), of the

matrix A(X, X). This criterion maximizes the coding
gain.

The maximum diversity advantage in this context is n; X n,.
Space-time codes that achieve such a diversity are called full
diversity space-time codes [1, 18].

2.2. Definition of a STECC. A STECC is a space-time code
defined as an n; X T symbol matrix based on the modulation
of my, basic binary matrices Cflle, which can be grouped to
form a binary matrix C,,xr where each entry is a binary m;-
tuple so that m;, is the modulation efficiency. Matrix C}, . is
a spatial rearrangement of a FEC codeword of C;. C; is called
the inner code. Its length is equal to n; - T.

2.3.2 %X T STECCs: Theoretical Analysis. We consider, in this
subsection, the family of rectangular STECCs proposed in
[16] and we verify that they do not fulfill the preceding
criteria, and thus do not achieve full diversity.

The 2 X T STECC in [16] is defined from an one-half
coding rate systematic block code of length 2T Its codewords
are given by

T
G=mp, cur= P m; 1<k=<T, (2)
j=Lj#k

where {m;}, 1 < j < T, represent the information bits and
@ stands for the mod-2 addition. Let C,,xr (n; = 2) be the
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binary matrix associated to a space-time error correcting
codeword. It is defined as [16]

G =mp ¢ =my Cr =mr
Coxr=| - P , (3
D D ¢ Do
j=2 j=Lj#2 j=1

where ¢j, 1 < j < T, represents an information binary m,-
tuple. Assuming a M-ary quadrature amplitude modulation
(M-QAM) where M = 2™ the STECC codeword which
corresponds to Cy,,xr is defined by

X1 X e XT
X = ) (4)
Xoesor Xiesor 7 Xierero

where xj, 1 < j < T, represents the M-QAM symbol as-
sociated to the jth binary my-tuple denoted by ¢; and
X102---ok—lok+1a-..T Tepresents the M-QAM symbol associ-
ated to the binary my-tuple denoted by @]-T:Lj#kcj. To
prove that the rank criterion is not realized, we verify that
it is possible to find two STECC codewords such that their
difference matrix has a rank of 1 inferior to the maximum
possible rank r = n; = 2.
letci=c=---=c¢cr= 11><mh,thlls

T
if T is odd @ ¢ =01xmy, 1=<k<T,
j=Lj#k

(5)

T
if T is even @ Cj=11th,
j=Lj#k

1<k<T.

~ ~ ~ T ~
Letc; =¢ = - -+ =Cr = O1xp, thus @jﬂ’j#kcj = 01xm,-

Let us denote by X and X the STECC codewords associated to
Cand é, respectively. If T is odd, then the difference matrix
B = X — X has all entries of the second row equal to 0. In
the other case (T is even), all the columns of B are equal.
Therefore, for all values of T, the difference matrix has a rank
equal to 1 < n; and as a consequence this family of STECCs
does not achieve a full transmit diversity.

Furthermore, if we consider the minimum Hamming
distance (d(nzg) of the basic binary code defined in (2), one
can see that d®) = 3 and for T > 4, d'D) = 4. For example,
the Hamming weight of this basic binary codeword matrix
Chor = [119::8] forall T > 4 is equal to 4. As a
consequence, inner FEC codes defined for T > 5 will not
enable to increase the maximum time diversity achieved by
the STECC.

In the following, we focus only on the cases T = 3 and
T = 4 in order to illustrate the construction of full diversity
STECCs.

3. Full-Diversity STECCs

To determine the maximum rate that can be realized when a
tull spatial diversity is achieved, we need to define the optimal

rate-diversity tradeoff [13] which can be characterized by the
following equation:

Rsymbol = K[”t —d+ 1]; (6)

where Rgymbol is the modulation symbol rate per channel use
(p-c.u.), the quantity d is termed the transmit diversity gain,
and K is the extension degree of the transmission symbol set
drawn from the modulation symbol set. In our construction,
a transmission symbol is drawn from a constellation set, thus
K = 1. Moreover, a full transmit diversity is quantified by
d = ny, therefore the optimal rate-diversity tradeoff implies a
maximum rate of one modulation symbol p.c.u., that is, a
full diversity STECC has a maximum rate equals to 1/7,. As
a consequence, we use for the construction 1/#;-rate inner
codes.

As the maximum rate of the inner code is determined,
it is important to note that in the following for T = 3 and
T = 4, the selected inner codes have the maximum of
the minimum Hamming distance for a combination of n;
transmit antennas and T time periods.

