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Coding Across Multicodes and Time in CDMA Systems
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When combining a multicode CDMA system with convolutional coding, two methods have been considered in the literature. In
one method, coding is across time in each multicode channel while in the other the coding is across both multicodes and time.
In this paper, a performance/complexity analysis of decoding metrics and trellis structures for the two schemes is carried out. It is
shown that the latter scheme can exploit the multicode diversity inherent in convolutionally coded direct sequence code division
multiple access (DS-CDMA) systems which employ minimum mean squared error (MMSE) multiuser detectors. In particular,
when the MMSE detector provides sufficiently different signal-to-interference ratios (SIRs) for the multicode channels, coding
across multicodes and time can obtain significant performance gain over coding across time, with nearly the same decoding
complexity.
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1. INTRODUCTION

In third generation code division multiple access (CDMA)
systems, multimedia data transmission needs to support
variable data rates. Multicode CDMA is one method to do
this, the basic idea of which is to allocate more spreading
codes to users with higher data rates [1].

There are two methods which have been suggested to
combine a multicode CDMA system with convolutional cod-
ing. In one approach, a serial-to-parallel (S/P) conversion
precedes the convolutional coding [2], while in the other ap-
proach the S/P conversion follows the convolutional coding
[3]. When S/P conversion precedes convolutional coding, the
coding is only across time in each multicode channel, while
when the order is reversed, the coding is across both multi-
codes and time.The latter approach has also been applied to
multicarrier CDMA systems [4] and multiantenna CDMA
systems [5]. These systems assume that the temporal diver-
sity associated with convolutional coding is fully exploited
by interleaving. The case where the fading is slow and the de-

lay constraints do not allow the adoption of an interleaver
is considered in [5], where instead spatial diversity for the
coded symbols is provided by the transmit antenna. None
of these methods employ multiuser detection, which may be
additionally required to get the desired performance.

To suppress interference among users in a multiuser en-
vironment, a minimum mean squared error (MMSE) mul-
tiuser detector is often employed [6] and can be combined
with convolutional coding to further improve performance
[7]. In this paper, we consider a multicode CDMA system
with convolutional coding and an MMSE detector. As in [5]
(which does not employ multiuser detection), we focus on
the situation where temporal diversity is not available, that
is, the fading is too slow to employ an interleaver. Unless the
crosscorrelations between all the users’ spreading codes are
equal, the signal-to-interference ratios (SIRs) for the users at
the MMSE detector output are different. When only coding
across time (CT) is employed and one of the multicodes of
the desired user has significantly lower SIR at the MMSE de-
tector output, it is shown that the average coded performance

mailto:jspark@purdue.edu
mailto:jonghan.lim@samsung.com
mailto:gelfand@ecn.purdue.edu


Coding Across Multicodes and Time in CDMA Systems 173

over all multicodes is dominated by the worst multicode SIR.
However, when coding across multicodes and time (CMT) is
used, each convolutionally coded symbol is transmitted over
several multicodes with different SIRs, and it is shown that
the average coded performance over all the multicodes is re-
lated to the average multicode SIR. Thus, the diversity inher-
ent in multicodes at the MMSE multiuser detector output
can be exploited with CMT.

We develop and analyze maximum-likelihood (ML) de-
coding for both CMT and CT in multicode CDMA systems.
For CMT, the optimal decoding metric is rather complex.
To reduce the complexity, three suboptimal decodingmetrics
are also considered, including one which has the same com-
plexity as CT (we call this latter metric the “conventional”
one in that it ignores the correlation due to multicoding and
decodes the convolutional coding in a conventional way). In
CMT, for metrics other than the conventional one, there ex-
ist both time-invariant and time-varying trellis representa-
tions. The time-invariant trellis is useful for analysis, while
the time-varying trellises can significantly reduce the decod-
ing complexity depending upon the number of multicodes
and the code rate.

To find a true upper bound on the user bit error rate
(BER) for the ML and suboptimal decoding, the Laplace
transform method can be combined with the transfer func-
tion method [8]. But using the residue method for the evalu-
ation of the Laplace integral results in computationally com-
plex symbolic operation to evaluate the transfer function.
However, if the Gauss-Chebyshev quadrature rule is used for
numerical integration, each pairwise error probability (PEP)
can be expressed in a product form and the transfer function
method can be applied. This is the approach taken in this pa-
per.

The paper is organized as follows. In Section 2, the sys-
tem model is presented. In Section 3, decoding metrics and
trellises for CMT are proposed, and in Section 4 a theoretical
upper bound on BER for each metric is derived. Simulation
results are provided in Section 5 and some conclusions and
future work are discussed in Section 6.

2. SYSTEMMODELS

The transmitter block diagram of a multicode CDMA system
with CT and CMT for desired user k is shown in Figure 1,
and the corresponding receiver block diagrams are shown in
Figure 2. The mth information bit for user k is dk[m]. Let
1/Tk denote the information bit rate,mk the number of mul-
ticodes, and Rk the code rate, for user k. The ith coded bit
of multicode j for user k is ck, j[i] ∈ {0, 1}, and the cor-
responding binary code symbol is bk, j[i] = 2ck, j[i] − 1 ∈
{+1,−1}.

