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The admission control mechanism inspired in the framework of proportional differentiated services has been investigated.
The mechanism provides a predictable and controllable network service for real-time traffic in terms of blocking probability.
Implementation of proportional differentiated admission control is a complicated computational problem. Previously, asymptotic
assumptions have been used to simplify the problem, but it is unpractical for real-world applications. We improve previous
solutions of the problem and offer an efficient nonasymptotic method for implementation of proportional differentiated admission
control.

1. Introduction

Efficient implementation of admission control mechanisms
is a key point for next-generation wireless network devel-
opment. Actually, over the last few years an interrelation
between pricing and admission control in QoS-enabled
networks has been intensively investigated. Call admission
control can be utilized to derive optimal pricing for multiple
service classes in wireless cellular networks [1]. Admission
control policy inspired in the framework of proportional
differentiated services [2] has been investigated in [3].
The proportional differentiated admission control (PDAC)
provides a predictable and controllable network service
for real-time traffic in terms of blocking probability. To
define the mentioned service, proportional differentiated
service equality has been considered and the PDAC problem
has been formulated. The PDAC solution is defined by
the inverse Erlang loss function. It requires complicated
calculations. To reduce the complexity of the problem, an
asymptotic approximation of the Erlang B formula [4] has
been applied. However, even in this case, the simplified
PDAC problem remains unsolved.

In this paper, we improve the previous results in [3]
and withdraw the asymptotic assumptions of the used

approximation. It means that for the desired accuracy of the
approximate formula an offered load has to exceed a certain
threshold. The concrete value of the threshold has been
derived. Moreover, an explicit solution for the considered
problem has been provided. Thus, we propose a method for
practical implementation of the PDAC mechanism.

The rest of the paper is organized as follows. In the next
section, we give the problem statement. In Section 3, we
first present a nonasymptotic approximation of the Erlang
B formula. We then use it for a proportional differentiated
admission control implementation and consider some alter-
native problem statements for an admission control policy.
In Section 4, we present the results of numerous experiments
with the proposed method. Section 5 is a brief conclusion.

2. Problem Statement

Let us consider the concept of admission control inspired in
the framework of proportional differentiated services. In the
above paper [3], whose notation we follow, PDAC problem
is defined as

δ1B1
(
ρ1,n1

) = δ2B2
(
ρ2,n2

) = · · · = δKBK
(
ρK ,nK

)
. (1)
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Here,

(i) K : is a number of traffic classes. K ≥ 2;

(ii) δi: is the weight of class i, i = 1, . . . ,K . This
parameter reflects the traffic priority. By increasing
the weight, we also increase the admittance priority
of corresponding traffic class;

(iii) ρi: is the offered load of class i traffic;

(iv) ni = �Ci/bi�, Ci is an allotted partition of the link
capacity, bi is a bandwidth requirement of class i
connections, and �x� is the largest integer not greater
than x;

(v) B(ρi,ni): is the Erlang loss function, that is, under the
assumptions of exponential arrivals and general ses-
sion holding times [5], it is the blocking probability
for traffic of class i, i = 1, . . . ,K .

It needs to find C1,C2, . . . ,CK taking into account known
δi, ρi, bi, i = 1, . . . ,K and the restriction imposed by given
link capacity, C:

K∑

i=1
Ci = C. (2)

Let us remark that variations of Ci imply a discrete
changing of the function B(ρi,ni). Hence, it is practicably
impossible to provide the strict equality in (1). It is reason-
able to replace (1) by an approximate equality as follows:

δ1B1
(
ρ1,n1

) ≈ δ2B2
(
ρ2,n2

) ≈ · · · ≈ δKBK
(
ρK ,nK

)
. (3)

But, even in this case, the above problem is difficult and
complex combinatorial problem. For its simplification, the
following asymptotic approximation has been used [3]. If the
capacity of link and the offered loads are increased together:

n −→ ∞, ρ −→ ∞, (4)

and ρ > n, then the Erlang loss function

B
(
ρ,n
) = ρn/n!

∑n
i=0 ρi/i!

