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This paper examines the optimum design of FIR precoders or equalizers for multiple-input multiple-output (MIMO) frequency-
selective wireless channels. For the case of a left-coprime FIR channel, which arises generically when the number nT of transmit
antennas is larger than the number nR of receive antennas, the Bezout matrix identity can be employed to design an FIR MIMO
precoder that equalizes exactly the channel at the transmitter. Similarly, for a right-coprime FIR channel, the Bezout identity yields
an FIR zero-forcing MIMO equalizer. Unfortunately, Bezout precoders usually increase the transmit power, and Bezout equalizers
tend to amplify the noise power. To overcome this problem, we describe in this paper a convex optimization technique for the
optimal synthesis of MIMO FIR precoders subject to transmit power constraints, and of MIMO FIR equalizers with output noise
power constraints. The synthesis problem reduces to the minimization of a quadratic objective function under convex quadratic
inequality constraints, so it can be solved by employing Lagrangian duality. Instead of solving the primal problem, we solve
the lower-dimensional dual problem for the Lagrange multipliers. When an FIR MIMO precoder has already been selected, we
also describe a technique for adding a vector shaping sequence to the transmitted signal in order to reduce the transmit power.
The selection of effective shaping sequences requires a search over a trellis of large dimensionality, which can be accomplished
suboptimally by employing reduced-complexity search techniques.
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1. INTRODUCTION

The increasing demand for high data rates communication
and the lack of wireless spectrum have prompted the consid-
eration in recent years of multiantenna wireless communica-
tion systems that can support much higher data rates [1, 2, 3]
than traditional single-input single-output wireless chan-
nels. However, for the case of frequency-selective multiple-
input multiple-output (MIMO)wireless channels, the task of
channel equalization becomes challenging, since the vector
nature of the channel precludes the use of trellis-based equal-
ization techniques due to the excessively large number of
states required, and since MIMO decision-feedback equaliz-
ers (DFEs) [4, 5] have a high computational complexity. As a
consequence, most broadband MIMO wireless system archi-
tectures address the equalization issue by purposefully trad-
ing off some amount of system performance against a lower
implementation complexity. Usually, this is accomplished ei-
ther by using an orthogonal frequency division multiplexing
(OFDM) modulation format [6, 7] or, for single-carrier sys-

tems, by performing equalization in the frequency domain
[8, 9]. In both cases, the transmitted data is divided in blocks
and a cyclic prefix is appended to each block, which has the
effect of ensuring that a block is not affected by intersym-
bol interference (ISI) from the previous block. This simpli-
fies greatly the equalization problem, but at the price of re-
ducing the overall transmission rate by the overhead repre-
sented by the cyclic prefix insertion. Similarly, the class of
Bezout precoders or equalizers introduced in [10] for MIMO
frequency-selective channels can be viewed as simplifying
the equalization problem through the introduction of redun-
dancy in space. These precoders exploit the fact that, whereas
square filter impulse response (FIR) systems (systems with
the same number of inputs and outputs) have an IIR inverse,
rectangular FIR systems (systems with more inputs than out-
puts or vice-versa) admit FIR inverses which are obtained by
using the Bezout identity [11] of right- or left-coprime FIR
systems. Thus the intentional unbalancing of MIMO wire-
less systems through the introduction of additional trans-
mit or receive antennas has the effect of simplifying the
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equalization problem. In contrast to Bezout precoders or
equalizers which employ a single rectangular FIR filter,
MIMO DFEs [4] or Tomlinson-Harashima (TH) precoders
[12] require both feedforward and feedback FIR filters, as
well as the solution of a matrix spectral-factorization prob-
lem, which typically requires the solution of a matrix Ric-
cati equation. In addition to making equalization easier, the
additional antennas introduced by making the system rect-
angular improve the performance of the system by increas-
ing space diversity. Finally, since the order of Bezout pre-
coders/equalizers tends to be about the same as the length
of the MIMO FIR channel to be equalized, their computa-
tional complexity is smaller than that of OFDM systems or
frequency-domain equalizers which require FFTs and inverse
FFTs of about ten times the channel length [8].

Unfortunately, for MIMO systems with deep frequency
fades, Bezout precoders have the tendency to increase the
transmitted signal power, and similarly Bezout equalizers in-
crease the noise power at the equalizer output. To reduce
this problem, it was proposed in [10] to use the available de-
grees of freedom existing in Bezout precoders (resp., equaliz-
ers) to reduce the transmit signal power (resp., the equalizer
output noise power). However, even with improvements of
this type, by performing simulations that sample the space
of MIMO channels at random, it is not difficult to verify
that the occurrence of bad channels impacts significantly the
average performance of Bezout precoders or equalizers. To
overcome this problem, we explore here the tradeoff existing
between the power of the residual ISI for the equalized chan-
nel and transmit power constraints or output noise power
constraints. For MIMO systems with more transmit than re-
ceive antennas, a convex optimization technique is proposed
for the synthesis of FIR MIMO precoders minimizing the
power of the residual channel ISI subject to various power
constraints. The constraints we examine involve either the
power used by each user, the total power for the system of
transmit antennas, or the power used by individual anten-
nas. In all cases, the synthesis problem reduces to the min-
imization of a quadratic objective function under convex
quadratic inequality constraints, so it can be solved by La-
grangian duality [13]. Specifically, since the number of power
constraints is much smaller than the MIMO precoder coef-
ficients, instead of solving the primal problem, we solve the
lower-dimensional dual problem for the Lagrange multipli-
ers. For systems with more receive than transmit antennas,
we also discuss briefly the optimum synthesis of FIR MIMO
equalizers minimizing the residual ISI power under various
equalizer-output noise power constraints.