The code symbol rate for each multicode channel of user
k is 1/mkTkRk. For the purpose of designing and implement-
ing the MMSE multiuser detector, it is simplest to require
that these code symbol rates are the same for all users, that
is, 1/mkTkRk = 1/T for some T . A special case of this oc-
curs when the user information bit rates are all integral mul-
tiples of the lowest bit rate 1/Tb = 1/maxk Tk, and the multi-
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Figure 1: Transmitter of desired user k. (a) Coding across time, (b)
coding across multicodes and time.

codes are assigned such that mk = Tb/Tk and all users em-
ploy the same rate 1/n convolutional code (CC). For ease
of presentation we will assume this case in the sequel. (A
more general but similarly treated situation is the case when
mk �= Tb/Tk for some users k ∈ A and all other users
are assigned mj = Tb/Tj multicodes for j /∈ A. Each user
j /∈ A employs the same rate 1/n CC. The code rate Rk,
k ∈ A, becomes Tb/Tkmkn and the integer mk ≥ 1 must
satisfy mk > Tb/Tkn to make Tb/Tkmkn a realizable CC
rate which should be less than 1.) Note that the process-
ing gains of CT and CMT are equal when the chip rates of
the spreading waveforms of the two systems are equal. How-
ever, the encoder and decoder of CMT requires mk times
faster processing speed at both the encoder and decoder than
CT.

In CDMA systems, the transmitted signal for user k is

sk(t) =
mk∑
j=1

i=∞∑
i=−∞

Ak, jbk, j[i]ak, j(t − iT), (1)

where Ak, j is the received signal amplitude of the jth multi-
code of the kth user, and ak, j(t) is the normalized spreading
waveform of the jth multicode of the kth user with support
in [0,T]. The spreading waveform ak, j(t) is

ak, j(t) =
N−1∑
m=0

pk, j[m]ψ
(
t −mTc

)
, (2)

where pk, j[m] ∈ {+1/√N ,−1/√N}, m = 0, . . . ,N − 1, is
the spreading sequence, N is the processing gain, and ψ(t) is
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Figure 2: Receiver of desired user k. (a) Coding across time, (b) coding across multicodes and time.

the normalized rectangular chip waveform with support in
[0,Tc],

∫ Tc

0 ψ2(t)dt = 1.
The received signal in a downlink CDMA additive white

Gaussian noise (AWGN) channel is

r(t) =
K∑
k=1

sk(t) + n(t), (3)

where n(t) is (real) white Gaussian noise with power spectral
density σ2, and K is the number of active users. The matched
filter output of multicode j of user k in the ith code symbol
interval is

yk, j[i] =
∫ (i+1)T

iT
ak, j(t − iT)r(t)dt. (4)

The vector yi = [y1,1[i], . . . , y1,m1 [i], y2,1[i], . . . , yK ,mK [i]]
T is

given by [6]

yi = RAbi + ni, (5)

where R is the crosscorrelation matrix

(R)∑k−1
p=1 mp+ j,

∑l−1
p=1 mp+m

=
∫ T

0
ak, j(t)al,m(t)dt, (6)

A = diag{A1,1, . . . ,A1,m1 ,A2,1, . . . ,AK ,mK }, and bi = [b1,1[i],
. . . , b1,m1 [i], b2,1[i], . . . , bK ,mK [i]]

T . The covariance matrix
of the Gaussian noise vector ni = [n1,1[i], . . . ,n1,m1 [i],
n2,1[i], . . . ,nK ,mK [i]]

T is σ2R and {ni} is i.i.d.

Since we do not employ an interleaver in our system, {bi}
is a correlated sequence due to the convolutional coding. Fur-
thermore, for CMT (but not CT) the components of bi asso-
ciated with the same user but different multicodes are corre-
lated for the same reason. However, the correlation between
code symbols becomes smaller as the constraint length gets
larger. We will assume that bk, j[i] and bk, j′[i′] are indepen-
dent for i �= i′ or j �= j′. Our simulations show this to be
a good approximation with rate 1/2 or 1/3 codes and con-
straint length greater than or equal to 5. This approximation
is employed in the design of the MMSE detector below, and
to design and analyze the decoding metrics in Sections 3 and
4.