, (5)

can be approximated by

1− n

ρ
. (6)

Taking into account the PDAC problem, the authors of
[3] consider the limiting regime when

ni −→ ∞, Ci −→ ∞, (7)

and ρi > Ci/bi, i = 1, . . . ,K . Under these conditions, the
asymptotic approximation of the Erlang B formula has been
used and (1) has been replaced by simplified equations as
follows:

δ1

(

1− C1

b1ρ1

)

= δ2

(

1− C2

b2ρ2

)

= · · · = δK

(

1− CK

bKρK

)

.

(8)

In practice, the limited regime (7) is not appropriate. But
the simplification (8) can be used without the conditions (7).
Actually, the approximation (6) can be applied without the
condition (4). We prove it below.

3. Offered Technique

3.1. Approximate Erlang B Formula. We assert that for the
desired accuracy of the approximation (6) an offered load
has to exceed a certain threshold. The concrete value of the
threshold is given by the following theorem.

Theorem 1. For any small ε > 0, if

ρ ≥ n +
1
ε
, (9)

then

1− n

ρ
< B

(
ρ,n
)
< 1− n

ρ
+ ε. (10)

Proof. Here and below, we use the following designation:

β
(
ρ,n
) = 1− n

ρ
. (11)

Assume that ρ > n. First, we rewrite the Erlang B formula

B
(
ρ,n
) =

⎛

⎝
n∑

i=0

n!
i!ρn−i

⎞

⎠

−1

. (12)

Remark that

n∑

i=0

n(n− 1) · · · (i + 1)
ρn−i

≤
n∑

i=0

(
n

ρ

)n−i
. (13)

Taking into account properties of geometrical progres-
sion, we have

1
B
(
ρ,n
) ≤

n∑

i=0

(
n

ρ

)n−i
<

1
β
(
ρ,n
) . (14)

Hence

B
(
ρ,n
)
> 1− n

ρ
. (15)

To prove the second inequality of the theorem, we use the
following upper bound of the Erlang loss function [6]:

UB = n
(
1− (ρ/n))2 + 2

(
ρ/n
)− 1

2
(
ρ/n
)− ρ

(
1− (ρ/n)) . (16)

Transform this as follows:

UB = ρ
(
ρ − n + 2

)− n
(
ρ − n + 2

)
+ n

ρ
(
ρ− n + 2

) . (17)

It implies

UB = 1− n

ρ
+

n

ρ
(
ρ − n + 2

) . (18)

We have n/ρ < 1. Hence,

B
(
ρ,n
)
< UB < 1− n

ρ
+

1
ρ− n

. (19)
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Thus, for any ε such that

ε >
1

ρ− n
, (20)

it follows that

UB < 1− n

ρ
+ ε. (21)

From the inequality (20), we obtain the condition (9).
The proof is completed.

Note that the approximate formula (6) can provide the
required accuracy ε in the case of ρ < n + 1/ε. Actually, if
ε = 0.01, n = 200, then the required accuracy is reached
for ρ = 270 < 300. Thus, the condition (9) is sufficient
but not necessary. It guarantees the desired accuracy of the
approximation for any small ε and n.

3.2. PDAC Solution. Assume that the solution (C1,C2,
. . . ,CK ) of the PDAC problem satisfies inequalities ρi >
Ci/bi, i = 1, . . . ,K . Let us derive an analytical solution for the
PDAC problem under the condition (8). Without reducing
generality, assume that δ1 ≥ δ2 ≥ · · · ≥ δK and maxiδi =
δ1 = 1, i = 1, . . . ,K . Indeed, if δ1 /= 1, then we define new
weights δ̂i = δi/δ1, i = 1, . . . ,K . Thus, the condition (8) can
be reformulated as follows:

1− C1

b1ρ1
= δi

(

1− Ci

biρi

)

, i = 2, . . . ,K. (22)

According to the transitivity property, any solution of the
PDAC problem under condition (8) is also a solution of the
PDAC problem under condition (22). Therefore,

Ci = biρi

(

1 +
1
δi

(
C1

b1ρ1
− 1

))

, i = 2, . . . ,K. (23)

Using the equality (2), we get

C1 = C + S2
1 + S1

, (24)

where

S1 = 1
b1ρ1

K∑

j=2

bjρj
δj

, S2 =
K∑

j=2
bjρj

(
1
δj
− 1

)

. (25)

Thus, the formulas (23)–(25) provide the implementa-
tion of proportional differentiated admission control.