In this respect, it is worth noting that a wide range
of results have already been derived concerning the sepa-
rate or joint optimization of precoders and/or equalizers for
frequency-selective channels. Unfortunately, with the excep-
tion of [14], [15, Section IV], most of the existing designs
do not employ constant FIR filters. They either use IIR pre-
coders and equalizers [16, 17, 18, 19] or divide the data in
blocks and perform the design of precoders or equalizers on
a blockwise basis [20, 21]. However, the block approach re-
quires the use of guard symbols to prevent interblock ISI, and

even when the channel is constant over a given block, the
precoders and equalizers do not have a Toeplitz structure, so
they cannot be implemented by time-invariant filters, which
makes them unattractive. Also, whereas earlier precoder or
equalizer design techniques consider only a total transmit
power constraint, the FIR design methodology we propose
can handle a wider range of such constraints, which includes
for example constraints on each transmit antenna power, or
on the power allocated to each user. Note that the results
presented are equally applicable to single-user and multiuser
MIMO systems, but in the multiuser case, cooperation is re-
quired between the different users to estimate the channel
and then compute and implement the optimumMIMO pre-
coder/equalizer.

For the precoder case, the design technique we propose
can be viewed as an attempt to attain for Bezout precoders
some of the features of TH precoders [12, 22] which solve the
transmit power amplification problem through the introduc-
tion of a modulo operation in the transmitter feedback path
at the expense of a small increase in transmit power (about
1.25 dB for QPSK transmission) and in BER due to the intro-
duction of additional neighbors in the periodic extension of
the signal set. After a MIMO precoder has been selected, we
also describe a signal shaping technique similar to the one
used for transmit power reduction in TH precoding. This
method uses constellation expansion and consists of adding a
vector shaping sequence to the transmitted signal in order to
reduce the transmit power. The selection of effective shaping
sequences requires a search over a trellis of large dimension-
ality, which can be accomplished suboptimally by employing
reduced-complexity search techniques.

The paper is organized as follows. The MIMO wireless
channel model and transmit/receive antenna system are de-
scribed in Section 2. Section 3 considers the design of pre-
coders for MIMO channels with more transmit than re-
ceive antennas. The minimization of the ISI under trans-
mit power constraints yields a convex optimization problem
which is solved by using Lagrangian duality. In Section 4, a
method is described for generating shaping sequences that
decrease the transmit power. The case of multiantenna sys-
tems with more receive than transmit antennas is examined
in Section 5 where a design technique is presented for mini-
mizing the residual ISI while ensuring that noise power con-
straints for the output signal are satisfied. Simulation results
are presented in Section 6 and Section 7 draws conclusions
and identifies further research issues.

Notation

In this paper, all boldface letters indicate vectors (lower case)
or matrices (upper case). The superscripts T and H denote
matrix transposition and the Hermitian transpose, respec-
tively, and tr(A) and |A| represent, respectively, the trace and
determinant of a matrix A. Continuous-time vector signals
are written as a(t), and discrete-time vector sequences as
a(n). The vec-operator is defined as vec(xi, 1 ≤ i ≤ q) =
[xH1 xH2 · · · xHq ]H . The matrix derivative is defined as
(∂ f (A)/∂A)i j = ∂ f (A)/∂ai j .
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2. SYSTEMMODEL

The system we consider has nT transmit and nR receive an-
tennas. Let {x(n) ∈ SnU , n ∈ Z} denote the vector sequence
of independent complex M-ary symbols to be transmitted,
where S represents the symbol set and nU = min(nT ,nR).
The components of x(n) can be from the different users or
from the same user after serial-to-parallel conversion. This
vector sequence is assumed to have zero-mean and covari-
ance matrix σ2x InU .

For frequency-selective channels, let hqp(k,n) denote the
discrete-time channel impulse response (CIR) (including the
transmit filter and receive filter) from the pth transmit an-
tenna to the qth receive antenna at time instant nT due to
an impulse applied at nT − kT , where 1/T is the symbol sig-
nalling rate. We assume it admits an L-path complex model
of the form

hqp(k,n) =
L∑
l=1

alqp(n)c
(
kT − τlqp(nT)

)
, (1)

where alqp(n) denotes the complex reflection coefficient
specifying the amplitude and phase of the lth path from
transmit antenna p to receive antenna q, τlqp(nT) represents
the corresponding time delay, and c(t) = r(t)∗ f (t) denotes
the pulse obtained by convolving the transmit and receive fil-
ters (∗ denotes the convolution operation). In the following,
H(k,n) denotes the nR×nT matrix CIR with entries hqp(k,n),
where 1 ≤ q ≤ nR and 1 ≤ p ≤ nT . By neglecting the small
taps in the discretization of the raised-cosine FIR c(t), we ob-
tain a time-varying CIRHn(z) =

∑d
k=0H(k,n)z−k with finite

length d + 1 at time index n.
For the optimal design of precoders or equalizers with

power constraints, we assume that the CIR is known at the
transmitter or receiver. In practice, a training sequence, or a
semiblind/blind channel estimation scheme can be used to
obtain the CIR at the receiver. The CIR at the transmitter can
be obtained either by means of a feedback channel from the
receiver to the transmitter or, for the case of time-duplexed
channels, from previous measurements due to the channel
reciprocity property. Accordingly, the applicability of this ap-
proach is limited to slowly fading channels such as those aris-
ing for fixed broadband wireless systems of the type consid-
ered by the IEEE 802.16 working group [23]. In this case, the
overhead associated to the introduction of a feedback chan-
nel is small. Furthermore, the data can be divided into blocks
whose length is selected such that the CIR is approximately
constant over the length of a block. The time dependence of
the channel, which is represented here by the subscript n, can
be dropped over a given block so that the CIR is denoted as
H(z). For this channel model we can then design an opti-
mal constant MIMO FIR precoder or equalizer that will be
applied to the block we consider. For each successive block,
the channel will need to be reestimated, and the optimum
precoder/equalizer will need to be updated based on the new
CIR.