The MMSE detector output for multicode j of desired
user k in the ith symbol interval is rk, j[i] = ωT

k, jyi, where [6]

ωk, j =
(
R + σ2A−2

)−1
ek, j , (7)

and ek, j is the vector whose elements are all zeros except for

the (
∑k−1

p=1mp + j)th element which is 1. Thus the MMSE de-

tector for all
∑K

p=1mp multicodes can be expressed as

M =[ω1,1, . . . ,ωk,mk , . . . ,ωK ,mK

] = (R + σ2A−2
)−1

. (8)

3. DECODINGMETRICS AND TRELLISES

For both CT and CMT, the decoder input of desired user
k is given by {(rki )T}∞i=−∞, where rki = [rk,1[i], rk,2[i],
. . . , rk,mk [i]]

T . However, for CT mk decoders are required
and the input of each decoder with index j = 1, . . . ,mk is
{. . . , rk, j[i], rk, j[i + 1], . . . }, while for CMT one decoder
is needed and the input to the decoder is {. . . , rk,1[i],
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rk,2[i], . . . , rk,mk [i], rk,1[i + 1], . . . }. rki can be expressed as

rki =
(
R̂k � Ik

)
Akbki + iki + īki + n̂k

i , (9)

where

(
R̂k
)
j,l =

(
ωT
k, jR

)∑k−1
p=1 mp+l

, j = 1, . . . ,mk, l = 1, . . . ,mk,

Ak = diag
{
Ak,1 . . . ,Ak,mk

}
,

bki =
[
bk,1[i], . . . , bk,mk [i]

]T
,

iki =
(
R̂k − (R̂k � Ik

))
Akbki ,

īki = ¯̂R
k
Ākb̄ki ,

(
¯̂R
k)

j,l
=



(
ωk, jR

)
l, j = 1, . . . ,mk,

l = 1, . . . ,
k−1∑
p=1

mp,(
ωk, jR

)
l+mk

, j = 1, . . . ,mk,

l =
k−1∑
p=1

mp + 1, . . . ,
K∑
p=1
p �=k

mp,

Āk = diag
{
A1,1, . . . ,Ak−1,mk−1 ,Ak+1,1, . . . ,AK ,mK

}
,

b̄ki =
[
b1,1[i], . . . , bk−1,mk−1 [i], bk+1,1[i], . . . , bK ,mK [i]

]T
,

n̂k
i =

[
ωT
k,1ni, . . . ,ωT

k,mk
ni
]T
,

(10)

Ik is mk ×mk identity matrix and � represents elementwise
product of two matrices. The covariance matrix of n̂k

i is σ
2R̃k

where (R̃k) j,l = ωT
k, jRωk,l, j = 1, . . . ,mk, l = 1, . . . ,mk.

In CT, the kth user employs mk encoders and the trellis
stage index t j for jth encoder is related to the input bit index
m by t j(m) = �(m− 1)/mk	 + 1 andm(t j) = (t j − 1)mk + j,
j = 1, . . . ,mk. Assuming iki and īki are well approximated as
Gaussian [6], the branch metric corresponding to the t jth
transition reduces to

µkt j =
n∑
l=1

(
rk, j
[(
t j − 1

)
n + l

]−(R̂k
)
j, jAk, jbk, j

[(
t j − 1

)
n + l

])2
.

(11)

In CMT,mk code symbols are aligned at the same symbol
interval and theirMMSE detector outputs are correlated with
each other. The covariance matrix Φ̄k of īki is given by Φ̄k =
¯̂R
k
Āk(Āk)T( ¯̂R

k
)T and that of n̂k

i is σ
2R̃k. Assuming īki is well-

approximated as Gaussian, the branch metric corresponding
to the tth transition is given by

µk,1t =
īt∑
i=it

(
rki − R̂kAkbki

)T(
σ2R̃k+Φ̄k

)−1(
rki − R̂kAkbi

)
, (12)

where it and īt depend on the choice of decoding trellis dis-
cussed in the sequel.

To reduce the complexity, suboptimal metrics are con-
sidered. If the Viterbi decoder does not consider iki , the cor-
responding suboptimal metric is given by

µk,2t =
īt∑
i=it

(
rki −

(
R̂k � Ik

)
Akbki

)T(
σ2R̃k + Φ̄k

)−1
× (rki − (R̂k � Ik

)
Akbki

)
.

(13)

If the decoder ignores the correlation of īki and n̂i, the corre-
sponding suboptimal metric is given by

µk,3t =
īt∑
i=it

(
rki − R̂kAkbki

)T(
rki − R̂kAkbki

)
. (14)

Finally, the suboptimal metric

µk,4t =
īt∑
i=it

(
rki −

(
R̂k�Ik

)
Akbki

)T(
rki −

(
R̂k�Ik

)
Akbki

)
(15)

corresponds to both of the above simplifications and is just
the conventional decoding metric for vector observations in
additive white Gaussian multiple access interference and (in-
dependent) AWGN.

We first consider the time-invariant trellis for CMT. In
the time-invariant trellis, one transition corresponds to m̃ =
LCM(n,mk)/n transitions in the code trellis and any combi-
nation of mk and n can be treated. For the time-invariant
trellis we have it = ĩ(t − 1) + 1 and īt = ĩt, where ĩ =
LCM(n,mk)/mk in the branch metrics above. The case where
n is divisible bymk corresponds to a special case of this time-
invariant trellis with m̃ = 1, ĩ = n/mk. Here a transition oc-
curs at each information bit input and the state transitions
are equivalent to those of the CC. In this case we say that mk

and n are matched. If we define the decoding complexity as
the number of visited branches per decoded bit, the decod-
ing complexity of the CC is 2ν+1, where ν is the memory of
the CC. The decoding complexity of the time-invariant trel-
lis is that of the CC multiplied by 2m̃−1/m̃, when we employ
metrics other than that in (15) (if the conventional metric
(15) is used, the decoding complexity is equal to that of the
CC regardless of m̃).