3.1. Full-Diversity STECC Designs. In order to realize the full
spatial diversity, we recall that the binary rank criterion
is a sufficient but not necessary condition to guarantee a
full spatial diversity [12]. We apply the unified construction
proposed in [13] to ensure a full spatial diversity for high-
order modulations.

In [12], the authors prove that if every nonzero codeword
of a linear binary code matrix has a maximum rank over
the binary field F = {0,1}, then for a binary phase shift
keying (BPSK) transmission, the STECC achieves full spatial
diversity, that is, d = n;. Moreover, it is demonstrated in
[13] that if a STECC achieves full spatial diversity for BPSK
transmission then using the Lu and Kumar construction
(unified construction), we can obtain a full diversity STECC
for high-order modulations based on full rank linear binary
code matrices.

It yields a sufficient but not necessary condition on the
linear binary inner code matrix to guarantee full diversity
STECCs.

3.2. Threaded Layering Approach. To maximize the STECC
diversity, we consider the threaded layering approach [5]. We
assume rectangular STECCs of size n, X T. To design full
diversity STB code, the threaded layering approach consists
in splitting information symbols into disjoint threads. The
threads must be active over the T transmission intervals.
For each layer (thread) and at each transmission interval,
symbols of this layer are transmitted. Threads use equally
often the transmit antennas. To ensure a maximum diversity,
each thread must achieve a maximum diversity when
symbols corresponding to the other threads are put to zero
and threads must be transparent to each other. This can
be realized by affecting weighting numbers to each thread
such that resulting threads span disjoint algebraic subspaces.
These numbers are “Diophantine number”.

In the case of STECCs, linear combinations are applied
on binary elements which greatly relaxes the constraints
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to achieve full diversity STECCs. The number of threads
is taken equal to the number of transmit antennas. The
threaded layering set L = {£;,¢,} is defined, for 1 < j <
ny = 2,by

g ={(lt+j-1],+1,t):0=<t<T}, (7)

where | - |, denotes the mod-#, operation. Table 1 shows the
threaded layering for 2 X 3 and 2 X 4 structures using 2
threads. We associate the information symbols (resp., redun-
dancy symbols) to the first layer (resp., second layer). Let us
denote by x = [x,... ,xT]T the information symbol vector
and byy = [yl,...,yT]T = M[xz@...@T,...,xl@...@T,l]T the
vector associated to the redundancy symbols. Mrxr is an
integer permutation matrix such that the STECC, built up
from x, y, and a diophantine number, achieves a full spatial
diversity (M must also keep properties of STECCs defined
in (6), i.e., each entry of a space-time codeword matrix is
composed of one modulation symbol).

3.2.1. 2 X 3 Full-Diversity STECC. 1In this case, it was verified
in [19] that a full diversity STECC can be defined by

X {Xl b2 Xz}, ()
o x2 dys

where ()/1,)/2,)/3) € {(x1e3, X162, X203), (X203, X102, X103) }»
whatever ¢? ¢ Z[i] and |¢| = 1 (to ensure an energy
efficiency). As the determinant of the difference codeword
matrix depends on the value of ¢, thus to maximize the
coding gain we must carefully select the diophantine number.
In [19], it was proved that ¢ = 1 is the optimal value for
4-QAM and 16-QAM. In this paper, by applying the binary
rank criterion and the unified construction of [13] we verify
that a full spatial diversity can be achieved without the
necessity of a diophantine number (¢ = 1). For (y1, y2, y3) =
(X193, X102, X203 ), (the same result can be obtained for the
other possible 3-tuple) the associated linear binary code
matrix is defined by

)

C] (SN ) C3 :|

C Dc3 C C D C3

It clearly appears that the first and the second row of
C,x3 are linearly independent over the binary field F. Thus
for a BPSK transmission, the STECC constructed from Cjx3
achieves a full spatial diversity. Therefore, using the unified
construction presented in [13], the STECC built up from
this linear binary code matrix ensures a full spatial diversity
for any order QAM modulation. We also note that this
construction can be extended to phase shift keying (PSK) and
pulse amplitude (PAM) modulations.

3.2.2. 2 X 4 Full-Diversity STECC. The inner code corre-
sponds to the extended Hamming code. Due to the fact that
the all-one vector is a codeword, the binary rank criterion
is false whatever the spatial arrangement into a 2 X 4 binary
matrix. We thus apply the threaded layering approach.