Since the optimal precoders or equalizers we consider rely
in part on the Bezout identity of linear system theory, we start

x(n)
nU = nR

F(z)

nT × nR

s(n)

nT
H(z)

nR × nT

nR

v(n)

nR
y(n)

Figure 1: Precoded system.

by reviewing this identity. See [10, 11] formore details. Given
a rectangular FIR matrix H(z) of dimension nR × nT with
nR < nT (or nR > nT), that is, a “fat” (or “tall”) matrix, there
exists an FIR matrix F(z) of dimension nT × nR (or G(z) of
dimension nR × nT) such that

H(z)F(z) = diag
{
z−ki , 1 ≤ i ≤ nR

}
, (2)

or

G(z)H(z) = diag
{
z−ki , 1 ≤ i ≤ nT

}
, (3)

where the integer delays z−ki with ki ≥ 0 are arbitrary if and
only if the transfer function H(z) is left coprime (or right
coprime). The expressions (2) or (3) form the Bezout iden-
tity. In this respect, recall that a polynomial matrix H(z) is
left coprime (or right coprime) if it has full row rank (or full
column rank) for all finite complex values of z−1. The ap-
plicability of the Bezout identity to random wireless chan-
nels stems from the fact that rectangular FIR systems with
nT �= nR are generically (i.e., with probability one) left or
right coprime depending on nR < nT or nR > nT . Finally,
observe that the left or right coprimeness condition of H(z)
used above to ensure the existence of identity (2) or (3) may
be weakened slightly by requiring thatH(z) should be delay-
permissive left or right coprime.H(z) is delay-permissive left
(right) coprime if it has full row (column) rank for z−1 �= 0.
In this case, the diagonal delaymatrix appearing on the right-
hand side of (2) or (3) is not arbitrary andmust be amultiple
of the greatest common left (right) divisor ofH(z). Precoders
or equalizers with this structure are called Bezout precoders
and have been examined in [10]. According to the Bezout
identity, when the number nT of transmit antennas is larger
than the number nR of receive antennas, an nT × nR FIR pre-
coder matrix F(z) = ∑r

k=0 F(k)z−k with order d is used to
equalize the channel at the transmitter. The precoded system
is shown in Figure 1. In this case, the sampled received signal
takes, therefore, the form

y(n) = H(n)∗ F(n)∗ x(n) + v(n), (4)

where v(n) is a vector complex circular AWGN sequence
independent of x(n), with zero-mean and variance σ2v InR .
Similarly, when nR > nT , the equalized system is shown
in Figure 2. In this case, the received sampled signal that
passed through an nT × nR matrix FIR equalization filter
G(z) =∑r

k=0G(k)z−k of order r can then be written as

y′(n) = G(n)∗H(n)∗ x(n) +G(n)∗ v(n). (5)
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Figure 2: Equalized system.

Note that when identities (2) or (3) are satisfied, the ex-
pressions (4) and (5) become, respectively,

y(n) = vec
{
xi
(
n− ki

)
, 1 ≤ i ≤ nR

}
+ v(n) (6)

or

y′(n) = vec
{
xi
(
n− ki

)
, 1 ≤ i ≤ nT

}
+G(n)∗ v(n), (7)

so that perfect zero-forcing (ZF) equalization with adjustable
delays is achieved in both instances. In spite of their appar-
ent simplicity, Bezout precoders and equalizers have a signif-
icant defect. In the precoder case, the Bezout precoder may
increase the transmit power significantly to overcome deep
fades in the singular values of the channel matrix, while for
the equalizer case, deep fades are compensated by amplifying
the noise power. Since for sufficiently large order r, Bezout
precoders or equalizers are not unique, it was suggested in
[10] to use the additional degrees of freedom, as well as an
optimum selection of the delays z−ki , to minimize the trans-
mit power or the noise power at the receiver, respectively. Un-
fortunately, even with this additional flexibility, imposing an
exact Bezout precoder or equalizer structure is still too con-
straining in some instances, and we explore below a more
systematic tradeoff between the power of the residual vector
ISI signal and transmit power constraints (resp., noise power
constraints) in the design of MIMO FIR precoders (resp.,
equalizers). The optimal tradeoff can be obtained by convex
optimization as discussed in the next section.

3. OPTIMAL PRECODER DESIGN
WITH POWER CONSTRAINTS

In this section, we assume that the number nT of transmit an-
tennas is larger than the number nR of receive antennas, that
is, nT > nR, and that the MIMO CIR is known at the trans-
mitter. To measure the mismatch between the concatenated
CIR H(n)∗ F(n) and the ideal ZF impulse response

E(n) � diag
{
δ
(
n− ki

)
, 1 ≤ i ≤ nR

}
(8)

with z transform

E(z) � diag
{
z−ki , 1 ≤ i ≤ nR

}
, (9)

we employ the objective function

J(F) =
∞∑

n=−∞

∥∥E(n)−H(n)∗ F(n)
∥∥2
F

= 1
2π

∫ π

−π

∥∥E(e jθ)−H
(
e jθ
)
F
(
e jθ
)∥∥2

Fdθ,

(10)

where

‖M‖2F =
nR∑
i=1

nR∑
j=1

∣∣mij

∣∣2 (11)

denotes the squared Frobenius norm of an nR × nR complex
matrix M. Consider the (d + r + 1) × (r + 1) block Toeplitz
matrix

Γ(H) =




H(0) 0 · · · 0

H(1) H(0)
. . .

...
... H(1)

. . . 0

H(d)
...

. . . H(0)

0 H(d)
. . . H(1)

...
. . .

. . .
...

0 · · · 0 H(d)




(12)

whose blocks have size nR×nT , and the block columnmatri-
ces

E =




E(0)
E(1)
...

E(d + r)


 , F =



F(0)
F(1)
...

F(r)


 , (13)

where the nR × nR blocks E(i) represent the coefficients of
E(z), and the blocks F(i) have size nT×nR. Then the criterion
J(F) can be expressed in matrix form as

J(F) = tr
[(
Γ(H)F− E

)H(
Γ(H)F− E

)]
, (14)

which is obviously quadratic in F. For a Bezout precoder, the
identity (6) can be rewritten as

Γ(H)F = E (15)

so that in this case, J(F) = 0.
Since the Hessian	2J(F) = Γ(H)HΓ(H) is positive semi-

definite, the objective function J is convex. In the following
subsections, we construct precoders which minimize J under
several types of transmit power constraints. In all cases, the
constraints are convex so that the resulting convex optimiza-
tion problem can be solved by Lagrangian duality methods.