Mismatched cases ofmk and n can be dealt with using the
time-invariant-trellis approach. But with a time-invariant
trellis we have to search over 2m̃ branches at each state for
each transition, and for some mk and n this complexity can
be prohibitive. However, if we design the trellis so that a tran-
sition occurs for information input bits corresponding to an
appropriate number of observation vectors of the decoder
depending on mk and n, it turns out that the decoding com-
plexity can be significantly reduced. But because of the mis-
match ofmk and n, the trellis becomes time varying.

To describe time-varying trellises for CMT, we first de-
fine the maximum number of information bit inputs m̄ to
generate all of the mk code symbols which cause multicode
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interference with each other at each CC state transition.
When mk and n are matched, m̄ = 1 which reduces to
the case of CC. When mk < n and n is not divisible by
mk, m̄ = 2 because multicode interference can affect code
symbols corresponding to two transitions in the code trel-
lis. When mk > n and (mk − n�mk/n	) = GCD(n,mk),
m̄ = �mk/n	 + 1{(mk−n�mk/n	)≥1}. When mk > n and (mk −
n�mk/n	) �= GCD(n,mk), m̄ = �mk/n	 + 1{(mk−n�mk/n	)≥1} +
1{(mk−n�mk/n	)≥2}. In the following time-varying trellis discus-
sion, we are interested in mismatch ofmk and n, that is, when
m̄ ≥ 2, and we consider both fixed and variable state aug-
mentation approaches corresponding to whether the CMT
trellis obtained by augmenting the input bits and/or state in
the CC trellis varies from one transition to another (in ad-
dition to the number and/or structure of the CMT branch
metrics).

We first consider fixed state augmentation time-varying
trellises.

(i) When mk < n and n is not divisible by mk, the CC
state is augmented by 1 bit, but the number of infor-
mation input bits per transition is kept equal to one.
For this fixed state augmentation time-varying trellis,
īt = maxi(imk ≤ tn) and it = ī(t − 1) + 1 in the
branch metrics in (12), (13), (14), and (15). The com-
putational complexity of the fixed state augmentation
time-varying trellis decoding is that of the CC multi-
plied by 21. If n is divisible by mk then the CMT trellis
is just the CC trellis.

(ii) When mk > n, for some transitions more than one in-
put bit is required and there is no simple fixed state
augmentation time-varying trellis. It is possible to
modify the variable state augmentation time-varying
trellis, below to enforce a fixed state augmentation, but
such an approach has no advantage either intuitively
or computationally so we do not elaborate on it here.

Next we consider variable state augmentation time-
varying trellises:

(i) When mk < n and n is not divisible by mk, at the
tth transition, if (t − 1)n is not divisible by mk, the
CC state is augmented by 1 bit and otherwise it is not
augmented. The number of information input bits at
the tth transition is one if (t − 1)n is not divisible by
mk and is two otherwise. For this variable state aug-
mentation time-varying trellis, īt = �(xt + 1)n/mk	
and it = (xt − 1)n/mk + 1 when (t − 1) is divis-
ible by (m̃ − 1) and otherwise īt = �ytn/mk	 and
it = �(yt−1)n/mk	+1, where xt = (t−1)/(m̃−1)·m̃+1
and yt = t + �(t − 1)/(m̃− 1)	 + 1 in the branch met-
rics in (12), (13), (14), and (15). The computational
complexity of the variable state augmentation time-
varying trellis decoding is that of the CC multiplied
by 2 · (m̃ − 1)/m̃, which is always less than the factor
of 2 for the fixed state augmentation time-varying trel-
lis decoding. When m̃ = 2, the variable state augmen-
tation time-varying trellis reduces to a time-invariant
trellis with the same decoding complexity as CC. If n
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Figure 3: Complexity comparisons of time-invariant and time-
varying trellises.

is divisible by mk, then the CMT trellis is just the CC
trellis.

(ii) When mk > n and mk is not divisible by n, at the
tth transition, if (t − 1)mk is not divisible by n, the
CC state is augmented by 1 bit and otherwise it is not
augmented. The number of information input bits at
the tth transition is given by �tmk/n� − �(t − 1)mk/n�.
For this variable state augmentation time-varying trel-
lis, īt = it = t in the branch metrics in (12), (13),
(14), and (15). The computational complexity of the
variable state augmentation time varying trellis decod-
ing is upper bounded by that of the CC multiplied by
2m̄−1/m̃ · ĩ. If mk is divisible by n then the CMT trellis
is justmk/n transitions in the CC trellis.

Time varying trellises were considered above based on
the feedforward convolutional encoder. However, we can also
develop time varying trellises with a recursive systematic
convolutional code (RSCC). With RSCC, the information bit
vector input can be dealt with because we know the primi-
tive state transition in the code trellis. We can also treat the
augmented state in RSCC.