It is clear that for some values C, bi, ρi, δi, we can obtain
C1 > C in (24) or Ci < 0 in (23). Therefore, the problem is
unsolvable and PDAC implementation is impossible for the
given parameters.

More precisely, if C1 > C, then we have from (24)

C + S2
1 + S1

> C,

C <
S2
S1
.

(26)

Using the following equality:

S2 = b1ρ1S1 +
K∑

j=2
bjρj , (27)

we derive

C < CL1 = b1ρ1

⎛

⎝1−
∑K

j=2 bjρj
∑K

j=2 bjρj/δj

⎞

⎠. (28)

From the inequality Ci < 0, we can write

δi > 1− C1

b1ρ1
, ∀i = 2, . . . ,K. (29)

Therefore,

δK = min
i

δi > 1− C1

b1ρ1
. (30)

By substituting the expressions (24) for the C1 into (30),
we get after some manipulations the following inequality:

C > CL2 =
K−1∑

j=1
bjρj

(

1− δK
δj

)

. (31)

Note that the problem (22) has been formulated under
the condition

C <
K∑

j=1
bjρj . (32)

Actually, it implies

Cj

bjρj
< 1, ∀ j = 1, . . . ,K. (33)

Thus, the region of acceptability for PDAC problem (22)
is defined by

max(CL1,CL2) < C <
K∑

j=1
bjρj . (34)

It follows from the theorem that the approximation
(6) is applicable even for n = 1 and any small ε > 0
if ρ > 1/ε − 1. In spite of this fact, the solution above
cannot be useful for small values of the ratio Ci/bi. In this
case, the loss function B(ρi,ni) is sensitive to fractional part
dropping under calculation ni = �Ci/bi�. For example, if
bi = 128 kb/s, ρi = 2, and we obtain Ci = 255 kb/s, then the
approximate value of the blocking probability is about 0.004.
But ni = �Ci/bi� = 1 and B(1, 2) ≈ 0.67. Thus, the offered
approximate formula is useful if the ratio Ci/bi is relatively
large.

3.3. Alternative Problem Statements. Let ni be the number of
channel assigned for class i traffic, i = 1, . . . ,K . Each class i is
characterized by a worst-case loss guarantee αi [7, 8].
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Consider the following optimization problem:

min
K∑

i=1
ni,

B
(
ρi,ni

) ≤ αi, αi ∈ (0, 1], i = 1, . . . ,K.

(35)

Assume that for all i ∈ {1, . . . ,K} ∃ni ∈ N : B(ρi,ni) =
αi. It is well known that the Erlang loss function B(ρ,n) is
a decreasing function of n [9], that is, B(ρ,n1) < B(ρ,n2) if
n1 > n2. Therefore, the optimal solution (n∗1 ,n

∗
2 , . . . ,n

∗
K ) of

the problem (35) satisfies the mentioned condition

B
(
ρi,n∗i

) = αi. (36)

If we designate δi = 1/αi, then we get

δiB
(
ρi,n∗i

) = δjB
(
ρj ,n∗j

)
= 1, ∀i, j ∈ {1, . . . ,K}. (37)

Thus, the optimization problem (35) is reduced to the
problem (1).

Assume the approximation (6) is admissible. Therefore,
the method from previous subsection is supposed to be
used, but the optimal solution of the problem (35) can be
computed by inverting the formula (36). Taking into account
the approximation, we get

n∗i = ρi(1− αi). (38)

Note that in practice the solution n∗i is not usually
integer; thus, it has to be as follows:

arg min
{
ni ∈ N | ni ≥

⌊
ρi(1− αi)

⌋}
, i = 1, . . . ,K. (39)

We now consider the optimization of routing in a
network through the maximization of the revenue generated
by the network. The optimal routing problem is formulated
as

max
K∑

i=1
riρi, (40)

B
(
ρi,ni

) ≤ αi, αi ∈ (0, 1], i = 1, . . . ,K , (41)

where ni is a fixed number of channels for class i traffic and
ri is a revenue rate of class i traffic. Obviously, the Erlang loss
function B(ρ,n) is an increasing function of ρ. Therefore, the
optimal solution (ρ∗1 , ρ