3.1. Power constraints on the precoder columns

We first consider the case where a power constraint is im-
posed on each column of the precoder. Specifically, let f j(z)
denote the jth column of the matrix filter F(z) so that

F(z) = [f1(z) f2(z) · · · fnR(z)
]
, (16)

where f j(z) has dimension nT × 1. If f j(n) denotes the im-
pulse response of f j(z), the component of the transmitted
signal s(n) due to the jth transmitted symbol sequence xj(n)
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is given by f j(n)∗ xj(n). We consider the case where a power
constraint of the form

1
2π

∫ π

−π

∥∥f j(e jθ)∥∥2dθ = ∥∥f j∥∥2 ≤ Pj (17)

is imposed on the column f j(z), where f j denotes the jth col-
umn of the block matrix F. This constraint can be viewed as
modeling a situation where each user j is guaranteed a fixed
quality of service (QoS) in the form of an allocated power Pj .
Note that the constraint (17) specifies a convex domain for
f j .

Since the objective function J(F) can be decomposed as

J(F) =
nR∑
j=1

J j
(
f j
)

(18)

with

J j
(
f j
) = ∥∥Γ(H)f j − e j

∥∥2, (19)

where e j is the jth column of the block matrix E, the mini-
mization of J(F) under the constraints (17) for 1 ≤ j ≤ nR
is equivalent to the separate minimization for each j of J j(f j)
under the constraint (17). Since J j(f j) and the constraint (17)
are both convex, this optimization problem can be solved ei-
ther in primal space or in dual space [13]. Because of the large
size of f j , the primal problem has a large dimension, whereas
the dual problem reduces to a scalar optimization problem
since there is only one constraint. Therefore, we solve the
dual form of the optimization problem.

The Lagrangian associated with the maximization of
J j(f j) under the constraint (17) takes the form

Lj
(
f j , λj

) = J j
(
f j
)
+ λj

(
f j

H
f j − Pj

)
= f j

H(
M + λjI

)
f j − f j

H
Γ(H)He j

− e j
H
Γ(H)f j − λjPj + 1,

(20)

with

M � Γ(H)HΓ(H), (21)

where the Lagrange multiplier λj ≥ 0. As long as λj is
such that the Hermitian matrix M + λjI is positive definite,
Lj(f j , λj) is a positive-definite quadratic function of f j and
is convex. Since the constraint (17) specifies a compact do-
main for f j , the Lagrangian admits a saddle point (f j

opt
, λ

opt
j )

whose first component f j
opt

is the solution of the constrained
optimization problem [13]. To find the saddle point, we first
fix λj and minimize the Lagrangian over f j , yielding

f j
opt(

λj
) = (M + λjI

)−1
Γ(H)He j . (22)

The dual function is therefore given by

Gj
(
λj
) = Lj

(
f j

opt(
λj
)
, λj
)

= −e jHΓ(H)
(
M + λjI

)−1
Γ(H)He j + 1− λjPj

(23)

over the domain

D j =
{
λj : λj ≥ 0, M + λjI > 0

}
. (24)

In order to obtain λ
opt
j , we only need tomaximize the concave

function Gj(λj) over D j . This maximum λ
opt
j is unique and

obeys the gradient condition

	λjGj
(
λj
) = e j

H
Γ(H)

(
M + λjI

)−2
Γ(H)He j − Pj = 0. (25)

However, solving the secular equation (25) is difficult, and it
is easier to obtain λ

opt
j by employing the iteration

λk+1j = λkj + αkdk (26)

until 	λjGj(λk+1j ) is small enough. In this iteration, the
descent direction dk is obtained by a Newton (or quasi-
Newton) technique and the step size αk is selected to ensure
that successive iterates stay inside the domainD j . Then, sub-

stituting themaximum λ
opt
j in (22) gives the optimal solution

f j
opt
.

3.2. Total power constraint

Next, consider the case where a constraint is imposed on the
total power used by all transmit antennas. This constraint can
be expressed as

tr
[
1
2π

∫ π

−π
FH
(
e jθ
)
F
(
e jθ
)
dθ
]
= tr

(
FHF

) ≤ PT. (27)

The Lagrangian corresponding to the minimization of J(F)
under the constraint (27) can be expressed as

L(F, λ) = J(F) + λ
(
tr
(
FHF

)− PT
)

= tr
[
FH(M + λI)F− EHΓ(H)F− FHΓ(H)HE

]
+ nR − λPT.

(28)

We use the fact that ∂tr(AXB)/∂X=AHBH and ∂tr(AXHB)/
∂X = BA [24], which gives

Fopt(λ) = (M + λI)−1Γ(H)HE. (29)

The dual function is, therefore, given by

G(λ) = L
(
Fopt(λ), λ

)
= tr

[
− EHΓ(H)(M + λI)−1Γ(H)HE

]
+nR − λPT

(30)

over the domain

D = {λ : λ ≥ 0, M + λI > 0}. (31)

For the concave functionG(λ), the optimal value λopt satisfies
the gradient condition

	λG(λ) = tr
[
EHΓ(H)(M + λI)−2Γ(H)HE

]
− PT = 0. (32)
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This secular equation is again difficult to solve, and it is
preferable to compute the optimal Lagrange multiplier λopt

numerically by maximizing G(λ) over D with a Newton or
quasi-Newton method. Substitution of λopt inside (29) then
yields the optimal precoder Fopt.