The complexity relative to the CC complexity of time-
invariant and two time-varying trellises are shown in
Figure 3 for each n andmk. “TI” denotes time-invariant trel-
lis, “TV, fixed” time-varying trellis with fixed state augmen-
tation and “TV, variable” time varying trellis with variable
state augmentation.

4. PERFORMANCE ANALYSIS

4.1. Numerical approach

To find a tight numerical upper bound on the BER,
the Laplace transform method based on Gauss-Chebyshev
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quadrature rule is employed. We will focus on the analysis
of CMT in this section, since the analysis of CT is simpler
and conventional.

The optimal metric in (12) considers interference among
multicode symbols iki , and correlation of īki and nk

i for the
same multicode symbols. If iki and/or the correlation of īki
and nk

i are disregarded in the Viterbi decoder, it corresponds
to employing one of the suboptimal metrics in (13), (14),
and (15). The Viterbi decoder using the metric in (13) is iki -
mismatched, and that using the metric in (14) is (īki + nk

i )-
mismatched. The metric in (15) is both iki - and (īki + nk

i )-
mismatched.

The evaluation of the PEP for a mismatched Viterbi de-
coder was analyzed in [9] but a true upper bound for BER
using the transfer function method was not treated there.
This problem was considered recently in [10] and the follow-
ing derivation is based on the results in [10]. For the anal-
ysis, we employ the time-invariant trellis. We evaluate the
PEP, P(bk,c → bk,i) of choosing the incorrect code symbol
sequence bk,i when bk,c was transmitted. Let M denote the
length of the error event.

For the analysis of the Viterbi decoder employing the
metrics in (12) and (13),

Uk
t =

ĩ∑
j=1

((
rk(t−1)ĩ+ j − dk,it, j

)T(
σ2R̃k + Φ̄k)−1

(
rk(t−1)ĩ+ j − dk,it, j

)
−
(
rk(t−1)ĩ+ j−dk,ct, j

)T(
σ2R̃k+Φ̄k

)−1(
rk(t−1)ĩ+ j−dk,ct, j

))
=

ĩ∑
j=1

Uk
t, j ,

(16)

and for the metrics in (14) and (15), let

Uk
t =

ĩ∑
j=1

((
rk(t−1)ĩ+ j − dk,it, j

)T(
rk(t−1)ĩ+ j − dk,it, j

)
−
(
rk(t−1)ĩ+ j − dk,ct, j

)T(
rk(t−1)ĩ+ j − dk,ct, j

))
=

ĩ∑
j=1

Uk
t, j ,

(17)

where for the iki -matched Viterbi decoder employing met-
rics in (12) and (14), dk,ct, j = R̂kAkbk,c(t−1)ĩ+ j and dk,it, j =
R̂kAkbk,i(t−1)ĩ+ j , and for the iki -mismatched Viterbi decoder

employing metrics in (13) and (15), dk,ct, j = (R̂k �
Ik)Akbk,c(t−1)ĩ+ j and dk,it, j = (R̂k � Ik)Akbk,i(t−1)ĩ+ j .

Since n̂k
i and īki are i.i.d. in i, U

k, j
t and U

k, j′
t′ are i.i.d. for

t �= t′ or j �= j′. The Laplace transform of the pdf of Uk =∑M
t=1
∑ĩ

j=1U
k
t, j for the metrics in (12) and (13) is

ΦUk (λ) = E

{
exp

(
− λ

M∑
t=1

ĩ∑
j=1

Uk
t, j

)}

=
M∏
t=1

ĩ∏
j=1

exp
(
− λ

[
2
(
bk,c(t−1)ĩ+ j

)T(
Ak
)T(

R̂k
)T

×(σ2R̃k + Φ̄k
)−1[

dk,ct, j − dk,it, j
]

+
[(
d
k, j,i
t

)T(
σ2R̃k + Φ̄k

)−1
dk,it, j

− (dk,ct, j )T(σ2R̃k + Φ̄k
)−1

dk,ct, j
]]

+ 2λ2
[
dk,ct, j − dk,it, j

]T(
σ2R̃k + Φ̄k

)−1
× [dk,ct, j − dk,it, j

])
,

(18)

and for the metrics in (14) and (15) is

ΦUk (λ) = E

{
exp

(
− λ

M∑
t=1

ĩ∑
j=1

Uk
t, j

)}

=
M∏
t=1

ĩ∏
j=1

exp
(
− λ

[
2
(
bk,c(t−1)ĩ+ j

)T(
Ak
)T(

R̂k
)T

×[dk,ct, j − dk,it, j
]

+
[(
dk,it, j
)T
dk,it, j −

(
dk,ct, j

)T
dk,ct, j

]]
+ 2λ2

[
dk,ct, j − dk,it, j

]T(
σ2R̃k + Φ̄k

)
×[dk,ct, j − dk,it, j

])
.