∗
2 , . . . , ρ

∗
K ) of the problem (40), (41)

satisfies the following condition:

B
(
ρ∗i ,ni

) = αi. (42)

Hence, the problem (40), (41) can be reduced to the
problem (1) as well. Under the approximation, the optimal
solution takes the form

ρ∗i =
ni

1− αi
, i = 1, . . . ,K , (43)

and the maximal total revenue is

K∑

i=1

rini
1− αi

. (44)

Table 1

Class Ci, kb/s ni B(ρi,ni) δiB(ρi,ni)

1 130887 1022 0.0803 0.0803

2 129786 1013 0.0877 0.079

3 128409 1003 0.0961 0.0769

4 126639 989 0.108 0.0756

5 124279 970 0.1243 0.0746

4. Performance Evaluation

Let us illustrate the approximation quality. The difference
Δ(ρ,n) = B(ρ,n)− β(ρ,n) is plotted as a function of offered
load in Figure 1. If the number of channel n is relatively
small then high accuracy of approximation is reached for
heavy offered load. Let us remark that heavy offered load
corresponds to high blocking probability. Generally, this
situation is abnormal for general communication systems,
but the blocking probability B(n, ρ) decreases if the number
of channels n increased relative accuracy ε. Let us designate
ρ∗ = n + 1/ε. If the approximation (2) is admissible for ρ∗

then it is also admissible for any ρ > ρ∗. In Figure 2, the
behavior of losses function B(n, ρ∗) according to different
ε is shown. Thus, the provided approximation is attractive
for a performance measure of queuing systems with a large
number of devices.

Next, we consider a numerical example to evaluate the
quality of a PDAC implementation based on the proposed
method. Assume that C = 640Mb/s, K = 5, bi = 128 kb/s,
ρi = 1100, δi = 1 − 0.1(i − 1), i = 1, . . . , 5. In average,
there are 1000 channels per traffic class. Following the
theorem above, we conclude that the blocking probability
can be replaced by the approximation (6) with accuracy
about 0.01. Using (23)–(25), find a solution of the simplified
PDAC problem and calculate the blocking probability for the
obtained values. The results are shown in the Table 1.

Note that
∑5

i=1 Ci = 640Mb/s and three channels per
128 kb/s have not been used. We get

δi

(

1− Ci

biρi

)

= 0.0704, i = 1, . . . , 5. (45)

It is easy to see that

max
i=1,...,5

{

B
(
ρi,ni

)−
(

1− Ci

biρi

)}

< 0.01,

max
i, j

∣
∣
∣δiB

(
ρi,ni

)− δjB
(
ρj ,nj

)∣∣
∣ < 0.01.

(46)

If K = 10, δi = 1 − 0.05(i − 1), i = 1, . . . , 10, and other
parameters are the same then

max
i, j

∣
∣∣δiB

(
ρi,ni

)− δjB
(
ρj ,nj

)∣∣∣ < 0.001. (47)

If an obtained accuracy is not enough, then the formulas
(23)–(25) provide efficient first approximation for numerical
methods.
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Figure 1: Approximation quality as a function of the offered load.

0.5
0.4
0.3

0.2

0.1

0.07

0.05
0.04
0.03

0.02

0.01

0.007

0.005
0.004
0.003

0.002

0.001

L
os
s
fu
n
ct
io
n
,B

(n
,ρ
∗ )

Number of channels, n

1 2 3 4 5 7 10

×104

ε = 0.01
ε = 0.001
ε = 0.0001

Figure 2: The behavior of losses function B(n, ρ∗) according to
different values of ε.

5. Conclusion

In this paper, a simple nonasymptotic approximation for
the Erlang B formula is considered. We find the sufficient
condition when the approximation is relevant. The proposed
result allows rejecting the previously used limited regime and
considers the proportional differentiated admission control
under finite network resources. Following this way, we get
explicit formulas for PDAC problem. The proposed formulas
deliver high-performance computing of network resources
assignment under PDAC requirements. Thus, an efficient
method for proportional differentiated admission control
implementation has been provided.
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