3.3. Power constraint on each transmit antenna

In practical situations, the power amplifier for each transmit
antenna has a region of linear operation. Thus instead of im-
posing a total power constraint on the system of antennas, it
is more realistic to impose a power constraint on each trans-
mit antenna, or equivalently on each row of the precoder. Let
fi(z) denote the ith row of the precoder with 1 ≤ i ≤ nT , that
is,

F(z) =




f1(z)
f2(z)
...

fnT (z)


 . (33)

Then, denoting the maximum operation power for antenna i
as Pi, the power constraint on this antenna can be expressed
as

1
2π

∫ π

−π
fi
(
e jθ
)
fHi
(
e jθ
)
dθ = tr

(
FHCiF

) ≤ Pi (34)

with

Ci = Ir+1 ⊗
(
uiuHi

)
, (35)

where ui denotes the unit vector of length nT with all zero en-
tries, except for its ith entry, which equals one, and ⊗ repre-
sents the Kronecker product. The constraint (34) is quadratic
positive semidefinite and thus convex. The Lagrangian asso-
ciated to the minimization of J(F) under the constraints (34)
for 1 ≤ i ≤ nT can be written as

L(F, λ) = J(F) + λTc(F), (36)

with

λ = [λ1 λ2 · · · λnT
]T
,

c(F) = [c1(F) c2(F) · · · cnT (F)
]T
,

(37)

where

ci(F) = tr
(
FHCiF

)− Pi. (38)

The computation of the optimum precoder Fopt then pro-
ceeds along the same lines as in the previous two subsections,
except that the dual function depends now on a vector λ of

Lagrange multipliers instead of a scalar. The Lagrangian can
be expressed as

L(F, λ) = tr

[
FH
(
M +

nT∑
i=1

λiCi

)
F− EHΓ(H)F

− FHΓ(H)HE

]

+ nR −
nT∑
i=1

λiPi,

(39)

which is minimized by

Fopt(λ) =
(
M +

nT∑
i=1

λiCi

)−1
Γ(H)HE. (40)

The domain of the dual function

G(λ) = L
(
Fopt, λ

)

= tr

[
− EHΓ(H)

(
M +

nT∑
i=1

λiCi

)−1
Γ(H)HE

]

+ nR −
nT∑
i=1

λiPi

(41)

is then given by

D =
{
λ ∈ RnT : λi ≥ 0, M +

nT∑
i=1

λiCi > 0

}
. (42)

Then using a Newton technique to maximize G(λ) over the
convex domainD gives the optimal Lagrange multiplier vec-
tor λopt, which in turn yields the optimal precoder after sub-
stitution inside Fopt(λ).

Up to this point, we have explored the tradeoff existing
between ISI and ICI minimization and transmit power con-
straints in precoder design. However, even after a precoder
has been selected, it is possible to reduce further the required
transmit power by adding a signal shaping sequence to the
precoder input.

4. SIGNAL SHAPING SEQUENCE SELECTION

The selection of a signal shaping sequence to minimize the
transmit power is similar conceptually to the selection of a
shaping sequence for TH precoding [22], except that it is
easier to implement since the MIMO precoder has an FIR
structure, whereas the TH precoder has a feedback structure
which complicates the selection of a shaping sequence.

The basic idea is to perform a constellation expansion by
adding to the vector input sequence x(n) a shaping sequence
d(n), yielding the transmitted sequence

z(n) = x(n) + d(n). (43)

The full system is shown in Figure 3. For simplicity, we con-
sider the case of QPSK modulation so that each entry xk(n)
of the input sequence admits a complex representation of the
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x(n)

d(n)

z(n)
F(z)

p(n)
H(z)

v(n)

y(n) �{·} Slicer mod
4Z

�{·} Slicer mod
4Z

x̂R j(n)

x̂I j(n)

Figure 3: Transmission system with the shaping sequence d(n).

form xk(n) = xRk(n) + jxIk(n) with xRk(n), xIk(n) ∈ {1,−1}.
Each entry of the shaping sequence takes the form dk(n) =
dRk(n) + jdIk(n) with dRk(n),dIk(n) ∈ {0,±4}. The transmit
signal p(n) is then given by

p(n) =
r∑

l=0
F(l)z(n− l)

=
r∑

l=0

[
F(l)x(n− l) + F(l)d(n− l)

]
.

(44)

For a fixed input sequence x(n), the first term in (43) is
known. The shaping sequence d(n) appearing in the second
term is selected such that the transmit power is minimized.
That is, the optimal shaping sequence is given by

dopt(n) = argmin
d(n)

( Ls∑
n=0

∥∥p(n)∥∥2
)
, (45)

where Ls denotes a fixed block length.
Since each entry dk(n) of the shaping sequence can take

nine possible values (three values each for the real and imag-
inary parts), the minimization in (45) can be performed by
applying standard trellis search techniques for a suitable state
trellis. The state at time index n is

[
dT(n− 1) dT(n− 2) · · · dT(n− r)

]
(46)

so that the trellis has 9rnU states. Note that this number can
be rather large even for small values of nU and r.

The Viterbi algorithm (VA) can be employed to solve the
minimization problem (45). However, both the VA’s compu-
tational complexity and storage complexity grow exponen-
tially with the order r of the precoder and the value of nU . To
keep the computational burden manageable, one can employ
suboptimal trellis search techniques. One such technique is
the list Viterbi method described in [25, Chapter 5], which
at any given time considers the most promising K paths or
states in the trellis. The number K corresponds to the size of
the list. At each depth, the most promising K paths are ex-
tended, instead of all for the VA. The beam VA [26] follows a
similar philosophy, except that the number of retained paths
varies instead of being fixed. Specifically, the retained paths
are those whose metrics fall within a certain beam width or
distance from the path with the lowest metric. The size of the
beam can be decided based on different application needs.
The list VA (LVA) and beam VA are only two instances of a
wider class of reduced-complexity VAs, which includes other
methods based on state partitioning. For the simulations pre-
sented in Section 6, we consider only the LVA. At each time

index l, the K best paths are extended. There are 9nU sub-
paths extended from one selected state. The trellis metric is
the transmit power

∑l
n=0 ‖p(n)‖2 up to time l. The power re-

duction which is achievable through shaping depends on the
size K of the list. In the theory, the larger K , the better the
performance. When the order r of the precoder or the value
of nU increases, K needs to be larger. But in this case, the
computational complexity and storage requirements of the
LVA become prohibitive.