(19)

The PEP is P(bk,c → bk,i) = P (Uk ≤ 0) and is given by

1
2π j

∫ c+ j∞

c− j∞
ΦUk (λ)

dλ

λ
(20)

for positive real constant c. By using the Gauss-Chebyshev
rule, it can be obtained as [11]

P
(
bk,c −→ bk,i

)
= 1

P

P/2∑
p=1

(�{ΦUk

(
c + jcτp

)}
+ τp�

{
ΦUk

(
c + jcτp

)})
+ EP ,

(21)

where τp = tan((2p − 1)π/(2P)) and EP is the error term.
By using (18), (19), and (21), we obtain the PEP in a

product form and can find the union bound on BER by
applying the transfer function method. Since uniformity
does not hold for CMT, the transfer function bound is
computed based on matrix branch labels instead of scalar
branch labels. Let Ns be the number of states of the time-
invariant trellis, which is 2ν, equal to that of CC. Let e
be the error code vector ck,c(i, j) ⊕ ck,i(i, j), where ck,c

and ck,i are correct and incorrect output code bits corre-
sponding to the transition from state j to state i, respec-
tively. Let ck,l,c(i, j) = [(ck,c(i, j))(l−1)mk+1, . . . , (c

k,c(i, j))lmk ]
T ,

ck,l,i(i, j) = [(ck,i(i, j))(l−1)mk+1, . . . , (c
k,i(i, j))lmk ]

T and ek,l =
[(e)(l−1)mk+1, . . . , (e)lmk ]

T . For branch metrics (12) and (13)
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let the Ns ×Ns matrix Gλ(e) be defined by

(
Gλ(e)

)
i+1, j+1

= 0, if no transition is possible,

= 1
2m̃

ĩ∏
l=1

exp
(
− λ

[
2
(
bk,l,c(i, j)

)T(
Ak
)T(

R̂k
)T

× (σ2R̃k + Φ̄k
)−1[

dk,l,c(i, j)− dk,l,i(i, j)
]

+
[(
dk,l,i(i, j)

)T(
σ2R̃k + Φ̄k

)−1
× dk,l,i(i, j)− (dk,l,c(i, j))T
× (σ2R̃k + Φ̄k

)−1
dk,l,c(i, j)

]]
+ 2λ2

[
dk,l,c(i, j)− dk,l,i(i, j)

]T
×(σ2R̃k + Φ̄k

)−1[
dk,l,c(i, j)− dk,l,i(i, j)

])
,

otherwise,
(22)

where bk,l,c(i, j) = 2ck,l,c(i, j)− 1mk , b
k,l,i(i, j) = 2(ck,l,i(i, j)⊕

ek,l) − 1mk , d
k,l,c(i, j) = R̂kAkbk,l,c(i, j), and dk,l,ii (i, j) =

R̂kAkbk,l,i(i, j). 1n is n× 1 vector whose elements are all ones.
Similarly, for metrics (14) and (15), let Gλ(e) be

(
Gλ(e)

)
i+1, j+1

= 0, if no transition is possible,

= 1
2m̃

ĩ∏
l=1

exp
(
− λ

[
2
(
bk,l,c(i, j)

)T(
Ak
)T(

R̂k
)T

× [dk,l,c(i, j)− dk,l,i(i, j)
]

+
[(
dk,l,i(i, j)

)T
dk,l,i(i, j)

− (dk,l,c(i, j))Tdk,l,c(i, j)]]
+ 2λ2

[
dk,l,c(i, j)− dk,l,i(i, j)

]T
× (σ2R̃k + Φ̄k

)[
dk,l,c(i, j)− dk,l,i(i, j)

])
,

otherwise,
(23)

where dk,l,c(i, j) = (R̂kAk � Ik)bk,l,c(i, j) and dk,l,i(i, j) =
(R̂kAk � Ik)bk,l,i(i, j).

Now define Gλ as

Gλ =
∑

e(0,0) �=0
Gλ(e) + Cλ

[
I− Aλ

]−1
Bλ, (24)

where

Cλ =
 ∑

e(0,1)

Gλ(e), . . . ,
∑

e(0,N1)

Gλ(e)

,

Aλ =



∑
e(1,1)

Gλ(e) · · ·
∑

e(1,N1)

Gλ(e)∑
e(2,1)

Gλ(e) · · ·
∑

e(2,N1)

Gλ(e)

...
. . .

...∑
e(N1,1)

Gλ(e) · · ·
∑

e(N1,N1)

Gλ(e)


,

Bλ =
 ∑

e(1,0)

Gλ(e), . . . ,
∑

e(N1,0)

Gλ(e)

T

,

(25)

N1 = Ns−1, and e(i, j) is the error code vector corresponding
to the transition from error state j to error state i. The first
error event probability (FEEP) is bounded by

FEEP ≤ 1
P

P/2∑
p=1

(�{Tc+ jcτp

}
+ τp�

{
Tc+ jcτp

})
+ EP , (26)

where Tλ = (1/Ns)1TNs
Gλ1Ns . The FEEP can also be evalu-

ated by calculating residues of Tλ/λ. This requires the in-
verse of the symbolic matrix in (24) and as the state num-
ber of the trellis grows, it is infeasible to compute due to
numerical problems. The Gauss-Chebyshev quadrature rule
allows us to avoid numerical problems associated with the
symbolic operation. When evaluating BER, the number of
bits for each transition should be considered in the transfer
function. In this case, we employ the first-order difference
method in [12], avoiding the symbolic operation.