TaBLE 1: The threaded layering in coherent scenario using 2 layers.
The numbers refer to thread indexes. The vertical and horizontal
axes correspond to the spatial and temporal dimensions, respec-
tively.

(a)
2

(®)

The binary 2 X 4 matrix is

4 4
@ Dy oo Do
j=2 j=1,j #2
C2><4: 4 / 3 ! ! > (10)
D e o Dy o

j=1j73 j=1

and the associated space-time error correcting codeword is

X1 PX2e3e4 X3 PXie3es
Xy = . (11)
¢xlea2ea4 X2 ¢Xlea2ea3 X4

To ensure full diversity diophantine number ¢ is chosen
such that ¢ ¢ Z[i] and |¢| = 1. In that case, the maxi-
mization of the coding gain yields an optimum value for ¢
depending of the modulation order. However, in practice the
STECC will be serially concatenated to an outer FEC and it
was shown in [20] that the asymptotic global coding gain
is independent of the choice of the parameter ¢ provided
that ¢* ¢ Z[i] and |¢| = 1. In [21], we proposed a way to
construct full diversity 2 X T STECCs defined from an inner
half-rate invertible linear binary codes.

4. Receiver Structures

This section aims at designing reduced complexity and
efficient receivers for concatenated STECCs. A maximum
likelihood receiver for the concatenated STECC has a pro-
hibitive complexity, and cannot be implemented in practice.
We thus consider lower complexity receivers consisting of the
cascade of elementary devices and based on the exchange of
reliability information from a device to its neighbour in an
iterative manner.

For the sake of generality, we consider the unified con-
struction of Lu and Kumar [13] which encompasses, from
a decoding point of view, the 2 x T STECCs presented in
the previous section (as the diophantine number can be
viewed as a rotation of the second thread versus the first
one, it does not appear at the decoding stage). We first show
how a product code can be built from the concatenated
STECC. Hybrid receivers combining both MMSE turbo
equalization (successive interference cancellation) and turbo
product code decoding will be designed.
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FiGcure 1: Concatenated STECC transmitter scheme.

4.1. Reconstruction of a Product Code from a Concatenated
STECC. As mentioned previously to achieve the optimal
rate-diversity tradeoff (6) thus the maximum rate of inner
codes are necessarily equal to 1/7¢ in order to ensure a full
diversity STECC. We consider systematic linear binary inner
codes. Thus, to construct a full diversity STECC we need
T binary my-tuples ¢;, j = 1,..., T that correspond to the
information sequences and 7,(T — 1) binary my-tuples that
correspond to the redundancy sequences. Thus forr = T+1,
..»n¢ - T the redundancy sequences can be written as

¢ = (prr1) ® (pase2) ® - - @ (procr),  (12)

where p;, € F, and & stands for mod-2 addition. It can be
space-time formatted to provide space-time codes achieving
full spatial diversity using the threaded layering approach
presented in the previous section or the unified construction
[13].

Let Co(N, L) be a linear FEC code (outer code), where
N denotes the code length and L its dimension. For the
concatenated STECC, {¢;}, j = 1,..., T represent T infor-
mation codewords and for j = T + 1,...,n,T, ¢j, is a
linear combination of codewords {c;} defined by (12). After
applying a sophisticated space-time formatter, we obtain
P = N/my, space-time error correcting codewords X,,, 7 (k),
1 < k < P to be transmitted. The transmitter scheme is
represented in Figure 1. An interleaver is used to protect the
information against burst errors, and to benefit from the
time diversity.

A product code is defined as a serial concatenation of two
FEC codes denoted CG,(N,, K;) and C.(N,, K,). It consists in
placing information bits in a K, X K, array. G, is applied to
encode rows of the array and the columns of the resulting
K. X N, array are encoded using C.. The N, X N, obtained
array is a codeword of the product code G, X C,. Its minimum
Hamming distance is the product of minimum Hamming
distances of elementary constituent codes. In the case of
concatenated STECCs, the n; T FEC codewords {¢;}, 1 < j <
n, T, form a product code represented as

C1

Cr
Torxny = , (13)

Cr1 = (Pl,T+1C1) S---0 (PT,T+1CT)

L S, T = (pl,n,TCl) ©---0 (PT,mTCT) i

(T FEC N
4 decoder L
Soft input
T [d
(Intrinsic
information) + ™ Inner /T
L\ decoder L L

F1GURE 2: SISO turbo product code decoding structure.

where the inner code (resp., outer code) is applied along
columns (resp., rows). We note that the linear outer FEC has
no constraints on its rate neither on its length. Moreover,
the information rate of the inner code can be increased by
reducing the spatial diversity of the STECC according to the
optimal rate-diversity tradeoff [13].