The VA and its variants can be viewed as performing a
nonbacktracking breadth-first search over a state trellis. The
sequential algorithms (SAs), such as the stack algorithm or
Fano’s algorithm [25, 27], follow instead a depth-first trellis
search strategy, with some possible backtracking. The fun-
damental idea of these algorithms is that the search process
should only explore the most promising path at any given
time. If a path to a node looks “bad,” we can discard all the
paths stemming from that node without a significant loss in
performance. The key problem for SAs is to find the Fano
metric. In the VA, we always compare the metrics of paths
with the same length. However, the path metrics in SAs must
be adjusted according to the length of the path. The adjust-
ment to the path metric based on the length of the path is
called the Fanometric. For the problemwe consider, we want
to minimize the transmit power by selecting the shaping se-
quence d(n). Thus, the Fano metric can be defined as the
transmit energy divided by the length of the path up to the
current node, that is, (

∑l
n=0 ‖p(n)‖2)/l. For the simulations

presented in Section 6, we implement only the stack algo-
rithm. In this algorithm, the new nodes are extended from
the best node and the metrics of the new extended nodes
are evaluated and sorted together with the metrics of the old
nodes. After sorting, a new best node appears at the top of
the stack, and the extension process is initiated again.

Once the shaping sequence has been selected and added
to the transmitted input, since the real and imaginary parts
of each entry of the transmitted signal z(n) belong to the
expanded constellation {±1,±3,±5}, at the receiver end, a
slicer adapted to this expanded constellation is applied to the
real and imaginary parts of each entry of the received sig-
nal y(n), followed by a reduction modulo 4Z, as shown in
Figure 3.

5. OPTIMAL EQUALIZER DESIGNWITH OUTPUT
NOISE POWER CONSTRAINTS

When nT < nR, provided the channel is right coprime, a Be-
zout equalizer can be used to recover the transmitted vector
signal [10]. But, like all ZF equalizers, Bezout equalizers tend
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to amplify the received noise. In multimedia applications,
several information streams, such as audio or video, are typ-
ically sent over different channels with various noise power
constraints. For example, video has a smaller noise power re-
quirement than audio. For such applications, it is natural,
as shown in [20, 28], to introduce explicitly QoS consider-
ations in the form of noise power constraints in the design of
MIMO precoders and decoders. We consider below the de-
sign of equalizers that minimize the power of the remaining
ISI component at their output while obeying output noise
power constraints. This problem is of course dual to the pre-
coder design with transmit power constraints considered ear-
lier.

We assume that the orders of the channel and equalizer
are d and r, respectively. If G(n) denotes the impulse re-
sponse of the equalizer, the signal at the equalizer output is
given by (4). Let

E′(n) � diag
{
δ
(
n− ki

)
, 1 ≤ i ≤ nT

}
(47)

be the impulse response of the target equalized channel, and
let

E′(z) = diag
{
z−ki , 1 ≤ i ≤ nT

}
(48)

represent its z transform. Then the signal at the equalizer
output can be decomposed into three components: the de-
sired signal E′(n)∗ x(n), the ISI component [G(n)∗H(n)−
E′(n)]∗ x(n), and the noise component G(n)∗ v(n). We de-
sign the MIMO equalizer G(n) to minimize the power of the
ISI component while ensuring that the noise power is below
a preset threshold. The power of the ISI component can be
expressed as

PISI = E
[∥∥[G(n)∗H(n)− E′(n)

]∗ x(n)
∥∥2]

= σ2x J(G),
(49)

where

J(G) = 1
2π

∫ π

−π

∥∥E′(e jθ)−G
(
e jθ
)
H
(
e jθ
)∥∥2

Fdθ

= tr
[(
GΓ
(
HH

)H − E′
)(

GΓ
(
HH

)H − E′
)H]

,

(50)

G = [G(0) G(1) · · · G(r)
]
, (51)

E′ = [E′(0) E′(1) · · · E′(d + r)
]
. (52)

From (49), we see that minimizing the ISI power is equiva-
lent to minimizing J(G). Also, the noise power constraint is
equivalent to

tr
[
1
2π

∫ π

−π
G
(
e jθ
)
GH
(
e jθ
)
dθ
]
= tr

(
GGH

) ≤ PT. (53)

This reduces the equalizer design to a problem of the same
form as the one we considered in Section 3.2 for the de-
sign of a precoder with a total power constraint. By using
the Lagrangian duality method, the closed-form solution of

the optimal equalizer with the output noise power constraint
is given by

Gopt = E′Γ
(
HH

)(
M′ + λoptI

)−1
, (54)

where M′ = Γ(HH)HΓ(HH). We see that expression (54) for
the optimal equalizer coincides with the MMSE equalizer
when λopt = σ2v /σ

2
x and with the ZF equalizer when λopt = 0.

Note that the ZF equalizer minimizes the residual ISI power,
since it has zero ISI, and the MMSE equalizer minimizes the
MSE, whereas the optimal equalizers we design minimize the
residual ISI signal power under an output noise power con-
straint. Therefore, they define a family of equalizers among
which the ZF and MMSE equalizers represent two special
cases corresponding to λopt = 0 and λopt = σ2v /σ

2
s , respec-

tively.
Instead of imposing an aggregate output noise power

constraint, it may be preferable to require that each compo-
nent of the vector signal at the equalizer output obeys a sep-
arate noise power constraint. Let gi(z) and e′i (z) denote the
ith rows of the FIR matrices G(z) and E′(z), with 1 ≤ i ≤ nT .
Then the noise power constraint for the ith component of the
equalizer output can be expressed as

∥∥gi∥∥2 ≤ Pi, (55)

where gi denotes the ith row of thematrixG specified by (51).
Then, minimizing the ISI and ICI power under the noise
power constraints ‖gi‖2 ≤ Pi for 1 ≤ i ≤ nT is equivalent
to minimizing

J(G) =
nT∑
i=1

Ji
(
gi
)

(56)

with

Ji
(
gi
) = ∥∥∥giΓ(HH

)H − e′i
∥∥∥2, (57)

where e′i denotes the ith row of E′. But this problem is clearly
equivalent to the separate minimization of Ji(gi) under the
constraint (55), which is a problem of the same type as was
considered in Section 3.1. The optimal equalizer gi is given
by

g
opt
i = e′iΓ

(
HH

)(
M′ + λ

opt
i I

)−1
. (58)