4.2. SIR-based approach

In Section 4.1, we presented a method to compute a tight up-
per bound for both CT and CMT numerically and the re-
sults are in good agreement with the simulation results (see
Section 4). However, it does not explain qualitatively under
what conditions CMT performs better than CT. Here, we
present another method which can give some insight.

According to [6], the residual interference at the MMSE
detector output is well approximated as Gaussian distributed
and the probability of error of multicode j of user k at the

MMSE detector output is given by P
k, j
e = Q(

√
SIRk, j), where

SIRk, j =
A2
k, j

((
ωT
k, jR

)∑k−1
p=1 mp+ j

)2
σ2R̃k

j, j +
∑K ,ml

l=1,m=1
l �=k orm �= j

A2
l,m

((
ωT
k, jR̂

)∑l−1
p=1 mp+m

)2

=
A2
k, j

(
(R̂)kj, j

)2[
n2k, j[i]

]
+ E

[
ī 2k, j[i]

]
+ E

[
i2k, j[i]

] .
(27)

We use the decoding metrics in (11) for CT. In CMT, we
assume that E[(nk

i + īki + iki )(n
k
i + īki + iki )

T] ≈ (σ2R̃k + Φ̄k +
Φk)� Ik, where the covariance matrixΦk of iki is
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Φk = (R̂k − (R̂k � Ik
))
Ak
(
Ak
)T(

R̂k − (R̂k � Ik
))T

, (28)

that is, all elements of (nk
i + īki + iki ) are uncorrelated each

other. Hence for CMT, we use the decoding metric

µk,5t =
īt∑
i=it

(
rki −

(
R̂k � Ik

)
Akbki

)T((
σ2R̃k + Φ̄k +Φk

)� Ik
)−1

× (rki − (R̂k � Ik
)
Akbki

)
,

(29)

and we see that decoding can be done in the code trellis with
this metric.

We assume that a uniform interleaver with interleaver
size Ni [13] is employed at the encoder output. The effect of
the uniform interleaver is to make the SIR difference on each
multicode channel disappear and hence uniformity holds for
CMT. Thus, we can evaluate the union bound on BER by
considering only the all-zero path as a reference path.

Consider an error event of length M and Hamming dis-
tance d from the all-zero path in the time-invariant trellis. If
Ni = Mm̃n, the uniform interleaver maps a given codeword

with d “1” bits into
(
Ni

d

)
distinct permutations with equal

probability 1/
(
Ni

d

)
. For each permutation index p, the set of

indices of “1” bits in the trellis diagram is Ip. Then the SIR
resulting from the comparison of two paths of Hamming dis-
tance d in CMT is given by

(Nid )∑
p=1

∑
l∈Ip

1(
Ni

d

) SIRk,((l−1) modulomk)+1 =
( mk∑

j=1

1
mk

SIRk, j

)
d,

(30)

where l is the coded bit index in the trellis, since Ni is an
integer multiple ofmk. Hence the PEP of the path of distance
d in CMT is obtained as

Pk
2,p(d) = Q


√√√√√mk∑

j=1

1
mk

SIRk, j d

. (31)

In CT, the PEP of the path of distance d is given by

Pk
1,p(d) =

1
mk

mk∑
j=1

Q
(√

SIRk, j d
)

(32)

when it is averaged over multicodes.

Proposition 1. Pk
2,p(d) ≤ Pk

1,p(d) with equality if and only if
all SIRk, j , j = 1, . . . ,mk, are equal.

Proof. Q(
√∑mk

j=1(1/mk) SIRk, j d) ≤ Q(
∑mk

j=1(1/mk)
√
SIRk, j d)

for integer mk ≥ 1, because Q(·) is a monotonically de-

creasing function. Since Q(x) is also a convex function for

x > 0, Q(
∑mk

j=1 (1/mk)
√
SIRk, j d) ≤

∑mk
j=1(1/mk)Q(

√
SIRk, j d)

by Jensen’s inequality. The proposition follows.

From the proposition, we can assert that CMTworks bet-
ter than CT. Furthermore, as SIRk, j , j = 1, . . . ,mk, become
more different, the advantage of CMT over CT gets larger.
The PEP of CMT in this section provides optimistic perfor-
mance since it is assumed that the elements of random vec-
tor (nk

i + ī
k
i + i

k
i ) are uncorrelated. However, the analysis gives

some intuition where the multicode diversity comes from.
Next we comment on when the MMSE detector (8) ac-

tually provides different SIRs in (29). Note that R is a sym-
metric matrix with all diagonal terms equal to 1. As an ex-
treme case, if all Ak, j are equal and all off-diagonal terms of
R are equal, all off-diagonal terms of M also become equal
and equality of all SIRk, j follows. Generally, the variation
of crosscorrelations of two spreading codes increases when
they are not synchronized. In ISI channels, when we consider
the effective signature waveform of each user, the variation
of crosscorrelations can be significant because the spreading
codes are not synchronized in the effective signature wave-
form’s crosscorrelation.