When full diversity algebraic STB codes (like the perfect
STB codes, LDCs,...) are serially concatenated with linear
FEC codes, the maximum order of diversity that can be
achieved is equal to n;dln, where dil is the minimum
Hamming distance of the outer code. For concatenated full
diversity STECCs, the maximum diversity order is equal to
nddn,, where d¥' is the minimum Hamming distance
of the inner code. Thus, concatenated STECCs are better
adapted to a serial concatenation with linear outer forward
error correcting codes.

4.2. Turbo Product Code Decoding for Concatenated STECC.
The existence of a product code for concatenated STECCs
enables a better information exchange between the inner
code decoder, the outer code decoder and the STECC
detector through the application of turbo product code
decoding principles [22].

As it is summarized in Figure 2, the turbo product code
decoding is based on the reliability information exchange
between two elementary soft input soft output (SISO)
decoders: the inner one and the maximum a posteriori
(MAP) FEC decoder. Each elementary decoder benefits from
two inputs: the soft values (intrinsic information) delivered
by a detector, and the previous elementary decoder extrinsic
information (a priori information). So as to ensure the
convergence, weighting coefficients « (& < 1) are applied to
the a priori information generated by the FEC decoder.

Assuming a nonfrequency selective block fading channel
and perfect synchronization, at each receive antenna, the
observation is the superposition of attenuated symbols
simultaneously transmitted from transmit antennas and a
circular complex Additive White Gaussian Noise. To detect
the symbols transmitted from a given antenna, one has to
take into account the interference of symbols corresponding
to the other antennas. Maximum likelihood detection is
possible but its complexity may be high and depends on
the modulation order. Linear equalization such as successive
interference cancellation enables to reduce the computation
cost [23-25]. It consists in providing the equalizer with
the estimation of the interfering symbols and cancelling it
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FiGure 3: Proposed turbo receiver scheme for concatenated
STECCs.

in the observation. The equalizer consists of a feedforward
filter and a feedback filter that can be optimized so as to
minimize the mean square error at its output (in such case
it is referred as MMSE interference canceller). In [17], we
proposed for the concatenated STECC an iterative receiver
structure composed by a MAP symbol detector over one
symbol duration, which takes a priori soft information from
the SISO turbo product code decoder. This structure exploits
the channel diversity. But unfortunately, the complexity
of MAP detector remains high especially for high-order
modulations. To reduce the complexity of the detector, we
propose an hybrid structure mixing the MMSE interference
canceller and the turbo product code decoder. The resulting
receiver scheme is given in Figure 3. The MMSE interference
canceller does not take into account the STECC existence.
It considers each symbol duration independently of the
others and assumes that each received sample only depends
on symbols simultaneously transmitted. It thus works as
if symbols were transmitted using a spatial multiplexing
scheme. The time correlation between transmitted symbols
is taken into account in the product code decoder.

Complexity Analysis. In the MMSE turbo equalizer pre-
sented in [25], the MMSE interference canceller is the same
as the one used in this paper. It is followed by an inner
code decoder to take into account the STECC structure,
an outer code decoder and another inner code decoder
before going back to the equalizer. The structure proposed
in this paper, based on the turbo product code decoding
algorithm, has a lower complexity since one iteration consists
of only one inner code decoding instead of two. Nevertheless,
it outperforms the receiver given in [25] thanks to the
identification of a turbo product code and to an optimization
of the extrinsic information exchange (see Figure 3).

At the detection stage, the MMSE interference canceller
is a linear filter, thus its complexity is determined by the
size of matrices to be inverted. Moreover, the proposed
receiver structure deals with concatenated STECCs as a
spatial multiplexing scheme concatenated with an outer
product code. Therefore, the MMSE interference canceller
must invert a square matrix of dimension n, X n, at each
iteration. An n; X T STECC detection thus requires T

1071

10—2 L. BO

1073

BER

1074

1072

1076

E},/Ny (dB)

—— Full spatial diversity STECC 7 = 3
—o— Alamouti 7 = 2

—— STECC71=3

—— STECCt1 =2

—— Full spatial diversity STECC 7 = 2

FIGURE 4: Performance of the full diversity STECC compared to
suboptimal-diversity STECC [16] and Alamouti OSTBC [2].

inversions of matrices of size n, X #n,, that can be carried
out in parallel. Considering a similar transmitter and receiver
scheme involving an usual n, X T full rate algebraic STB
code (like perfect STB code, LDC, TAST code), we need
one inversion of a matrix of size n, T X n,T. Indeed, at the
receiver, an algebraic STB code is equivalent to a spatial
multiplexing scheme with #n, T receive antennas and n; X T
transmit antennas. Concatenated STECCs thus enable lower
complexity receivers compared to linear dispersion codes
concatenated to the same outer code.