Thus, for channels with more receive than transmit an-
tennas, the design of ISI and ICI minimizing equalizers un-
der output noise constraints gives rise to problems identical
to those considered earlier for the dual case of more transmit
than receive antennas. This is not a surprise since for MIMO
channels that operate in time-division duplex, the channel
is the same in both directions so that a precoder designed
for transmission in one direction becomes automatically an
equalizer when the transmission direction is reversed.
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6. SIMULATION RESULTS

In this section, simulation results are presented to illus-
trate the performance of optimal precoders with power con-
straints. Since the same design technique is applicable to both
equalizers and precoders, we only show results for the pre-
coder case. In our simulations, a 4-input 2-output single-
carrier frequency-selective wireless channel is considered.
The transmit signal uses an uncoded QPSK constellation for-
mat and the combined response of the transmit and receive
filters has a raised cosine spectrum with a roll-off factor of
0.2. The broadband transmission channel from input p to
output q is described by a five-path fading model. We assume
that the transmit antennas are located in the far field of the
receive antennas so that for each propagation ray emanating
from a fixed transmit antenna, the receive antennas have the
same fading amplitudes, arriving angles, and multipath de-
lays. Specifically, if we consider the complex CIR (1), we have

alqp(n) = alp(n) exp
(
jφlqp(n)

)
,

τlqp(nT) = τlp(nT),
(59)

where for the case of a uniform linear receive antenna array,
the interantenna phase factor φlqp(n) can be measured with
respect to the first antenna and takes the form

φlqp(n) =
(q − 1)2πds sin

(
θlp(n)

)
λ

, (60)

where ds = 10 λ denotes the interantenna spacing, λ is the
carrier wavelength, and θlp(n) represents the angle of arrival
of the lth ray from the pth transmit antenna measured with
respect to the normal of the receiver array at time index nT .
In the CIR model (1), the first term corresponds to a line-
of-sight path with unit gain. The arrival angles and the mul-
tipath delays are assumed to be random and uniformly dis-
tributed over the intervals [0, 2π] and [0, 12T], respectively.
The fading amplitudes exponentially decrease with the path
delay according to the relation alp(n) = −τlp(nT)/T in dB.
The length of the channel is truncated to 5 since the im-
pulse response samples beyond the 5th are statistically very
small. So in the following simulations, the signals are trans-
mitted over a length-5 frequency-selective MIMO channel.
Since optimal precoders are applicable only to fixed or slowly
time-varying channels, we consider these two types of chan-
nels in our simulation. For the case of a fixed channel, the
channel is assumed to be quasistationary, that is, it is station-
ary during the transmission of one block but changes inde-
pendently from one block to another. This simulation pro-
cedure ensures that the results presented do not depend on
one specific (good or bad) channel, but instead sample ex-
haustively the space of all possible channels. The simulation
results shown below represent an average over 1000 random
channels and the length of each block is 1000 symbols. The
channel noise is simulated by adding independent complex
circular white Gaussian noise sequences which zero-mean
and variance σ2v to each receive antenna signal. In all plots,
the SNR (in dB) is defined as SNR = tr(FFH)σ2x /σ

2
v , where

σ2x = 2.
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Figure 4: Comparison of the BER performance of Bezout precoders
and optimal precoders with a total power constraint for orders 3, 5,
and 7.

Figure 4 compares the BER performance of Bezout pre-
coders and of optimal precoders with a total power con-
straint when channels are quasistationary and the CIR is
perfectly known at the transmitter. Since only two signals
are transmitted, we apply the power constraint tr(FFH) ≤
PT = 2 which ensures that the total transmit power for
the two signals is not amplified by the 4 × 2 precoder F(z).
The Bezout precoders are obtained by using the technique
described in [10] for minimizing the transmit power. The
figure shows the BER performance for Bezout and optimal
precoders of orders 3, 5, and 7, respectively. As a bench-
mark, we also show the BER performance for QPSK sig-
nals transmitted over an AWGN channel. The figure indi-
cates that optimal precoders with a total power constraint
have a better BER performance than Bezout precoders and
the BER performance gets progressively closer to the AWGN
bound at mid-to-high SNR as the precoder order increases.
For low SNR, the BER performance of optimal precoders is
better than the AWGN bound because the SNR is defined
as the transmit power over the noise power and the trans-
mit power of the optimal precoder is less than or equal to
PTσ2x = 4, whereas for AWGN channels, the transmit power
is always 4. Therefore, for the same SNR, the noise added
to a system with an optimal precoder is less than the cor-
responding AWGN channel noise, which results in a better
BER performance. In contrast, at high SNR, the noise be-
comes very small, and the residual ISI and ICI of optimal pre-
coders become the dominant factor controlling BER perfor-
mance instead of noise. Figure 5 shows the BER performance
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Figure 5: BER performance comparison for optimal precoders de-
signed with a total power constraint, or with power constraints on
the precoder columns or rows; order of precoders = 5.

for optimal precoders designed with different power con-
straints and perfect channel knowledge at the transmitter.
The power constraint applied to each column of the pre-
coder in (17) is Pj = PT/nR, where here nR = 2. In other
words, the total power is divided evenly among the two users.
Similarly, the power constraint applied to each transmit an-
tenna in (34) is PT/nT , where nT = 4. Thus in this case,
the total transmit power PT = 2 is divided evenly across
all 4 transmit antennas. In all cases, the precoder has order
5. Figure 5 shows that all three types of power constrained
precoders exhibit a similar BER performance. Although the
difference in performance between power constrained pre-
coders is relatively small, it appears that the fewer the con-
straints, the better the performance. Thus, the precoder with
a total power constraint performs best since it involves only
one constraint, followed by the precoder with power con-
straints on the precoder columns, which has q = 2 con-
straints, and the precoder with a uniform power constraint
for all transmit antennas performs the worst since it involves
p = 4 constraints.