5. SIMULATION RESULTS

Computer simulations have been done for a BPSK system.
Signature sequences with processing gain N = 15 were gen-
erated randomly and fixed.1 The code rates of CCs were
1/n = 1/2, 1/3, and 1/4, and the constraint length L is
set to 5. The generator matrix is

[
23 35

]
,
[
25 33 37

]
, and[

25 27 33 37
]
for rates 1/2, 1/3, and 1/4 codes, respec-

tively, and the decoding delay is 6L. The cases where the de-
sired user k has two, three, or four times faster information
bit rates than others and all other users have the same data
rates are considered. Thus, mk = 2, 3, or 4, and mj = 1
for j �= k. The total number of users K is determined by
15 − (mk − 1) and the total number of CDMA channels
C = ∑K

p=1mp is fixed at 15. The CDMA channel index ck, j

for jth multicode of kth user is given by ck, j =
∑k−1

p=1mp + j.
The case of matched mk and n was simulated with mk =

2, n = 2, and the results are shown in Figures 4 and 5. From
the figures and Table 1, we see that when uncoded BERs of
multicode channels at the MMSE detector output are simi-
lar, the performance improvement of CMT compared with
CT is negligible; however, when the performances of multi-
code channels at MMSE detector output are very different,
the performance gain of CMT over CT becomes significant.
Also, the simulated BER of the MMSE detector is in good
agreement with analytical BER. Simulation results of mis-
matched mk and n are shown in Figures 6 and 7 and have
similar behavior.

1The results for Gold codes in ISI channels are included in [14]. When
random spreading codes which change for every bit period are employed,
CT can exploit time diversity provided by them and the advantage of CMT
disappears.
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Figure 4: MMSE detector (uncoded) BER for CDMA channels 3, 4, 5, and 6, C = 15, N = 15.
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Figure 5: (a) Coded BER, K = 14,mk = 2, n = 2, ck,1 = 3, and ck,2 = 4. (b) Coded BER, K = 14,mk = 2, and n = 2, ck,1 = 5, and ck,2 = 6.

Table 1: Comparison of CT and CMT when n = 2 andmk = 2 (10 dB SNR).

ck,1 = 3 ck,2 = 4 ck,1 = 5 ck,2 = 6

Uncoded BER 0.0702 0.0459 0.0610 0.0126
SIR 2.1874 2.8390 2.3873 4.9950
CT (11) 3.38× 10−4 1.28× 10−4

CMT (15) 1.67× 10−4 1.68× 10−5

CMT (14) 1.29× 10−4 1.23× 10−5

CMT (13) 1.40× 10−4 7.59× 10−6

CMT (12) 1.22× 10−4 6.72× 10−6
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Figure 6: (a) Coded BER, K = 14,mk = 2, n = 4, ck,1 = 5, and ck,2 = 6. (b) Coded BER, K = 13,mk = 3, n = 2, ck,1 = 5, ck,2 = 6, ck,3 = 7.
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Figure 7: (a) Coded BER, K = 12, mk = 4, n = 2, ck,1 = 5, ck,2 = 6, ck,3 = 7, and ck,4 = 7. (b) Coded BER, K = 14, mk = 2, n = 3, ck,1 = 5,
ck,2 = 6, and ck,3 = 7.

To examine the effect of crosscorrelation on the perfor-
mance of CMT, the crosscorrelation

R =
1.0 0.2 0.3
0.2 1.0 ρ
0.3 ρ 1.0

 (33)

matrix was simulated with 0 ≤ ρ ≤ 0.95 in the scenario
where the desired user has two multicodes (channels 1 and
2) and another user has a single code (channel 3). Metrics
in (11) and (15) are used for CT and CMT, respectively. In
Figure 8, as ρ increases, the advantage of CMT over CT be-
comes more significant.
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Figure 8: Coded BER for 0 ≤ ρ ≤ 0.95, K = 2, m1 = 2, m2 = 1,
C = 3, c1,1 = 1, c1,2 = 2 (3 dB SNR).

6. CONCLUSION

In this paper, we investigated two coding schemes combined
with MMSE multiuser detection in multicode CDMA sys-
tems. Four metrics for CMT were considered along with
different decoding trellises. Time invariant-trellises are em-
ployed for the analysis, and to reduce decoding complexity,
time-varying trellises are used.

CMT generally provides better performance than CT
with all four metrics. As the variation of SIRs among the
multicodes increases at the MMSE detector output, the gain
of CMT over CT becomes more significant. The Gauss-
Chebyshev quadrature rule yielded a tight upper bound on
BER using transfer function method. An SIR-based method
provides insight into where the multicode diversity comes
from.
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