5. Simulation Results

In this section, different transmission schemes are compared
via simulations. Furthermore, we evaluate the performance
of the iterative receiver structure based on the turbo product
code decoding algorithm with a MMSE interference canceller
versus the first MMSE turbo equalizer [25].

For our simulations, we consider n; = 2 transmit anten-
nas using a QAM Gray-mapped constellation over a Rayleigh
nonfrequency selective block fading channel, constant over 7
symbol durations, and n, = 2 receive antennas. The channel
is also assumed to be perfectly estimated at the receiver.
For the outer FEC code, we use an half-rate convolutional
code which is decoded using the SISO BCJR algorithm [26].
The inner code is maximum likelihood decoded according
to the rules given in [25]. Plotted curves correspond to the
convergence state of the iterative process.

5.1. Performance of the 2 X 3 Full-Diversity STECC. Figure 4
compares the performance of the 2 x 3 full diversity STECC
with those of the 2 x 3 STECC [16] and the Alamouti scheme
[2], without concatenation with an outer code.

In that case, a maximum likelihood (ML) detection is
considered at the receiver and as space-time error correcting
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FiGure 5: Performance comparison between the MMSE turbo
receiver of [25] and the proposed iterative receiver (see Figure 3).
Concatenated 2 x 3 full diversity STECC. 1530 informations bits.
n, = 2.CC(7,5)oq-

codewords (resp., Alamouti space-time codewords) are inde-
pendent from each others, the BER performance remains the
same for every T multiple of T = 3 (resp., 2). One can see
that the BER slope of the 2 x 3 full diversity STECC for 7 = 2
and 7 = 3 is equal to n; X n, = 4, which confirms the full
spatial diversity of this structure. On the other hand, as it
was expected by the theoretical analysis in the Section 2.3,
the BER slope of the 2 x 3 STECC is equal to n, = 2 which
means that this transmission scheme cannot fully exploit the
transmit diversity. For 7 = 3 a gain of 5.3 dB is achieved at a
BER of 10~ with the full spatial diversity STECC. Moreover,
the full diversity STECC performs 0.5 dB worse compared to
the Alamouti scheme which is satisfactory as it is obtained
without taking into account the outer FEC code. When 7 =
2, the full diversity STECC benefits from the additional time
diversity of the channel. For a BER = 107>, the gain over the
Alamouti scheme is equal to 0.5 dB.

5.2. Optimization of the Concatenated STECC Iterative Re-
ceivers. In Figure 5, we compare the performance of the
MMSE interference canceller with a SISO turbo product code
decoder versus that of the MMSE turbo equalizer [25] for
the concatenated 2 x 3 full diversity STECC. Simulations
are carried out for r = 3 (roughly quasifast fading
channel) and 7 = 384 (slow fading channel), respectively,
in order to observe the influence of the time diversity on
the performance of the receiver structures. In addition to
the computation cost reduction per iteration (one inner
decoding instead of two per iteration), the hybrid scheme
enables a SNR gain for a same BER value. Another advantage
of product code identification is the stopping criterion [22]
that can be applied to stop the iterative process as soon as a
product codeword is detected, yielding a power consumption
saving.

For a BER = 107* and for 7 = 3 (resp., T = 384) a gain
roughly equal to 0.9 dB (resp., 0.8 dB) is offered by the pro-
posed iterative receiver with respect to the existing one. This
hybrid receiver scheme is thus selected.

BER

Ey/No (dB)

—&— Concatenated 2 X 3 STECC
—©— Concatenated 2 x 3 full-diversity STECC
—#— Concatenated 2 x 4 full-diversity STECC
—— Concatenated 2 X 4 STECC

FIGURE 6: Performance comparison of the concatenated full diver-
sity STECC and the concatenated STECC. 1530 information bits.
n, = 2. CC(7,5) e

5.3. Performance of Concatenated Full-Diversity STECCs. We
compare for T = 3 and T = 4 the performance of the con-
catenated 2 x T full diversity STECC with the concatenated
2x T STECC [16] in order to further highlight the advantage
of optimizing STECCs from a space-time point of view.