In real systems, channel estimation needs to be consid-
ered, so Figure 6 shows the effect of channel estimation on
the performance of Bezout and optimal precoders. A vector
training sequence of 200 symbols is employed, and the re-
cursive least-squares algorithm is used to estimate the chan-
nel. The estimated CIR is then used for precoder design, in-
stead of the true CIR. It is also of interest to evaluate the BER
performance of optimal precoders for slowly time-varying
channels. To simulate the channel time variations, we use,
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Figure 6: Comparison of the BER performance of optimal pre-
coders with perfect channel knowledge and with channel estima-
tion; order of precoders = 5.

as Doppler spectrum,

S( f ) =

1− 1.72 f 20 + 0.785 f 40 ,

∣∣ f0∣∣ ≤ 1,

0,
∣∣ f0∣∣ > 1,

(61)

according to the fixed broadband wireless channel model
proposed by the IEEE 802.16 Working Group [23]. Here
f0 = f / fm, and fm is the maximum Doppler frequency. The
Doppler spectrum (61) affects both the magnitude and phase
of the CIR. How Doppler shifts affect the magnitude of the
impulse response follows the simulation codes provided by
the IEEE 802.16 Working Group [23]. When Doppler shifts
are considered, the phase factor φlqp(n) in (60) becomes

φlqp(n) =
(q − 1)2πds sin

(
θlp(n)

)
λ

+ 2π fd(n), (62)

where fd(n) is the Doppler frequency characterized by the
spectrum (61). The data rate is 10000 times the maximum
Doppler frequency so that the channel is almost fixed during
the transmission of a block of 1000 symbols. In our simula-
tions, only one sequence of channel parameters is generated
for the slowly time-varying channel, that is, we do not per-
form an average over multiple simulation runs. The length of
the transmitted sequence is 100 000 symbols long and the op-
timal precoder is updated after each block of 1000 symbols.
Figure 7 shows that optimal precoders are more robust than
Bezout precoders for slowly time-varying channels since the
matrix singular value decomposition which is used for the
Bezout precoder design is sensitive to small errors.



354 EURASIP Journal on Wireless Communications and Networking

100

10−1

10−2

10−3

10−4

10−5

B
E
R

0 5 10 15 20 25 30

SNR (dB)

AWGN
Bezout precoder for quasistationary channels
Optimal precoder for quasistationary channels
Bezout precoder for slowly time-varying channels
Optimal precoder for slowly time-varying channels

Figure 7: Comparison of the BER performance of optimal pre-
coders for quasistationary channels and slowly time-varying chan-
nels; order of precoders = 5.
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Figure 8: BER performance for a precoder with a total power con-
straint as the number of transmit antennas is increased from 3 to
10.

To illustrate the effect of increasing the number of trans-
mit antennas while keeping the number of receive antennas
fixed, Figure 8 shows the BER obtained by an optimal pre-
coder of order 5 with a total transmit power constraint for
a quasistationary channel with nR = 2 receive antennas, as
the number of transmit antennas is increased from nT = 3 to
10. The figure shows that the performance for a system with
only 3 transmit antennas is rather poor, but as the number
of transmit antennas increases from 4 to 10, the performance
improves steadily due to the increased spatial diversity of the
system.

100

10−1

10−2

10−3

10−4

10−5

B
E
R

0 5 10 15 20 25 30

SNR (dB)

AWGN channel, W/O ISI
With original input, order of Bezout precoder = 5
LVA, order of Bezout precoder = 5
Stack algo., order of Bezout precoder = 5
With original input, order of optimal precoder = 5
LVA, order of optimal precoder = 5
Stack algo., order of optimal precoder = 5

Figure 9: Effect of shaping on the BER performance of optimal pre-
coders with a total power constraint and of Bezout precoders.

Finally, we illustrate the vector shaping sequence tech-
nique of Section 4 for the case of QPSK (4-QAM) modula-
tion and the simulation is run over quasi-stationary chan-
nels. The LVA and stack algorithm are employed to select
a shaping sequence minimizing the transmit power. In our
simulations, the size of the list or of the stack is only 10 to
keep the computational load reasonable. Figure 9 compares
the BER performance with and without shaping of an op-
timal precoder with a total transmit power constraint and a
Bezout precoder. The total transmit power constraint is again
tr(FFH) ≤ PT = 2 and the precoders have order 5. We see
from the figure that because the optimal precoder has already
decreased significantly the transmit power, the shaping gain
is smaller than that of the Bezout precoder. The results show
that systems with a shaping sequence performs better than
those without shaping at high SNR (in our simulation, for a
SNR > 8dB). The fact that an improvement appears only at
high SNR is due to the fact that after constellation expansion,
the original 4-QAM system becomes equivalent to a 36-QAM
system, whose performance at low SNR is poorer than a 4-
QAM system. Finally, note from Figure 9 that the LVA and
stack algorithm have a similar performance.

7. CONCLUSION

In this paper, to overcome a limitation of Bezout precoders
or equalizers for frequency-selective MIMO channels, a tech-
nique has been presented for the optimal synthesis of pre-
coders subject to transmit power constraints, or equalizers
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subject to output noise power constraints. This design tech-
nique is applicable to unbalanced channels with either nT >
nR or nR > nT , and assumes full knowledge of the CIR at
either the transmitter or the receiver. It formulates the de-
sign of precoders or equalizers minimizing the ISI and ICI
power under transmit power or noise power constraints as a
positive-semidefinite quadratic minimization problem with
convex positive-definite quadratic constraint. Lagrangian
duality is employed to solve the lower-dimensional dual form
of this problem. Due to the reciprocity principle of wave
propagation, the design of optimal precoders and equalizers
have an identical form. When a precoder has been chosen,
a shaping technique based on constellation expansion is also
presented for reducing the required transmit power. Since the
selection of effective shaping sequences requires a search over
a large trellis, the search is performed suboptimally by using
the LVA or stack algorithms.

We have focused our attention here excursively on equal-
ization. However, advanced MIMO wireless systems require
the development of integrated coding and equalization sys-
tems [29]. While the design of the MIMO coding and
precoder/equalizer components can certainly be kept sep-
arate, there exist interesting possibilities for joint design
that might be worth exploring. For example, instead of us-
ing a channel formed by pure delays as a target for the
equalized channel H(z)F(z) in (6), one could just attempt
to diagonalize approximately the MIMO channel and then
use the resulting diagonal terms as inner codes for decou-
pled serially concatenated turbo-like codes for each transmit
signal.
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