In Figure 6, we compare the performance of the concate-
nated full diversity STECC versus the concatenated STECC
for T = 3 (the time duration to transmit one STECC
codeword) and 7 = 384 using 4-QAM Gray-mapped
constellation. The higher the coherence time (7 = 384), the
more significant the spatial diversity effect on performance.
For a BER = 107> and for 7 = 3 the proposed transmission
scheme outperforms by 0.6 dB the one presented in [16]. The
gain increases with 7. Indeed for 7 = 384 and T = 3 (resp.,
T = 4), the gain becomes equal to 2.6 dB for a BER of 107>
(resp., 1.7 dB for a BER = 107*). Note that the computation
cost at the receiver side is the same for both schemes.

Figure 7 shows the effect of the error correction capability
of the outer code on the performance measured in terms
of BER. We consider a slow fading channel (7 = 1020). At
a BER = 107* and using the 1/2-rate convolutional code
CC(7,5)0c as an outer code, a gain of 0.9dB is offered by
exploiting the spatial diversity. At the same BER and taking
into account the 1/2-rate convolutional code CC(133,171),
as an outer code, the gain achieved by the concatenated full
diversity STECC with respect to the suboptimal-diversity
concatenated STECC is reduced to 0.7 dB. When the error
correction capability of the FEC outer code increases, the
time diversity becomes more influent than spatial diversity
on performance. Concatenated STECCs exploit efficiently
the time diversity. Furthermore, considering the scheme with
the outer code CC(7,5),, the gain observed in Figure 7 for
7 = 1020 is less than the gain observed in Figure 6 for
7 = 384. The information length is indeed higher in the
scheme with 7 = 1020.
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FIGURE 7: Performance comparison of the concatenated full diver-
sity STECC and the concatenated STECC. 34074 information bits.
n, = 2.
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FiGure 8: Performance comparison of the concatenated full diver-
sity STECC and the concatenated suboptimal-diversity STECC. 3 X
4074 information bits. n, = 2. Outer code: the 2/3-rate punctured
CC(133,171) -

5.4. Puncturing. A drawback of concatenated STECCs is
their low coding rate. However, puncturing can be used to
increase the system throughput. Unfortunately, puncturing
the inner code induces a degradation of the transmit
diversity. In order to guarantee a full spatial diversity, we
apply puncturing on the outer code. We consider 2/3-rate
and 7/8-rate punctured convolutional codes generated from
the half-rate parent convolutional code CC(133,171)-

In Figure 8, the outer code is punctured so as to get a
coding rate of 2/3. For a BER of 107 and 7 = 1020, the gain
of the full diversity scheme compared to the suboptimal one
is equal to 1.2 dB. In Figure 9, the outer code coding rate is
7/8. For a BER of 1073, the full diversity scheme outperforms
the suboptimal one by 4 dB.

100
107!
4
-2
= 10
1073
107+ ;
-2 0 2 4 6 8 10 12
Ey/Ny (dB)

—e— Concatenated 2 x 3 full-diversity STECC,=1020.
—=— Concatenated 2 X 3 STECC, 7 = 1020

FIGURE 9: Performance comparison of the concatenated full diver-
sity STECC and the concatenated suboptimal-diversity STECC. 3 x
4074 information bits. n, = 2. Outer code: the 7/8-rate punctured
CC(133,171) .

The outer code puncturing yields a decrease of its error-
correction capability and thus a lower exploitation of the
available time diversity. Maximization of the space-diversity
is all the more essential.

6. Conclusion

In this paper, we have presented the construction of space-
time codes with error correction capability and we have
optimized the receiver in case of serial concatenation with
an outer FEC code.

The application of both binary rank criterion, associated
to the Lu and Kumar unified construction, and threaded lay-
ering technique yields a systematic procedure for developing
full diversity STECCs. When concatenated with an outer FEC
code, an equivalent product code can be constructed at the
receiver side enabling an hybrid iterative receiver combining
both MMSE turbo equalization and turbo product code
decoding. Compared to equivalent linear dispersion codes,
STECC:s are better adapted for a serial concatenation with an
outer FEC code and the optimized receiver exhibits a lower
computation cost, associated to a better convergence state
and a simple stopping criterion yielding power consumption
saving.
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